
Section 4.1 – Using the First and Second Derivatives

Definitions. Let f be a function.

1. A critical point of f is a point p in the domain of f such that either f ′(p) = 0 or f ′(p) is undefined.

2. We say that f has a local minimum at p if f(p) is less than or equal to the values of f for points near
p.

3. We say that f has a local maximum at p if f(p) is greater than or equal to the values of f for points
near p.

4. An inflection point of f is a point at which the function f changes concavity.

Example. Given to the right is the graph of a function f.

(a) Estimate the critical point(s) of f.

x = 2, x = 5.3, x = 8.5

(b) Estimate the inflection point(s) of f.

x = 3.4, x = 7.2
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f(x)
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(c) Does f have any local maximum or local minimum values? If so, list them, making it clear which are which.

f(2) = 27 is a local maximum.

f(5.3) = −31 is a local minimum.

f(8.5) = 15 is a local maximum.

First Derivative Test. Suppose that p is a critical point of a continuous function f.

1. If f ′ changes from negative to positive at p, then f has a local minimum at x = p.

2. If f ′ changes from positive to negative at p, then f has a local maximum at x = p.

Second Derivative Test.

1. If f ′(p) = 0 and f ′′(p) > 0, then f has a local minimum at x = p.

2. If f ′(p) = 0 and f ′′(p) < 0, then f has a local maximum at x = p.
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EXERCISES. Please do the following on a separate sheet of paper.

1. Let f(x) = x2/3(4− x)1/3.

(a) Given that f ′(x) =
8− 3x

3x1/3(4− x)2/3
, find the intervals on which f is increasing/decreasing.

First, we note that f ′(x) = 0 when 8 − 3x = 0, so solving for x
indicates that x = 8/3 is one critical point. In addition, we

can see that x = 0 and x = 4 are critical points since f ′(x) is

undefined for these two values of x. We therefore obtain the

sign chart shown to the right:

Interval Sign of f ′(x)
x < 0 −

0 < x < 8/3 +
8/3 < x < 4 −

x > 4 −

We therefore conclude from the sign chart that f is increasing on 0 < x < 8/3 and

decreasing for x < 0, 8/3 <≤ 4, and x > 4.

(b) Given that f ′′(x) =
−32

9x4/3(4− x)5/3
, find the intervals on which f is concave up/concave down.

We can see from the formula for f ′′(x) that f ′′(x) never equals

zero; however, f ′′(x) is undefined for x = 0 and x = 4. We
therefore obtain the sign chart shown to the right:

Interval Sign of f ′′(x)
x < 0 −

0 < x < 4 −
x > 4 +

We therefore conclude that f is concave up for x > 4 and concave down for x < 0 and

0 < x < 4.

(c) Find all local maxima, local minima, and inflection points of f.

From the sign chart for f ′, we can see that f has a local minimum

at x = 0 and a local maximum at x = 8/3, and we can see from the

sign chart for f ′′ that f has an inflection point at x = 4. We
summarize this information below:

f(0) = 02/3(4− 0)1/3 = 0 is a local minimum.

f(8/3) =

(
8

3

)2/3(
4− 8

3

)1/3

=
4

3
3
√

4 is a local maximum.

(4, f(4)) = (4, 0) is an inflection point

Graph of f

-2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

2. Given to the right is the graph of the DERIVATIVE of
a function. Use this graph to help you answer the fol-
lowing questions about the ORIGINAL FUNCTION
f.

(a) What are the critical points of f?

x = 1, x = 3, x = 5

(b) Where is f increasing? decreasing?

increasing on 0 ≤ x ≤ 1
decreasing on 1 ≤ x ≤ 5

(c) Does f have any local maxima? If so, where?

Yes, f has a local maximum at x = 1.

(d) Does f have any local minima? If so, where?

No, f has no local minima.

