PhotoLock Tying photo integrity to a specific device

Team 4 John Dale, Darius Paradie, Jace Christakis, Dani Kasti

Problem Statement

Images, which once were viewed as a source of undeniable proof, have now become targets of societal manipulation. Most of the population utilizes online platforms such as Twitter and Google for news where images are posted daily; Twitter alone has over 500 million active users. The negative impact of altered or AI generated images on society includes body dysmorphia, political disruption, and proliferation of conspiracy theories.

Conspiracy theories

Problem Statement

Modified weather events

Political disruption and disinformation

Photoshop

Faked: planes underwater in Houston

Problem Statement

Law Enforcement, Intelligence Agencies

COVID-19 DELTA STRAIN

Real-time world events on Social Media

in

Justice system

Insurance claims

University of Massachusetts Amherst

Department of Electrical and Computer Engineering | Page 4

Updated Solution Overview

University of Massachusetts

Amherst

Department of Electrical and Computer Engineering

Updated Solution Overview

Hardware Root of Trust

Solution Overview Part 2

University of Massachusetts

Amherst

Department of Electrical and Computer Engineering

Assumptions

1. Raspberry Pi 4 memory is tamper-proof

a. Media can only be sent off the camera through WiFi upload

2. Sensor to Microcontroller interfaces are secure

- a. GPS
- b. Camera
- 3. GNSS Time and Location data are only used when possible
- 4. Storing images and video locally when WiFi is unavailable

Solution Comparison:

	Sony Alpha 7 IV camera	Capture Cam - Photo Verify (Image block chain)	Google Reverse Image search	Our Solution
Cost	\$2,499.99	FREE	FREE	\$350
Root of Trust	YES	MAYBE	N/A	YES
Online Media Verification	ΝΟ	YES	ΝΟ	YES
Automatic Wireless Upload	NO	NO	N/A	YES
Open Source	NO	YES	NO	YES
Location and Time	NO	NO	NO	YES

PhotoLock: Our Solution Goals

- 1. Hardware Root of Trust
- 2. Online Media Verification
- 3. Automatic Wireless Upload
- 4. Open Source Transparency
- 5. Location and Time Metadata
- 6. Reasonable Cost (<\$500)

GNSS Sensor: NEO-M7N Module

- Crystal and TXCO LCC (surface mount) oscillator options available for the NEO-7 series
- Schematics and datasheets support integration into PCB design
- Over 2,000 units available on Digikey
- Many compatible interfaces allow for alternative options (SPI, USB, UART)
- GPS and GNSS functionality

Trusted Platform Module: Infineon 9673

- 4 Endorsement Keys
- SPI interface
- Low standby power consumption
- FIPS 140-2 Level 2
 - Formally validated by US and Canadian Governments
- AVA_VAN.4 Certification
 - Methodical vulnerability analysis and resistance against a moderate attack potential

Raspberry Pi 4

- RAM memory: 2 GB
- Memory storage capacity: 2 GB
- Connectivity: Bluetooth, WIFI, USB, ethernet, HDMI, GPIO
- Micro SD card slot for loading operating system and data storage

Linux Version

- Raspberry Pi OS
- Best compatibility for Raspberry Pi 4
- Debian based OS

PCB Design

• Custom PCB \rightarrow integration of breakout boards

- GPS evaluation board
- TPM evaluation board
- Linear regulator to minimize noise (instead of buck converter)
 - capacitors and diodes

Layout of GPS Breakout Board

Benefits of Breakout Board Integration

- Ease of access to components
- Minimize errors by removing RF design component
- Ease of integration from Raspberry Pi to PCB
- Ensure proof of concept

Example layout showing difficulty of RF shielding

Example schematic showing filtering for antenna

Generic Model: PCB Integration through Raspberry Pi Hat

Previous PCB Integration Issues Solved

- Difficulty connecting to TPM
 - SPI interface operates at high frequency SOLVED Closer traces from pi header to TPM
 - Jumper cables did not provide stable connections
 - Inability to connect TPM from PI to jumpers
 - TPM library closed source (limited pin selection) SOLVED -Adjusted pin configuration
- Integration of GPS to PCB
 - GPS interface not compatible with PCB pinout due to SOLVED -Access to two interfaces library

