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MARS HELICOPTER
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Satellites Orbiting Mars Provide
Large Scale Maps of the Surface
from an Altitude of 200 Miles, But
Finer Features Are Not Detectable.
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Cameras on the “Neck” of the Rover
Provide More Detailed Ground Level -

Imagery ....... But Are Limited to Unblocked pii j
Line of Sight. '
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Opportunity Rover
Spent 100 Days
Roaming the Perimeter
of this Crater in Search
of Safe and Interesting
Entry Point
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§La: AR TN 32/ o N Curiosity Rover ...
i RIS T © SR Roving Over Terrain

e \ ¢ 3| that Should Have
i\ Sl R RS Been Avoided ... If
\ e e A W T g One Knew
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FEW THINGS TO KNOW

First test of powered flight on another planet.

Built to be light and strong enough to stow away under the rover while on the way to
Mars, and survive the harsh Martian environment after arriving on the surface. The
helicopter weighs less than 4 pounds (1.8 kilograms).

Powerful enough to lift off in the thin Mars atmosphere. The atmosphere of Mars is
3 very thin: less than 1% the density of Earth's.

The helicopter may fly for up to 90 seconds, to distances of almost 980 feet (300
4 meters) at a time and about 10 to 15 feet from the ground. That's no small feat
compared to the first 12-second flight of the Wright Brothers' airplane.

The helicopter flies on its own, without human control. It must take off, fly, and land,
5 with minimal commands from Earth sent in advance.

For Planning and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged.
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o Helicopter antenna on its solar panel
—— 2
Fasteners _yr
- s Radiating element
- (PEEX) © A (stainless steel)
- Washers '(\Arlsr(f lE-TI’SN)
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Antenna design .
- g FM Helicopter antenna
- Helicopter antenna (Vo biades) Helicopter antenna Pattern with blade angle of 000 degree
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Antenna

Antenna on M2020 Antenna testing on M2020 Rover

Antenna design
Rover mockup

Helicopter Base Station Antenna (HBA) radiation pattern
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S

_30 o
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Propagation Link while the helicopter is on the ground:
Map coverage assuming min, mean, max polarization loss with blade rotating.

Blade angle 000 degree

v (km)
=
v (km)

x (km) x (km) x (km)

Link geometry
] z

Rover ﬂ "= Azimuth angle 6, = [0°-359°]

|:| Received power of >-99dBm <> 250kbps
|:| Received power of [-108, -99] dBm <> 20kbps

|:| No link

and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged. 11
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Propagation Link while the helicopter is flying:

Map coverage assuming min, mean, max polarization loss with blade rotating.

Blade angle 000 degree

05
0.5
1 A " l‘ll-"'
0.5 0 0.5 1 =1 0.5 0 0.5 1 - .
X (km) X (km) x (km)

Link geometry %
s/ Azimuth angle 8;, = [0°-359°]

O

Rover

|:| Received power of >-99dBm <> 250kbps
|:| Received power of [-108, -99] dBm <> 20kbps

|:| No link
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TX Antenna RX Antenna
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1AT ABOUT ON MARS?
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First Flight performed at 63m:

Z A
I:)Rx_calc =-39.7dBm
3mM f= PRX_meas = -37£1dBm
Pry_calc = -51.0Bm P calc = -48.6dBM
Pre mens = -49.0£1dBM P meas = -48.5£0.50BM
0 >
Time (s)
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Flight 4 (in flight):
* Min distance (start and end) at 67m
« Max distance (in air) at 141m

Flight 4 - one way forward

— Measured on Mars
Predicted (min polarization loss)
Predicted (max polarization loss)

Received Power (dBm)
3
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Flight 4 - one way backward

— Measured on Mars
Predicted (min polarization loss)
Predicted (max polarization loss)

200 220 240
Theta (degree)
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Flight 5 (in flight):
« Start distance of 92m
+ Max distance (end) of 128m

Flight 5

Measured on Mars
Fredicted (min polarizat
Fredicted (max polariza

20 220 240
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Theta (degree)

16



Toward more accurate predictions
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The Problem:

« Altair Winprop tool accounting for topology using the following methods:
= Parabolic Equation (PE): uses numerical algorithms to consider propagation phenomena like
reflection, diffraction, and forward-scattering. It accounts for the properties of the ground by the
following parameters: (1) conductivity of the ground and (2) dielectric permittivity of the ground.
= Inputs to this tool are the surface topology who needs to be generated (Matlab codes) and the
antenna radiation pattern for the Rover and Helicopter which is generated using FEKO.