(e) Where is f concave up? concave down?

concave up on 2 < x < 3 and 4 < x < 5
concave down on 0 < x < 2 and 3 < x < 4

Graph of f ′(x), NOT f(x)

5
x

2

1

−1

−2

1 2 3 4
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3. Given to the right is the graph of the SECOND
DERIVATIVE of a function. Use this graph to help
you answer the following questions about the ORIGI-
NAL FUNCTION f.

(a) Where is f concave up? concave down?

concave up on 1.3 < x < 4.7
concave down on 0 < x < 1.3 and 4.7 < x < 5

(b) Does f have any inflection points? If so, where?

Yes, at x = 1.3 and x = 4.7

Graph of f ′′(x), NOT f(x)

5
x
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1

−1

−2
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4. Sketch the graph of ONE FUNCTION f that has ALL of the following properties.

• f is continuous everywhere.

• f(0) = 2.

• f ′(x) = 0 for −4 ≤ x ≤ −2.
f ′(x) < 0 for 0 < x < 1.
f ′(x) > 0 for −2 < x < 0 and for 1 < x < 4.

• f ′′(x) > 0 for −2 < x < 0 and for 0 < x < 2.
f ′′(x) < 0 for 2 < x < 4

• lim
x→∞

f(x) = −2.

2 4

2

4

−2

−4

−2−4

y

x

5. If water is flowing at a constant rate (i.e. constant volume
per unit time) into the urn pictured to the right, sketch a
graph of the depth of the water in the urn against time.
Mark on the graph the time at which the water reaches
the corner of the urn.

Because the urn increases in width from floor level

to the corner of the urn, the graph of depth versus

time should be increasing at a decreasing rate (and

therefore concave down) until t∗, the time when the

water level reaches the corner. After this time,

the width of the urn becomes constant, so the water

level should increase at a constant rate, meaning

that depth is a linear function of time to the right

of t∗ (see graph to the right).

*

depth

time
t
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Section 4.2 – Optimization

Some Definitions. Let f be a function.

1. f has a global maximum at x = p if f(p) is greater than or equal to all output values of f.

2. f has a global minimum at x = p if f(p) is less than or equal to all output values of f.

3. Optimization refers to the process of finding the global maximum or global minimum of a function.

Example. For the function f given below, locate all local and global maxima and minima on the interval [0, 10].

f(x)

2 4 6 8 10

2

4

6

8

12

14

16

10

f(2) = 6.8 and f(7) = 4.9 are local minima.

f(3.9) = 8.1 is a local maximum.

f(7) = 4.9 is a global minimum.

f(10) = 15 is a global maximum.

General Rule. To find the global maximum and the global minimum of a continuous function on a
closed interval (i.e., an interval that contains its endpoints), compare the output values of the function at
the following locations:

1. critical points

2. endpoints

Exercises

1. Find the global maximum and global minimum value of f(x) = x+ 3
x on the interval [1, 4].

We have

f ′(x) = 1− 3

x2
=
x2 − 3

x2
,

so our critical points occur when x2 − 3 = 0, or when x = ±
√

3. Since the endpoints of our

interval are x = 1 and x = 4, the only relevant critical point is x =
√

3. Calculating the

value of f at these three points, we have

f(1) = 1 +
3

1
= 4

f(4) = 4 +
3

4
= 4.75

f(
√

3) =
√

3 +
3√
3

= 2
√

3 ≈ 3.46

Therefore, f(
√

3) = 2
√

3 is the global minimum and f(4) = 4.75 is the global maximum.

4 Developed by Jerry Morris



2. (Taken from Hughes-Hallett, et. al.) When you cough, your windpipe contracts. The speed, v, at which the
air comes out depends on the radius, r, of your windpipe. If R is the normal (rest) radius of your windpipe,
then for 0 ≤ r ≤ R, the speed is given by v = a(R− r)r2, where a is a positive constant. What value of r
maximizes the speed?