TPM connection to PI unreliable

TPM fails to connect through PCB

TPM connects through PCB but connection is lost

PCB Schematic Design

PCB Layout Design

PCB Integration through Raspberry Pi Hat

PCB

Front side of populated PCB

Back side of populated PCB with Raspberry Pi header interface

Unpopulated PCB

PCB Size Comparison

Review: MDR Hardware Block Diagram

CDR Hardware Block Diagram

Embedded Software Block Diagram

Cloud Software Diagram

Cloud Software Diagram Part Two

team4SeniorDesignProject.com

- Display all media captured on camera
- Refresh ~10 seconds

University of

Amherst

Massachúsetts

- Download, delete, view

Display images through Web Application

team4SeniorDesignProject-twitter.com

- Twitter Clone
- Verify media live in application
- View media metadata

Verify images in Web Application

Previous CDR Specifications & Test Plan

Image Specification	Video Specification	Test Plan
1. Authenticate images camera source with 100% accuracy for 100 photos (Digital Signature)	1. Authenticate videos camera source with 100% accuracy for 100 videos (Digital Signature)	Upload media from known or unknown camera source to verify whether digital signatures are correct
2. Verify image has not been modified with 100% accuracy for 100 photos (Prevent false positives)	2. Verify video has not been modified with 100% accuracy for 100 videos (Prevent false positives)	Upload media and compare raw data of image, time, location with actual
3. Verify image has been modified with 100% accuracy for 100 photos (Prevent false negatives)	3. Verify video has been modified with 100% accuracy for 100 videos (Prevent false negatives)	Upload modified media and verify it has been rejected by the cloud
4. Store at least 350 photos at 1080p on the SD card (remote location - no WiFi)	4. Store one 15 minute video or store 15 one minute videos at 24fps/1080p on the SD card (remote location - no WiFi)	Verify 350 photos at 1080p or 15 minutes worth of video can be stored when wifi access is denied
5. Upload at least 10 photos at 1080p to the Cloud	5. Upload at least 10 videos at 24fps/1080p to the cloud	Verify 10 photos/videos at 1080p can be uploaded to Cloud when there is wifi access
6. System can take one photo per 10 seconds	6. System can take one video per one minute	Measure time between two consecutive media types
7. System can take 350 photos in one charge	7. System can take four separate 15 minute videos in one charge	Complete tasks in one charge (separately)

Updated CDR Specifications Test Plan

Image Specification	Video Specification	Test Plan
1. Authenticate images camera source with 100% accuracy for 100 photos (Digital Signature)	1. Authenticate videos camera source with 100% accuracy for <u>10</u> videos (Digital Signature)	Upload media from known or unknown camera source to verify whether digital signatures are correct
2. Verify image has not been modified with 100% accuracy for 100 photos (Prevent false positives)	2. Verify video has not been modified with 100% accuracy for <u>10</u> videos (Prevent false positives)	Upload media and compare raw data of image, time, location with actual
3. Verify image has been modified with 100% accuracy for 100 photos (Prevent false negatives)	3. Verify video has been modified with 100% accuracy for <u>10</u> videos (Prevent false negatives)	Upload modified media and verify it has been rejected by the cloud
4. Store at least 350 photos at 1080p on the SD card (remote location - no WiFi)	4. Store one <u>5</u> minute video or store 15 one minute videos at 24fps/1080p on the SD card (remote location - no WiFi)	Verify 350 photos at 1080p or 15 minutes worth of video can be stored when wifi access is denied
5. Upload at least 10 photos at 1080p to the Cloud	5. Upload at least 10 videos at 24fps/1080p to the cloud	Verify 10 photos/videos at 1080p can be uploaded to Cloud when there is wifi access
6. System can take one photo per 10 seconds	6. System can take one video per one minute	Measure time between two consecutive media types
7. System can take 350 photos in one charge	7. System can take 10 separate <u>1</u> minute videos in one charge	Complete tasks in one charge (separately)