Background:
« Antenna modelling of Rover and Helicopter is critical for the validity of these analysis.
« Antenna patterns were characterized using Altair Feko as required as input for Winprop.

Summary:
* This tool was introduced to improve future telecommunication predictions in adverse
scenarios by accounting for the Mars topology.
» This method was verified using the first 18 flights.
* It was then used for the rest of Ingenuity Mission Op.

ation — For Planning and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged. 17
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: * Take off distance of 358m
i Landing distance of 534m

§°8 Heli Touchdowfi

Heli Liftoffi e S = . WS ¢ @
_ 2 v.: :‘. > 4 S " v ey o - ,- “"ﬁ‘

! 2 Ponwer
| ; 4 e [dBm]
i £

-40.00
-45.00
-50.00

' g S A S ' _ -55.00
s by S, -50.00

, _ : -65.00

)ﬁf e z -70.00
o Liftoff — PE at 914MHz Touchdown — PE at 914MHz ~75.00
914MHz: 914MHz: -80.00

PRy meas = -99+1dBm PRX—meaS = -96dBm -85.00
PPE_: -96.7 dBm Ppe =-95.1dBm

-50.00
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CUBESAT ANTENNAS
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Provided bent pipe communication at 1AU at 8kbps
using an innovative UHF deployable antenna and
the first reflectarray in Space.

Drastic requirements:

« Stowage volume: 12.5mm x 210mm x 345mm

+ Gain of at least 28dBic (required aperture:
335mm x 587mm)

Constraints:
* No internal stowage volume
* Limited RF output power

~’;’ ‘ ‘& \

and ilustration
Earth for a Mart
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Reflectarray design:

£ Rogers 4003 — 0.813mm
§ STABLCOR Composite Structural Board — 0.589mm I E— —_—
o Rogers 4003 — 0.813mm
Panel configuration
S/NOOT  S/N002 z
Computed directivity 30.56 30.50 %_
Feed loss ~0.74 ~0.74 3
Patch dielectric loss -0.25 -0.25
Patch conductor loss —-0.04 —-0.04
Mismatch loss -0.14 -0.14
Hinge mounting area loss -0.15 -0.15
Total loss -1.32 -1.32
GAIN predict 29.24 29.18
0 0
i ---- Calculated | . -5
@ 10 — Measured | B 104
z_; —15 - E_; -15 -
s 20 3 —20
L 251 @ 254
0 -30 - 0 =30 -
= —35 - = —-35 -
© —40 4 © —40 |
T 45, T 45| ik
-50 A H : -50 4 . £
—60-50-40-30 -20-10 0 10 20 30 40 50 60 -40-30-20-10 0 10 20 30 40 50 60 70 80
Azimuth Angle (°)

Elevation Angle (°)
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Ka-band deployable reflectarray:
« 1-m reflector Ka-band antenna (98.6cmx82.1cm)
« Polarization: V-polarization
« Gain: > 47.0 dBi
. 1704

Gain (dBi) Loss (dB)

Ideal directivity 51.58 -
Spillover 50.67 0.91
Taper 49.95 0.72
Blockage 49.67 0.28
Struts 49.37 0.3
Gap loss 49.22 0.15

Patch dielectric /

48.97 0.25

conductivity loss
Surface accuracy * 47.77 1.2
Feed loss / telescoping

: .. 47.47 0.3
waveguide / transition

Feed mismatch (RL=17dB) 47.38 0.09

Overall performance 47.38 4.2

uswnﬁl Informatlon — For Plannlng and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged.
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Ka-band deployable reflectarray:
« 1-m reflector Ka-band antenna (98.6cmx82.1cm)
« Polarization: V-polarization
« Gain: > 47.0 dBi
« Efficiency: 47%

T T T T T 0 T T T T T
m—— Calculation = Calculation
Measurement 5 Measurement

) o

T S -0

z z

= =

S5 S-15¢ 1
= =

5 ks

=l =

S g 20T 1
= =

E E

- S -
Z Z

5 4 3 2 A 0 1 2 3 4 5 5 4 3 2 0 1
Angle (degree)

Angle (degree)

Gain = 47.1dBi at 35.75GHz
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Surface Water and Ocean Topography (SWOT)

Jet Propulsion LLaboratory.
California Institute of Technology

" Interferometer

<
<

Interferometer
Antenna 1
V3

Antenna 2

/ \ \\ N / // / \
| \ N Ve / \
\ \ N e ¢ /
/ N 7/ / \
€ / L / \
S| RV i W \
© / \ \/ N/ /7 \
Interferometer\ A A/ Interferometer)
Left Swath % /N Right Swath
7 /N \
s N \

& Cross-Track
Resolution
70-10 m

Ocean y Surface-Water -
Topography ' : Topography -~

V-Polarization Interferometer

H-Polarization Interferometer Nadi
S0l Swath 10-60 km

Swath 10-60 km Altimeter
Path
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Californial Institute of, Technology.