Since v = a(R− r)r2 = aRr2 − ar3, we have

dv

dr
= 2arR− 3ar2 = ar(2R− 3r),

so dv/dr = 0 when r = (2/3)R and r = 0 meaning that r = (2/3)R is the only critical point of

our speed function that is not also an endpoint. Since r = 0 and r = R are the endpoints of

our interval of consideration, we can calculate and compare the values of v at the relevant

three points.

v|r=0 = a(R− 0)(0)2 = 0

v|r=R = a(R−R)R2 = 0

v|r=(2/3)R = a

(
R− 2R

3

)(
2R

3

)2

= a · R
3
· 4R2

9

=
4aR3

27

Therefore, the maximum coughing speed occurs when r = (2/3)R, that is, when the radius of

the windpipe is two-thirds of its normal (rest) radius.

3. (Taken from Hughes-Hallett, et. al.) The potential energy, U, of a particle moving along the x-axis is given by

U = b

(
a2

x2
− a

x

)
,

where a and b are positive constants and x > 0. What value of x minimizes the potential energy?

First, we have

U ′(x) = b · d
dx

(
a2

x2
− a

x

)
= b · d

dx

(
a2 − ax
x2

)
= ab

(
x− 2a

x3

)
,

so U ′(x) = 0 when x− 2a = 0, or when x = 2a. Therefore, x = 2a is the only critical point.

Also, since we can see from our formula for U ′(x) that U ′(x) < 0 for 0 < x < 2a and U ′(x) > 0
for x > 2a, we see that U is decreasing everywhere to the left of x = 2a and increasing

everywhere to the right of x = 2a. It follows that U has a global minimum at x = 2a, meaning
that 2a is the value of x that minimizes the potential energy.

4. Let f(x) = xe−x
2

.

(a) Locate all local maximum and all local minimum values of f.

We have

f ′(x) = xe−x
2

· (−2x) + e−x
2

· 1 = e−x
2

(1− 2x2),

so f ′(x) = 0 when 1 − 2x2 = 0, that is, when

x = ±
√

1/2. From the sign chart to the

right, we see that f has a local minimum

at x = −1/
√

2 and a local maximum at

x = 1/
√

2.

Interval Sign of f ′(x)

x < −
√

1/2 −
−
√

1/2 < x <
√

1/2 +

x >
√

1/2 −
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(b) Find the global maximum and the global minimum values of f on the interval [0, 2].

To determine the global maximum and minimum values of f on [0, 2], we begin by comparing

the value of f at the endpoints of our interval and the one critical point that lies

within the interval.

f(0) = 0e−0
2

= 0

f(2) = 2e−2
2

= 2e−4 ≈ 0.037

f

(
1√
2

)
=

1√
2e
≈ 0.43

Therefore, f(0) = 0 is the global minimum value of f and f(1/
√

2) = 1/
√

2e is the global

maximum value of f on [0, 2].

5. Give an example of a function that does not have a global maximum or a global minimum value.

Since the function f defined by f(x) = x3 can get arbitrarily large and arbitrarily small on

the interval (−∞,∞), we conclude that f has no global maximum and no global minimum value

on this interval.
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Section 4.2 – Optimization

1. Sketch a continuous, differentiable graph with the following
properties:

• local minima at 2 and 4

• global minimum at 2

• local and global maximum at 3

• no other extrema

y

1 2 43 5

1

2

3

4

x

2. A warehouse orders and stores boxes. The cost of storing boxes is proportional to q, the quantity ordered.
The cost of ordering boxes is proportional to 1/q, because the warehouse gets a price cut for larger orders.
The total cost of operating the warehouse is the sum of ordering costs and storage costs. What value of q
gives the minimum cost?

Let C = f(q) represent the total cost of operating the warehouse as a function of the

quantity ordered, q. Then, from the given information, we have

C = f(q) = k1q + k2

(
1

q

)
= k1q +

k2
q
,

where k1 and k2 are positive constants. Rewriting, we see that f(q) = k1q + k2q
−1, so

f ′(q) = k1 − k2q−2. To find the critical points of C, we set f ′(q) equal to zero and solve for

q.

k1 − k2q−2 = 0

k1 = k2q
−2

q = ±
√
k2
k1

Therefore, q =
√
k2/k1 is the only relevant critical point. Since f ′(q) < 0 for all

0 < q <
√
k2/k1 and f ′(q) > 0 for all q >

√
k2/k1, we see that C is decreasing for

0 < q <
√
k2/k1 and increasing for q >

√
k2/k1. It follows that q =

√
k2/k1 gives the minimum

total cost of operating the warehouse.