Media False Negatives Test Results

lie Edit Selection View Go Run	\cdots \leftarrow \rightarrow	E CUIL SEIECTION VIEW GO KUN	ieminiai neip X /
੭╠ _₽ ₽₽₽ず©	PROBLEMS OUTPUT DEBUG CONSOLE		PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
EDITORS	BC Cilligens John Dele CDD Comenes & "C	1	Verification result for 436.avi: True
validate video locally ny U	Varification result for 100 nmg: True	validate video locally ny 11	PS C:\Users\John Dale\SDP-Camera> & "C:/Users/John Dale/Ap
and the locally my M	Verification result for 101.nng: True	create combined by	deo_locally.py"
	Verification result for 102.png: True	validate locally py M	Verification result for 130.avi: True
CAMERA	Verification result for 103.png: True	2	Verification result for 132.avi: True
eck_wifi.py	Verification result for 104.png: True	validate locally py M	Verification result for 15.avi: True
ate_combined.py	Verification result for 105.png: True	main nu	Verification result for 16.avi: True
ate digest py	Verification result for 106.png: True	малру	Verification result for 19.avi: True
	Verification result for 107.png: True	мска к_wiii.py	Verification result for 23.avi: True
ate_image.py	Verification result for 108.png: True	te_combined.py	Verification result for 24.avi: True
ate_metadata.py	Verification result for 109.png: True	te_digest.py	Verification result for 25.avi: True
ate_signature.py	Verification result for 110.png: True	te_image.py	Verification result for 26.avi: True
ate video.pv	Verification result for 111.png: True	te_metadata.py	Verification result for 32.avi: True
dentials and	Verification result for 112.png: True	te signature.py	Verification result for 33.avi: True
dentiais.mu	Verification result for 113.png: True	te video.pv	Verification result for 34.avi: True
S_uart.py	Verification result for 114.png: True	entials.md	Verification result for 37.avi: True
s.png	Verification result for 115.png: True	uart py	Verification result for 39.avi: True
in fake.pv	Verification result for 116.png: True	-uu cpy	Verification result for 434.avi: True
	Verification result for 117.png: True	y fake ny	Verification result for 435.avi: True
iin_live_view.py	Verification result for 118.png: True	Line view ev	Verification result for 436.avi: True
iin_video.py	Verification result for 119.png: True	I_IIVE_VIEW.py	Verification result for 437.avi: True
GITHUB COPILOT	Verification result for 120.png: True	1_video.py	Verification result for 438.avi: True
	Verification result for 121.png: True	1.ру	Verification result for 440.avi: True
	Verification result for 122.png: True	ps.png	Verification result for 441.avi: True
x the problems in my code	Verification result for 123.png: True	ing ny	Verification result for 442.avi: True
ests add unit tests for my code	Verification result for 124.png: True		Verification result for 51.avi: True
	Verification result for 125.png: True		Verification result for 6.avi: True
xplain how the selected code works	Verification result for 126.png: True	the problems in my code	Verification result for 61.avi: True
	Verification result for 127.png: True	ts add unit tests for my code	Verification result for 7.avi: True
Copilot or type / for command 9	Verification result for 128.png: True		Verification result for 91.avi: True
	Verification result for 129.png: True	0 ⊳	22 video verified vith 100% accurate
INE	Verification result for 13.png: True		PS C:\Users\John Dale\SDP-Camera>

100% Effective at preventing false negatives

Media False Positives Test Results

100% Effective at preventing false positives

University of Massachusetts

Amherst

Storage & Consecutive Capture Requirements

~Takes one image per 3 second, spec: <10 seconds

~Takes one video per 3 seconds, spec: <60 seconds

Stores 300+ images without Wi-Fi

Store 10 one minute (30fps/1080p) videos without Wi-Fi

Online Media Storage

AJf8W8CgQqRnbjRIEAFHxOmomSM2c1Z/vuoC2qiePZ6BoZhySR4KMoG0fwAgWKVkLl8ZG39w3Cyx1pjLqksTltZ3VsRNDlqPOnK2X2aLWsyfBC9cLtCwgqKPqz/wzk1aLlq5PQADBjXJrMciU3hol4M9e0w 7dfkwHaPRAVE0HVWAI0Qfzzj9Z4g7VX1A3yNorMgRelliYbbGLHT0Zc7+vzdZ1+/6t5Xh9wo8lORUZS4D6rBOEQhfeb59xJSPOwDo6rF7rWeYigZ7n4ySRSDXRu4l3fn+0t62P05OLLih1eU0BbDdUmj6CUQoi Z7fbsADEAQFz1yYof0PN4niMLQi6Q==