\ A [gstpromisor Leboeioy Surface Water and Ocean Topography (SWOT)

0 0
o —-10 o —-10 { \
o =) /
& 20 R \ 8§20 /
o f °
é =30 A\ \ % -30 (. /\
g : V
I
| ’LM" [RENAR
_50 la n ’\ ﬂ’\ a7 —50 ;:‘ i
-1 -0.75 -0.5-025 0 0.25 05 075 1 -10 =75 -5 25 0 25 5 75 10
Azimuth Angle (°) Elevation Angle (°)
@ (a)
0 0
@ -10 %_ —10 {
2 £ [
8 —20 i‘i 3 -20
g W AV, a E A M,
= =30~ H N -30 A
I f Y |
2 10 V41 | 2 40
: 3 | § ' s y ;f%\
B O—1 -0.75 -0.5-025 0 025 05 075 1 _5910 -75 -5 25 0 25 5 75 10
Azimuth Angle (°) Elevation Angle (°)
(b) (b)
— Measured Copolarization — Measured Copolarization
-- Measured Cross Polarization --- Measured Cross Polarization
— Calculated Copolarization — Calculated Copolarization
-- Calculated Cross Polarization --- Calculated Cross Polarization
V-polarization azimuth reflectarray V-polarization elevation reflectarray
radiation patterns at 35.75 GHz: (a) radiation patterns at 35.75 GHz: (a)
antenna 1 and (b) antenna 2. antenna 1 and (b) antenna 2.

R. E. Hodges, et al., "An Extremely Large Ka-Band Reflectarray Antenna for Interferometric Synthetic

Aperture Radar: Enabling Next-Generation Satellite Remote Sensing," in IEEE Antennas and

Propagation Magazine, vol. 62, no. 6, pp. 23-33, Dec. 2020, doi: 10.1109/MAP.2020.2976319.
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0 * Features:

* Compatible with 6U CubeSat

« X-band design for Telecom

« Transmit only

* Deployed area: 600mm x 670mm

« Gain of 32.5dBic between 8.4-8.45GHz

0

— Co-pol (El)
------- Cross-pol (El)|

5}

7 W W W W W
/A L

00 o op opop o

—
o
T

IRR IR

Amplitude (dB)
o

20
ARNENENRNRN ;
25+
AINENENENEN
'30 ! L : PRy L
-40  -30 -20 -10 0 10 20 30 40
Theta (degree)
O T T T T
—Co-pol (Az)
S+ Y e Cross-pol (Az)| 1

Triple Dipole using the
variable rotation technique
(VRT) technique

Amplitude (dB)
o

-25_ AN; "ﬂ
) ‘ N A . P

40 -30 -20 -10 0 10 20 30 40
Feed with MarCO heritage Pre-Decisional Information — For Planning and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acmov‘fﬁ%ﬁ??ﬂegree)



s | More Reflectarrays -

s :C:a:iifpr_'nija]ristityt_e offechnology: =i i b

* Features:
» Compatible with 6U CubeSat
« X-band design for Telecom
* Transmit only
» Deployed area: 600mm x 670mm
* Gain of 32.5dBic between 8.4-8.45GHz

Dual Frequency:
« PL dual frequency feed
« Convert LP to CP by utilizing a reflectarray element that provides a

relative phase shift of £90

\ \ / Q O SR
90.0 1
o
] 0.0
(7]
o]
£
[-%
-90.0 1
1 %, Arg(S;)
-180.0 4 e
0.003 0.004 0.005 0.006
Ix (m)
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More Reflectarrays — Ka-band

e Features:

« Compatible with 6U CubeSat

« Ka-band design for Telecom

« Transmit only

* Deployed area: 600mm x 670mm

Gain of 43.2dBic between 31.8-32.3GHz

T T T 0 T

m— Co-pol (El)

------- Cross-pol (El)

— Co-pol (AZ)
------- Cross-pol (Az)
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6 4 2 0 2 4
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More Reflectarrays — X/Ka-band

e [Features:

Compatible with 6U CubeSat

X- and Ka-band design for Telecom
Transmit only

Deployed area: 600mm x 670mm

Gain of 32dBic between 8.4-8.45GHz

Gain of 43.5.0dBic between 31.8-32.3GHz
Co-located feed with identical beam-pointing

X-band elements in green (hy,=1.5mm)
Ka-band elements in blue (h,,=0.406mm)

lanning and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged.
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Beamsteering Reflectarray

Reflectarray antennas, Wiley 2018

Beam Steering Approaches

- ——
-
-

Incident
waves

f=140 mm

Reflected
waves

(& oV /

Phase distribution on each element of reflectarray

@(x;,¥i) = —koR; + pr(x;, y;)
15t term- Spatial delay between phase center of feed and element on reflectarray
2"d term- Reflection phase of it" element on aperture

Pre-Decisional Information/= For Planning and Discussion Purposes Only © 2022 California Institute of Technology. Government sponsorship acknowledged.



Electronically Reconfigurable Unit cells
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- .

Incident
waves

(a) (b)
dy (’—__—

-~

N dy Ground I’l

(c)
J. Han et.al, IEEE AWPL 2019

f=140 mm

Reflected
waves

Normalized Magnitude
08 06 04 0.2

H. Luyen et.al, IEEE TAP 2022

F. Wu et.al, IEEE TAP%021
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Electronic Beamsteering Reflectarrays
H. Luyen et.al, IEEE TAP 2022

2 ,
(Dout(ms n) — _Trmn Sll’l(@o) COS(QZSmn - QbO) + ¢ref

o

------------- Desired outgoing phase Direction of main beam (6,, ¢,)
: E-plane
o B )
— Phase shift Incident E field phase
D-plane of unit cell
f=140 mm For 1 bit operation ,
I, if —90° < @y (m,n) < 90°

Mode =

2, 1f 90° < O (m,n) or Op(m,n) < —90°
Phase [Deg.]

Reflected
waves

u
-
-
n
N
N
am
D=192 mm |
-
[
10 0
Normalized magnitude [dB] Phase [Deg.] _ _ o _
Amplitude and phase distribution of incident E Non quantized and quantized phase distribution
field from feed horn antenna on reflectarray on unit cells for main beam at 30° in E plane
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Electronic Beamsteering Reflectarrays
H. Luyen et.al, IEEE TAP 2022

Arduino Module

.
-——

Incident
waves

Latch

Clock

| 58 cascaded:
shiftiregisters

Reflected Control circuitry

25
204 A \- A S —
154 S
2 10l /. )
=
= 5{ : ..
* <f) N
0 , [l "nh
S0 4 M

~~ ,;
odnf ~ m Wt |
1543 ’N'“l"l n"/ i‘“"“‘”r \lf

Theta (deg)
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Beamsteering Reflectarrays using MEMS

"'-A Jet Propulsion Laboratory
O. Bayraktar et.al, IEEE TAP 2012

California Institute of Technology

: E-plan Ly L, :
Incident pane = !
X+~ -~ +-- | :
waves  H-plane = R £
1O
1 \O
D-plane b
2.63 mm Phase Shifter Part il
f=140m Open ended .
m RF MEMS . line ||
Switch !
- _i | S— ; ;
Reflected = v |
waves L=-02 mm—y = ———— : E
L=0mm L i
‘
ho/2 =5.66 mm
(a)
Antenna z atch antenna
substrate Ly ¢ /
|
8"P :Wa |hP
_ $ o — =
X! y
&5 : Ground hy
| Plane
e
Microstrip/ ! L Tr. line
tr. line substrate

MEMS switch size 0.4 x 0.14 mm
for Ka band
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Incident
waves

Reflected
waves

7 DAC Amp.
Boards Mounted

Mounting
Under Absorber Structure

Pre-Decisional Informati

Continuous Electronic Beamsteering Reflectarrays

M. Trampler et.al, IEEE TAP 2020

1000

-1400

> |

| —~Operating Frequency

200
—C,, =0.15pF

—C,, =020pF
—cC,, =030pF

-
8 \\ ——C,,, =0.40 pF [-200
Frequencies where b
\ 400
F’ 1 1
10

-7+ = 360° phase range
is ar:hieved\
-gOO

s 9 95 105 1 11,
Frequency (GHz)

=
Reflection Phase (deg)

Reflection Magnitude (dB)

‘ —Scanto -50° — Scan to -30° —Scanto 0° — Scan to 30° — Scan to 50°
=

Radiation Pattern (dB)
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