3. Find the best possible bounds for f(t) = t+ sin t for t between 0 and 2π.

We begin by noting that f ′(t) = 1 + cos t, and we can find the critical points of f by setting

f ′(t) equal to zero and solving for t.

1 + cos t = 0

cos t = −1

t = π

Therefore, t = π is the only critical point between 0 and 2π.
To find the best possible bounds, we compare the values of

f at our two endpoints and the critical points (see table to

the right). Since 0 is the smallest output value and 2π is

the largest output value, we conclude that

0 ≤ t+ sin t ≤ 2π

t f(t)
0 0
π π
2π 2π

for all t between 0 and 2π, and that these are the best possible bounds.
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Section 4.3 – Optimization and Modeling

1. A farmer wants to fence a rectangular grazing area along a straight river (no fence is needed along the river).
There are 1700 total feet of fencing available. What dimensions (length and width) will maximize the grazing
area?

Let x and y represent the dimensions of the rectangular pen, in feet, and let A represent

its area.

Given : 2x+ y = 1700

Find : x and y that maximize A

River

x x

y

Since the pen is rectangular, we know that A = xy, and from our given information, we see

that y = 1700− 2x. Therefore,

A = x(1700− 2x) = 1700x− 2x2.

Next, we find the critical points of A; we have A′ = 1700− 4x, so

1700− 4x = 0

4x = 1700

x = 425

Therefore, x = 425 is the only critical point. Also, since 1700 feet

is the maximum amount of fencing available, the largest value that

x can have is 1700/2 = 850. Therefore, the endpoints of our domain

are x = 0 and x = 850. The table to the right confirms that the

maximum value of A occurs when x = 425. Therefore, our final answer

is x = 425 feet and y = 1700− 2(425) = 850 feet.

x A
0 0

425 361,250
850 0

2. A box with an open top of fixed volume V with a square base is to be constructed. Find the dimensions of
the box that minimize the amount of material used in its construction.

Let x represent the length and width of the box, let y represent the height of the box, and

let V represent the volume of the box (see diagram below).

Given : V = x2y

Find : x and y that minimize S,

the surface area of the box.

x

y

x

We begin by finding a formula for S, the surface area of the box. Since

S = (Sum of the areas of the 4 sides) + (Area of the bottom)

= 4xy + x2

= 4x(V x−2) + x2

= 4V x−1 + x2,

we have S′ = −4V x−2 + 2x = (2x3 − 4V )/x2, so the

critical points of S occur when

2x3 − 4V = 0

x3 = 2V

x =
3
√

2V .

Interval Sign of S′

0 < x < 3
√

2V −
x > 3
√

2V +
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Therefore, since the above sign chart confirms that S is decreasing for all x values to the

left of
3
√

2V and increasing for all x values to the right of
3
√

2V , we conclude that S has a

global minimum at x = 3
√

2V . In other words, the dimensions of the box that will minimize the

amount of material used in the construction are x = 3
√

2V and y = V x−2 = V (2V )−2/3 = 3
√
V/4.

3. A metal can manufacturer needs to build cylindrical cans with volume 300 cubic centimeters. The material
for the side of a can costs 0.03 cents per cm2, and the material for the bottom and top of the can costs 0.06
cents per cm2. What is the cost of the least expensive can that can be built?

Let r represent the radius of the can, let h represent the height of the can, and let C
represent the cost of building the can, in cents.