University of Massachusetts Amherst

Department of Electrical and Computer Engineering

Solution Overview: Twitter Clone

GPS : Time and Location Demonstration

Live Demo Details

- Image/video capture and upload with WiFi
 - View image/video on media gallery website
 - Download image/video
 - Delete image/video
- Image/video capture without WiFi
 - Ensure image/video is being saved
- Post image/video to Twitter clone
 - Upload through media gallery website
 - Verify media
 - Check metadata
 - Upload through file system
 - Verify media
 - Check metadata
 - Alter a real image
 - Verify media
 - Show multiple verified and unverified images in same post

CDR Demonstration

5 Inch Live Display

University of Massachusetts

Amherst

Review: System Capabilities at MDR...

-Camera system capable of:

- 1. Taking images with button 🔽
- 2. Signing them 🔽
- Uploading them to the Cloud through WiFi
- 4. Saving them on SD card and uploading to Cloud later 🔽
 - 4.1. Threaded upload later scheme: in progress
- 5. Proving that the images have not been modified \bigvee
- 6. Proving the images were taken on specific hardware 🔽

-Cloud system capable of:

- 1. Receiving images from the camera \checkmark
- 2. Validating the images are signed from the camera \bigvee
- 3. Verifying image and metadata is authentic 🔽
 - 3.1. Authentication Text Messaging 🔽
- 4. Storing images 🔽

Original CDR Deliverables

-Camera system capable of:

- 1. Taking videos
- 2. Signing them
- 3. Uploading them to the Cloud through WiFi
- 4. No WiFi: saving them in memory and uploading to Cloud later
- 5. Proving that the videos have not been modified
- 6. Proving the videos were taken on specific hardware

-Threaded camera capture and saved media upload

- -Live view of camera on screen
- -Boot-Up Two-Factor Authentication (if WiFi available)
- -Private User Application (Twitter clone)
- -Website that allows anyone to upload image/videos to
 - Photo/video verification
- -Two cameras if budget allows

Updated CDR Deliverables

-Camera system capable of:

- 1. Taking videos 🔽
- 2. Signing them 🔽
- Uploading them to the Cloud through WiFi
- 4. No WiFi: saving them in memory and uploading to Cloud later 🔽
- 5. Proving that the videos have not been modified 🔽
- 6. Proving the videos were taken on specific hardware 🔽

-Threaded camera capture and saved media upload 🔽

-Live view of camera on screen 🔽

-Additions: WiFi indicator, GPS indicator, image mode, video mode 🔽

-Boot-Up Two-Factor Authentication (if WiFi available) 🗵

-Private User Application 🔽

-Website that allows anyone to upload image/videos to 🔽

Photo/video verification

-Two cameras if budget allows* 🗵

*Can't do two realistically, need TPM, screen, gps, pi, two cameras

CDR Deliverables (PCB)

Adaptable PCB interface with the following components:

- Trusted platform module 🔽
- GNSS Sensor 🔽
- Voltage Regulator
- Raspberry PI 🔽
- Battery* 🗵
- DC power jack for household power**
- Pin headers for switching interfaces (2 for GPS)

*Adjusted in next slide

**Functional in last demo, due to current limit on Raspberry Pi pin, not testable, adjusted in next slide

FPR Deliverables (PCB)

Adaptable PCB interface with modified battery interface

pack Lithium-ION battery and PCB **USB-C** connection to Raspberry pi Current battery pack which Trusted Raspberry connects to Raspberry Pi serves as backup Platform PI Module Lithium-ION Voltage **GNSS Sensor** Battery Regulator

