Section 6.1 – Antiderivatives Graphically and Numerically

1. For each of the following functions f, sketch two antiderivatives of f, one that satisfies F(0) = 0 and one that satisfies F(0) = 1.

2. Given below is the graph of a function f'(x). Given that f(0) = 1, sketch an accurate graph of f(x) on the blank axes to the right. Label all critical points and inflection points of f with their x and y coordinates.

3. Given below is the graph of a function f(x). Sketch a graph of an antiderivative F(x) of f(x) that satisfies F(0) = 5. Label all critical points and inflection points of f with their approximate x and y coordinates.

1. Evaluate each of the of the following **exactly**.

(a)
$$\int_{1}^{3} \frac{10 - 5x}{\sqrt{x}} dx$$

(b)
$$\int_{-5}^{0} (2e^x - 4\cos x) \, dx$$

(c)
$$\int x(x^2+1)^2 dx$$

2. Find the exact area under $y = \frac{1}{4x}$ between x = 1 and x = 4.

3. At Bill's Gas 'n' Snax, the most happening gas station in Dudleyville, Arizona, the demand for gasoline is changing at a rate of r(t) = -90t - 100 gallons per day, where t = 0 represents the number of days after a major jump in gas prices. Calculate $\int_{1}^{4} r(t) dt$ and give a practical interpretation of this integral, including the appropriate units.

Section 6.2 – Derivatives and Antiderivatives

- 1. Let f'(x) = 3 |2x|. Sketch the following graphs clearly and accurately and label all important points.
 - (a) On one set of axes, sketch a graph of f'(x) and f''(x).
 - (b) On another set of axes, sketch possible graphs of f(x), one having f(0) = -2 and one having f(0) = 0.
- 2. Find derivatives and antiderivatives of the following.
 - (a) e^x
 - (b) $\sin x$
 - (c) x^{5}
 - (d) $5x^4$
 - (e) $3e^{2x}$
 - (f) $\cos 3x + \sin 4x$
 - (g) $e^{-x} \frac{x+3}{x^2} + \frac{5}{\cos^2 2x}$
- 3. Explain the difference between an antiderivative and the antiderivative.

Section 6.4 – The Second Fundamental Theorem of Calculus

Example. Given to the right is a graph of the function $y = \sin(x^2)$. Define a new function

$$F(x) = \int_0^x \sin(t^2) \, dt.$$

1. Use your calculator to help you fill in the following table entries.

x	0	0.5	1	1.5	2	2.5	3
F(x)							

2. On the same set of axes as the above graph, sketch the graph of F(x). Do you notice a relationship between f and F? How are these two functions related?

Exercises.

- 1. For each of the following, find F'(x).
 - (a) $F(x) = \int_{3}^{x} (2t+1) dt$
 - (b) $F(x) = \int_{1}^{\ln x} \frac{1}{1+t^4} dt$
 - (c) $F(x) = x \operatorname{Si}(x)$, where $\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} dt$

2. Let $F(x) = \int_0^x f(t) dt$, where f(x) is the function whose graph is given below.

- (a) What are the critical points of F(x)?
- (b) Where is F(x) increasing? decreasing?
- (c) Locate all places where F(x) has a local maximum or a local minimum, and make it clear which are which.
- (d) Where is F(x) concave up? concave down?
- (e) Where does F attain its maximum value? Use a method of your choice to estimate this maximum value.
- 3. Let $F(x) = \int_{2}^{x} \frac{1}{\ln t} dt$ for $x \ge 2$.
 - (a) Find F'(x).

Define

- (b) Is F increasing or decreasing? What can you say about the concavity of F?
- 4. Let f(x) be the function whose graph is given to the right.

$$F(x) = \int_0^x f(t) \, dt.$$

Fill in the entries in the table that follow:

x	1	2	3	4	5
F(x)					
F'(x)					
F''(x)					

The Calculus Workout Sheet

1. A motorcyclist traveling along a straight east/west road begins travel at her home at t = 0. Below you are given a graph of her velocity, v, as a function of time, where positive velocities indicate easterly travel, and negative velocities indicate westerly travel.

- (a) What are the location, velocity, and acceleration of the rider after 20 seconds?
- (b) Estimate the time(s) when her speed is the greatest, the time(s) when her acceleration is the greatest, and the time(s) when her distance from home is the greatest.
- (c) At what time does she pass her house going west?
- 2. Between noon and 6 p.m., the electrical power in use by a family, in kilowatts, is given by the function $P = 0.6t^2 0.1t^3 + 0.2$, where t is the number of hours after 12:00 noon.
 - (a) How fast is the family's power usage increasing, in kilowatts per hour, at 2:30 p.m.?
 - (b) What is the family's power usage, in kilowatts, at 2:30 p.m.?
 - (c) How much total energy is consumed by the family, in kilowatt hours, between noon and 6 p.m.?
- 3. The volume of water remaining in a leaking tank is given by the function $V = 50e^{-0.1t}$, where V is measured in gallons and t in minutes.
 - (a) How fast is the tank leaking after 10 minutes? Include appropriate units.
 - (b) How much water remains in the tank after 10 minutes? Include appropriate units.
- 4. The rate at which water is leaking from an initially full 100-gallon tank is given by the function $r = -7e^{-0.1t}$, where r is measured in gallons per minute and t is measured in minutes. (The negative sign indicates a decrease as opposed to an increase in volume.)
 - (a) How fast is the tank leaking after 10 minutes? Include appropriate units.
 - (b) How much water remains in the tank after 10 minutes? Include appropriate units.

5. Let f be a differentiable function on the interval $0 \le x \le 4$, and suppose that the derivative of f is also continuous. Suppose that the table below is the only information about f that we have.

x	0	0.5	1	1.5	2	2.5	3	3.5	4
f(x)	1.1	2.1	2.9	3.6	4.2	4.6	4.9	5.1	5.2

Estimate each of the following as accurately as you can based on the data given.

(a)
$$f'(1)$$
 (b) $f'(3)$ (c) $\int_0^4 f(x) dx$ (d) $\int_1^3 f'(x) dx$

6. Let f be the function whose graph is given below, and define a new function F by the equation $F(x) = \int_0^x f(t) dt.$

Given below are several lists of numbers. Rank each list in order from smallest to largest.

- (a) 0, f'(3), f'(4), f'(9), f'(14), f'(15)
- (b) 0, F(3), F(4), F(6), F(13), F(14)
- (c) 0, F'(0), F'(4), F'(7), F'(10), F'(15), F'(18), F'(23)
- 7. Find the slope of the tangent line to each of the following functions at x = 2. Give the exact slope if possible; otherwise, round to the nearest 0.01.
 - (a) $f(x) = \sin(\cos(x))$
 - (b) $F(x) = \int_0^x e^{-t^2} dt$ (c) $f(x) = x^x$