Given : πr2h = 300

Find : Minimum Value of C h

r

We begin by finding a formula for the cost of building the can. We have

C = (Cost of the top and bottom) + (Cost of the outside)

= (Area of Top and Bottom)(Cost Per Unit Area) + (Area of Outside)(Cost Per Unit Area)

= (2πr2)(0.06) + (2πrh)(0.03)

= 0.12πr2 + 0.06πr

(
300

πr2

)
= 0.12πr2 + 18r−1,

so C ′ = 0.24πr − 18r−2 = (0.24πr3 − 18)/r2, which means that

C ′ = 0 when 0.24πr3 = 18, or when r = 3
√

75/π. Since the sign

chart to the right confirms that C has a global minimum at

r = 3
√

75/π, we conclude that the cost of the least expensive

can is given by

Interval Sign of C ′

0 < r < 3
√

75/π −
r > 3

√
75/π +

C = 0.12π( 3
√

75/π)2 + 18( 3
√

75/π)−1

=

(
75

π

)−1/3(
0.12π · 75

π
+ 18

)

= 27 3

√
π

75
,

or about 9.38 cents.
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Section 4.3 – Optimization and Modeling with Angry Mike

Angry Mike is on the run. He finally couldn’t outsmart his brother
sheriff Tommy Boy Hopkins any longer and there is a warrant out
for his arrest. In his desperation Angry Mike has hijacked a dirt
bike and is making a run for the state line. A friend is waiting for
him 100 miles north and 250 miles east with a car. Unfortunately,
a range of hills stretches all the way to the north and east from
Angry Mike’s starting position. He knows that he can go 70 mph
as long as he stays out of the hills, but that he can go no faster
than 40 mph in the hills.

Friend

250 mi

100 mi

Angry Mike

1. Draw three different possible routes (straight lines, or line segments) Angry Mike can take. One of them
should maximize the part of the trip outside the hills, one of them should maximize the part of the trip in the
hills.

100

Angry Mike

Friend

250

Route 1

Friend

Angry Mike

Route 2

Angry Mike

Friend

125

Route 3

2. Compute the total driving time for those three routes.

First, we note that for an object moving at a constant speed, the travel time equals the

distance traveled divided by the speed. We use this principle for each of the three routes

below.

Route 1: Since Angry Mike drives 250 miles at a speed of 70 miles per hour and 100 miles at

a speed of 40 miles per hour, his travel time is

250

70
+

100

40
≈ 6.07 hours.

Route 2: Along this route, Angry Mike does all of

his traveling through the hills, so his speed is 40

mph for the entire distance he travels. Referring

to the diagram to the right, we use Pythagorean’s

Theorem to conclude that he travels a distance of√
1002 + 2502 = 50

√
29 miles. Therefore, his travel

time is
50
√

29

40
≈ 6.73 hours.

Angry Mike

Friend

100

250

Route 3: Referring to the diagram to the right, we

see that Angry Mike travels the first 125 miles at

a speed of 70 mph. Then, he travels a distance of√
1252 + 1002 = 25

√
41 miles through the hills at a speed

of 40 mph. Therefore, his total travel time is

125

70
+

25
√

41

40
≈ 5.79 hours.

Angry Mike

Friend

125
125

100
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3. There are many more possible routes Mike could take. Out of all of them, which one should Angry Mike take
to get to his waiting friend as fast as possible?

In general, suppose that Angry Mike first travels

a distance of x miles outside of the hills (for

0 ≤ x ≤ 250), and then cuts across the hills for the

remaining distance, which, by Pythagorean’s Theorem,

would equal √
1002 + (250− x)2 miles.

250 − xAngry Mike

Friend

x

100

Since his speed is 70 mph for the first leg of the trip and 40 mph for the second leg of

the trip, his total travel time is given by the function

t(x) =
x

70
+

√
1002 + (250− x)2

40
hours.

To find the fastest travel time, we need to find the global minimum value of t on the

interval 0 ≤ x ≤ 250. We begin by solving the equation t′(x) = 0 for x to find the critical

points.