Battery

-

-

FPR Hardware Block Diagram

FPR Specifications & Test Plan

Image Specification	Video Specification	Test Plan
1. Authenticate images camera source with 100% accuracy for 100 photos (Digital Signature)	1. Authenticate videos camera source with 100% accuracy for <u>10</u> videos (Digital Signature)	Upload media from known or unknown camera source to verify whether digital signatures are correct
2. Verify image has not been modified with 100% accuracy for 100 photos (Prevent false positives)	2. Verify video has not been modified with 100% accuracy for <u>10</u> videos (Prevent false positives)	Upload media and compare raw data of image, time, location with actual
3. Verify image has been modified with 100% accuracy for 100 photos (Prevent false negatives)	3. Verify video has been modified with 100% accuracy for <u>10</u> videos (Prevent false negatives)	Upload modified media and verify it has been rejected by the cloud
4. Store at least 350 photos at 1080p on the SD card (remote location - no WiFi)	4. Store one <u>5</u> minute video or store 15 one minute videos at 24fps/1080p on the SD card (remote location - no WiFi)	Verify 350 photos at 1080p or 15 minutes worth of video can be stored when wifi access is denied
5. Upload at least 10 photos at 1080p to the Cloud	5. Upload at least 10 videos at 24fps/1080p to the cloud	Verify 10 photos/videos at 1080p can be uploaded to Cloud when there is wifi access
6. System can take one photo per 10 seconds	6. System can take one video per one minute	Measure time between two consecutive media types
7. System can take 350 photos in one charge	7. System can take 10 separate <u>1</u> minute videos in one charge	Complete tasks in one charge (separately)

Budget Estimates:

Item	Cost	Shipping Time	
Raspberry Pi	\$55.00	1 Week	https://www.mouser.com/ProductDetail/358-SC01949
Custom PCB	\$30.00	1.5 Weeks	
Trusted Platform Module Evaluation Boa	\$59.40	1 Week	https://www.mouser.com/ProductDetail/726-IRIDIUMSLI9670TP
Sparkfun GNSS Breakout board	\$71.76	1 Week	https://www.mouser.com/ProductDetail/474-GPS-16329
5 Inch TFT Touchscreen Display	\$47.38	1 Week	https://www.digikey.com/en/products/detail/dfrobot/DFR0550/9608214?utm_adgroup=&utm_source=goc
PCB Standoff Assortment Kit	\$14.99	1 Week	https://www.amazon.com/Standoffs-Motherboard-Assortment-Threaded-Circuit/dp/B0CBPGKDP4/ref=sr
40p to 40p GPIO Ribbon Cable	\$7.00	1 Week	https://www.amazon.com/NulSom-Inc-Ribbon-Cable-Raspberry/dp/B00QE3KZQ6/ref=sr 1 3?crid=1MD021
Momentary Push Buttons	\$11.99	1 Week	https://www.amazon.com/DaierTek-Momentary-Waterproof-Pushbutton-Automotive/dp/B0C8HPN318/re
Active GNSS Antenna	\$10.99	1 Week	https://www.amazon.com/Bingfu-Waterproof-Navigation-Adhesive-Receiver/dp/B083D59N55/ref=sr 1 1
12V 5A Power supply	\$15.99	1 Week	https://www.amazon.com/ALITOVE-Adapter-Converter-100-240V-5-5x2-1mm/dp/B01GEA8PQA/ref=sr 1 3
Voltage Regulator (LM888T)	\$1.76	1 Week	https://www.mouser.com/ProductDetail/926-LM338T-NOPB
270 Ohm Resistor	\$0.05	1 Week	https://www.digikey.com/en/products/detail/stackpole-electronics-inc/CF14JT270R/1741362
820 Ohm Resistor	\$0.04	1 Week	https://www.digikey.com/en/products/detail/stackpole-electronics-inc/CF18JT820R/1741779
Schottky Diode	\$0.29	1 Week	https://www.digikey.com/en/products/detail/stmicroelectronics/1N5819/1037326
0.1 UF Capacitor	\$0.26	1 Week	https://www.digikey.com/en/products/detail/nichicon/UKT1H0R1MDD1TD/4317271
1 UF Capacitor	\$0.47	1 Week	https://www.digikey.com/en/products/detail/nichicon/UDB1H010MPM1TD/4332986
10 UF Capacitor	\$0.13	1 Week	https://www.digikey.com/en/products/detail/kemet/ESH106M050AC3AA/3082958
U.FL to SMA Coaxial Cable	\$3.56	1 Week	https://www.digikey.com/en/products/detail/pulse-electronics/W9006/2267902
DC Power Jack	\$0.75	1 Week	https://www.digikey.com/en/products/detail/gct/DCJ200-10-A-K1-K/9859579
Pin Headers	\$1.89	1 Week	https://www.digikey.com/en/products/detail/sullins-connector-solutions/PEC26SACN/859251
26 Pin Header	\$10.08	1 Week	https://www.digikey.com/en/products/detail/samtec-inc/TD-113-G-A/1105513
Black PLA 3D printing filament	\$18.99	1.1.1	https://www.amazon.com/dp/B089S2QDHD?psc=1&ref=ppx yo2ov dt b product details
10,000 mAh portable charger	\$15.00		https://www.amazon.com/dp/B0BLGB1RXD?psc=1&ref=ppx yo2ov dt b product details
Total	\$377.77		

Team Roles and Work Division

John

- Cloud Software lead
- Application Lead
- Budget Lead

Darius

PCB Lead

Jace

• PCB assist

Dani

- Embedded Software lead
- Logistics lead

QUESTIONS & ANSWERS

Updated Gantt Chart

Category	Task	Team Members	Week of 3/18	Week of 3/25	Week of 4/1	Week of 4/8	Week of 4/15
APP	App/Website improvments	John					
PCB	PCB layout tool and environment training	Darius/Jace					
Embd Software	Specification testing	Dani / John					
PCB	PCB REV C	Darius/Jace					
Embd Software	code improvments	Dani/John					
PCB	Lithium Ion Battery Build and Integration	Darius/Jace					

Citations

[1] "Forgery-Detection Digital Signature Solutions - Sony Pro," *pro.sony*. https://pro.sony/ue_US/solutions/forgery-detection (accessed Oct. 10, 2023).

[2] J. Schneider, "This Company Wants to Protect Image Integrity Using Blockchain," *PetaPixel*, Jan. 13, 2021. https://petapixel.com/2021/01/13/this-company-wants-to-protect-image-integrity-using-blockchain/ (accessed Oct. 10, 2023).

[3] K. Koptyra and M. R. Ogiela, "Imagechain—Application of Blockchain Technology for Images," *Sensors*, vol. 21, no. 1, p. 82, Dec. 2020, doi: https://doi.org/10.3390/s21010082.

[4] Vinaypamnani-Msft, "Trusted platform module technology overview - windows security," Windows Security | Microsoft Learn, https://learn.microsoft.com/en-us/windows/security/hardware-security/tpm/trusted-platform-module-overview (accessed Oct. 11, 2023).

Reference Slides

Survey of Similar Solutions

Sony Alpha 7 IV camera [1]

- Supports detection of any modification to an image, thus protecting it from fraudulent usage
- Eliminates unauthorized editing and misconduct around digital photo data
- For corporate users only

But this method is:

- 1. Expensive: Unaffordable for the general public
- 2. Not open source

Survey of Similar Solutions

Capture Cam - Photo Verify (Image block chain) [2]

- An application that uses the camera of mobile phones with blockchain technology to transform photos into verifiable and secure digital assets.
- Marketed to protect against AI generated fake images

But this method is:

 Not spoof-proof: Cannot guarantee whether an image has been modified or artificially generated

Survey of Similar Solutions

Other solutions of verifying image integrity involve

- Individual fact-checkers
- Reverse-image searching
- Image forensics

But these methods are:

1. Inefficient/slow: Not practical when waves of images are populating social media feed

image		×
e with an	image instead of text. Try dragging an image here.	
e URL	Upload an image 🖬	
No file s	elected.	
-	image e with an e URL No file s	image e with an image instead of text. Try dragging an image here. e URL Upload an image II No file selected.

Hardware Block Diagram Changes

PCB Design Process

- Emphasize importance of part selection
- Ensure correct orientation (evaluation board placement, ease of access, etc)
- Double check measurements
- Visualize integration (Raspberry $Pi \rightarrow 40$ pin PCB header, etc.)
- Investigate pin and footprint compatibility

Orientation

Footprint compatibility

Benefits of Breakout Board Integration

- Ease of access to components
- Minimize errors by removing RF design component
- Ease of integration from Raspberry Pi to PCB
- Ensure proof of concept

RF Shielding in PCB Layout

Filtering for antenna