0 =
1

70
+

1

40
· 1

2
(1002 + (250− x)2)−1/2 · 2(250− x) · (−1)

250− x
40
√

1002 + (250− x)2
=

1

70

7(250− x) = 4
√

1002 + (250− x)2

49(250− x)2 = 16 · 1002 + 16(250− x)2

33(250− x)2 = 16 · 1002

x = 250± 400√
33

Therefore, only one of the critical points above lies in the

interval 0 ≤ x ≤ 250, and its approximate value is 180.37. We now

compare the value of the function t at this critical point with the

approximate values of t at our two interval endpoints (see table to

the right). Note that Angry Mike’s fastest route is to drive the

first 180.37 miles outside of the hills, and then to cut diagonally

across the hills straight toward his destination.

x t(x)
0 6.73

180.37 5.62
250 6.07

4. How long is the part of the trip that Angry Mike has to ride through the hills?

Using the diagram from question (3) above as a guide, we see that Angry Mike’s distance

traveled through the hills is
√

1002 + (250− x)2 miles. Therefore, since x = 180.37 for his

most time efficient route, we conclude that the length of his journey through the hills is√
1002 + (250− 180.37)2 ≈ 121.9 miles.
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Meanwhile, Tommy Boy is in hot pursuit and facing an en-
tirely different problem. He is driving a county-issued cross
country vehicle. The hills are absolutely no problem, but he
can only use one tank of gas plus one reserve tank to follow An-
gry Mike. The tank of his vehicle holds 25 gallons; the reserve
tank holds 16 gallons. Since Tommy Boy knows his brother
and his friends, he quickly figured out where Angry Mike is
going, and so he is taking the most direct route through the
hills which is about 270 miles long. The fuel consumption (in
gallons per hour) of Tommy’s vehicle as a function of speed (in
mph) is given in the graph to the right. Tommy Boy knows
that he can maximize the fuel efficiency of his usual patrol car
(in miles per gallon) by going 50 mph. He figures that the
cross country vehicle is close enough to a normal car to have
the same properties.

2
1

L

10 20 30 40 50 60

3

6

9

12

gal/hr

mi/hr

L

1. Is he right?

To figure out how to analyze this question, let us first take a "nice" point on the

provided graph, like (15, 5), and try to interpret it in terms of fuel efficiency. The

presence of this point on the graph indicates that when this vehicle is driven at a speed

of 15 miles per hour, it uses fuel at a rate of 5 gallons per hour. Therefore, the fuel

used per mile for this vehicle when driven at a speed of 15 miles per hour is

5 gal/hr

15mi/hr
=

5 gal

hr
× 1 hr

15 mi
=

1

3
gal/mi.

Note that the number calculated above is the slope of the line segment L1 from the origin

to (5, 15) that we drew on the above diagram. Also, note that if we take the reciprocal of

the preceding calculation, we get a fuel efficiency figure of 3 miles per gallon at a

driving speed of 15 mph.

From the above demonstration, we deduce that the fuel efficiency, in miles per gallon, can

be determined by taking the reciprocal of the slope of a line segment drawn from the origin

to the relevant point in the diagram above. To maximize fuel efficiency, we are therefore

looking for the point on the curve above for which this line segment has the smallest

possible slope. Using a straightedge to help us graphically estimate, we see that the

segment labeled L2 in the diagram above has the smallest possible slope, and that it

intersects the graph at the approximate point (42, 6). Therefore, fuel efficiency for this

vehicle is maximized at a driving speed of about 42 miles per hour, so Tommy Boy was

incorrect in his assumption.

2. Will he actually make it to Angry Mike’s destination at a driving speed of 50 mph?

First, note that Tommy Boy’s travel time to the destination at a speed of 50 mph is given

by
270 mi

50 mi/hr
= 5.4 hours.

The above graph indicates that, at a speed of 50 mph, Tommy Boy’s vehicle uses about 7.9
gallons of fuel per hour. Therefore, the total amount of fuel he needs for the trip is

(5.4) · (7.9) = 42.66 gallons. Since his total gas supply is only 41 gallons, it appears that

he will not make it to the destination at this driving speed.

3. How fast should he go to maximize fuel efficiency?

According to our calculations in problem (1) above, he should drive at a speed of about 42
miles per hour to maximize fuel efficiency.
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4. How much gas would he have to spare if he drove with optimal speed?

As in problem (2) above, we first calculate Tommy Boy’s traveling time to the destination;

in this case, it is
270 mi

42 mi/hr
≈ 6.43 hours.

The graph above indicates that his vehicle will use about 6.1 gallons of fuel per hour at

the optimal speed, so the total amount of fuel used is (6.43) · (6.1) ≈ 39.2 gallons. He will

therefore have about 1.8 gallons of gas to spare.

Activities to accompany Calculus, Hughes-Hallett et al, Wiley, 2017 13



Section 4.4 – Families of Functions and Modeling

1. (Taken from Hughes-Hallett, et. al.) The number, N, of people who have heard a rumor spread by mass
media at time, t, is given by N(t) = a(1− e−kt). There are 200,000 people in the population who hear the
rumor eventually. If 10% of them heard it the first day, find a and k, assuming that t is measured in days.

To begin, we are given the following information

N(1) = 0.1 · 200,000 = 20,000

lim
t→∞

N(t) = 200,000

Because lim
t→∞

N(t) = 200,000, we have

lim
t→∞

a(1− e−kt) = 200,000

a(1− 0) = 200,000

Therefore, a = 200,000, which means that N(t) = 200,000(1− e−kt). But we also know that

N(1) = 20,000, so we have

200,000(1− e−k(1)) = 20,000

1− e−k = 0.1

e−k = 0.9

k = − ln(0.9)

Therefore, our answers are a = 200,000 and k = − ln(0.9).

2. Let f(x) = x4 − ax2.

(a) Find all possible critical points of f in terms of a.

We have f ′(x) = 4x3 − 2ax = 2x(2x2 − a), so we can see that f ′(x) = 0 when x = 0 or when

x = ±
√
a/2. Therefore, our critical points are x = 0, x =

√
a/2, and x = −

√
a/2.

(b) If a < 0, how many critical points does f have?

If a < 0, then a/2 < 0, which means that
√
a/2 and −

√
a/2 are not real numbers.

Therefore, using our answer to part (a), we see that x = 0 is the only critical point

of f, i.e., f has exactly one critical point.

(c) If a > 0, find the x and y coordinates of all critical points of f.

If a > 0, then, by part (a), x = 0, x =
√
a/2, and x = −

√
a/2 are all critical points of

f. We have

f(0) = 04 − a(0)2 = 0

f

(
±
√
a

2

)
=

(√
a

2

)4

− a
(√

a

2

)2

=
a2

4
− a2

2
= −a

2

4
,

Interval Sign of f ′(x)

x < −
√
a/2 −

−
√
a/2 < x < 0 +

0 < x <
√
a/2 −

x >
√
a/2 +

so the critical points are

(0, 0),

(√
a

2
, −a

2

4

)
, and

(
−
√
a

2
, −a

2

4

)
,

which can be classified as local maxima or minima by referring to the above sign chart.
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(d) Find a value of a such that the two local minima of f occur at x = ±2.

The sign chart from part (c) reveals that (±
√
a/2, −a2/4) are the coordinates of the

two local minima of f. We have √
a/2 = 2

a/2 = 4

a = 8

Therefore, the local minima of f occur at x = ±2 when a = 8.

3. Let f(x) = axe−bx. ASSUME THAT a AND b ARE BOTH POSITIVE.

(a) Find all inflection points of f in terms of a and b.

Since f ′(x) = axe−bx · (−b) + ae−bx = ae−bx(1− bx), we
see that

f ′′(x) = ae−bx ·(−b)+ae−bx ·(−b)·(1−bx) = abe−bx(bx−2).

Interval Sign of f ′′(x)
x < 2/b −
x > 2/b +

Therefore, f ′′(x) = 0 if and only if x = 2/b, and the sign chart above confirms that an

inflection point does indeed occur at this point. Since f(2/b) = (2a/b)e−2, we see that

the one and only inflection point of f is(
2

b
,

2a

b
e−2
)
.

(b) Find a and b so that the inflection point of f occurs at (1, 2).

In order for the inflection point that we found in part (a) above to occur at (1, 2), we
must have 2/b = 1 and (2a/b)e−2 = 2. Since 2/b = 1, we have b = 2, which leads to

2a

2
e−2 = 2

a = 2e2

Therefore, we conclude that a = 2e2 and b = 2.

Activities to accompany Calculus, Hughes-Hallett et al, Wiley, 2017 15



Section 4.7 – L’Hopital’s Rule, Growth, and Dominance

1. Find each of the following limits exactly.

(a) lim
x→0

sinx

x

Since this limit has the form "0/0", we can

use L’Hopital’s Rule as follows:

lim
x→0

sinx

x
= lim

x→0

cosx

1

= cos 0

= 1

(b) lim
x→∞

lnx

x

Since lnx and x both approach infinity as x
approaches infinity, this limit has the form

"∞/∞", so we can use L’Hopital’s Rule as

follows:

lim
x→∞

lnx

x
= lim

x→∞

1/x

1

= lim
x→∞

1

x

= 0

(c) lim
x→0

x

ex

Since this limit does not fit any of the

Indeterminate Forms, we may not apply

L’Hopital’s Rule. Instead, we have

lim
x→0

x

ex
=

0

e0
= 0.

(d) lim
x→∞

ln(lnx)√
x

Since this limit has the form "∞/∞", we

begin by applying L’Hopital’s Rule. We have

lim
x→∞

ln(lnx)√
x

= lim
x→∞

1
ln x ·

1
x

1
2x1/2

= lim
x→∞

2

x1/2 lnx

= 0

(e) lim
x→1+

(x− 1) tan
(π

2
x
)

Since this limit has the form "0 · (−∞)", we

may use L’Hopital’s rule after rewriting the

involved function as a ratio. We have

lim
x→1+

(x− 1) tan
(π

2
x
)

= lim
x→1+

x− 1

cot((π/2)x)

= lim
x→1+

1

− csc2((π/2)x) · (π/2)

= lim
x→1+

− sin2((π/2)x)

π/2

= lim
x→1+

−2 sin2((π/2)x)

π

=
−2 sin2(π/2)

π

= − 2

π
.
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Definition. We say that a function g dominates a function f as x→∞ if lim
x→∞

f(x)

g(x)
= 0 .

2. For each of the following, determine which function dominates as x→∞.

(a) 1000x2 and x3

Using L’Hopital’s Rule twice, we have

lim
x→∞

1000x2

x3
= lim

x→∞

2000x

3x2

= lim
x→∞

2000

6x

= 0,

so we conclude that x3 dominates 1000x2.

(b) e0.1x and x3

Using L’Hopital’s Rule three times, we have

lim
x→∞

x3

e0.1x
= lim

x→∞

3x2

0.1e0.1x

= lim
x→∞

6x

(0.1)2e0.1x

= lim
x→∞

6

(0.1)3e0.1x

= 0,

so we conclude that e0.1x dominates x3.

3. Use the graph to the right to determine the sign of the limit

lim
x→a

f(x)

g(x)
. Briefly explain how you determined your answer. (Note:

You may assume that the limit exists and that all derivatives of f
and g exist.)

First, note that, from the graph, it appears that

f(a) = g(a) = 0 and that f ′(a) = g′(a) = 0, so we conclude

that the limits

lim
x→a

f(x)

g(x)
and lim

x→a

f ′(x)

g′(x)

both have the form 0/0. Therefore, using L’Hopital’s

Rule, we have

a

f(x)

g(x)

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)
=
f ′′(a)

g′′(a)

But the above graph also reveals that f is concave up near a and that g is concave down

near a, so f ′′(a) > 0 and g′′(a) < 0. Therefore, it follows from the previous set of equations

that

lim
x→a

f(x)

g(x)
< 0.
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