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Patterns of spatial synchrony of population dynamics are dramatic phenomena that provide the

potential for unraveling forces controlling the dynamics of natural populations in time and space. Prior

ecological research has focused on attention to either deterministic or stochastic forces acting

separately, with an emphasis on long term behavior, or on small systems consisting often of two

interacting spatial locations. Using ideas from the dynamics of weakly coupled oscillators with an

emphasis on the temporal dynamics of synchrony we develop a synthetic approach that explains

patterns of synchrony as the result of an interplay between deterministic and stochastic forces. The

temporal scale of convergence can provide a useful tool for determining the relative importance of

deterministic and stochastic influences. Our approach applies both to specific systems that have been

previously analyzed such as disease dynamics, and to a range of exploiter victim systems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A striking dynamical phenomenon observed in many oscillat-
ing plant and animal populations is intraspecific species
synchrony (as measured by correlation in abundance) across a
large spatial domain. While there is no general consensus on the
cause or causes of observed spatial synchrony in natural popula-
tions, the two most common explanations are spatially correlated
extrinsic effects such as weather, often referred to as the Moran
(1953) effect, and intrinsic factors such as migration. Determining
which of these two phenomena (or the relationship between the
two) is the leading cause of spatial synchrony has proven to be a
difficult challenge, as reviewed by Liebhold et al. (2004). In order
to determine the importance of both migration and the Moran
effect as mechanisms leading to synchrony, we take a more
integrated view of this problem than is done in previous modeling
studies by using approaches that can deal with relatively large
systems that include both nonlinearities (density dependence)
in the deterministic intrinsic dynamics and realistic levels of
stochastic extrinsic influences.

The interest in studying spatial synchrony arises in large part
because increased spatial synchrony in oscillating populations
leads to a decrease in expected global persistence (Huffaker,
1958; Harrison and Quinn, 1989; Holyoak, 2000). Asynchronous
ll rights reserved.

yn).
dynamics in these population can prevent extinction through
either recolonization or the ‘‘Rescue Effect’’ (Brown and Kodric-
Brown, 1977). Additionally, understanding the causes of
synchrony can potentially provide a deeper understanding of what
regulates natural populations, with applications including managing
species conservation (Earn et al., 1998), minimizing outbreak of
pests (Abbott and Dwyer, 2008), and controlling infectious diseases
(Grenfell et al., 2001). This understanding can shed light on the
relationship between the effects of biotic and abiotic forces in
addition to explaining the degree of impact that synchrony or
asynchrony may have on population dynamics at a larger scale.
Since synchrony typically decreases with distance (Bjørnstad et al.,
1999), the spatial scale of synchrony may have implications for the
management of spatial populations.

To study the effect of migration on synchrony, we draw upon
the study of coupled oscillators. In this case the oscillators,
patches with one predator and one prey species, are coupled
together by migration. The phenomenon of synchrony arising
from coupled oscillators was first observed in two pendulum
clocks attached to the same support beam by Christiaan Huygens
in the 17th century. Since this observation, coupled oscillators
have been studied in a variety of physical, chemical, and biologi-
cal applications (Winfree, 2001; Pikovsky et al., 2001). Recently
the use of coupled oscillator models in determining synchrony
has been extended to ecological predator–prey populations
(Jansen, 2001; Blasius et al., 1999), masting in trees (Satake and
Iwasa, 2002), and the spread of epidemics (Grenfell et al., 2001;
Lloyd and Jansen, 2004).
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Cycles in biological systems are described by amplitude (i.e.,
ratio of the maximum value to the minimum value) and
frequency. Essentially, the phase of a given single cycle can be
mapped onto a circle (Winfree, 2001), such that its phase is
defined as a number between 0 and 2p describing the system’s
location within the given cycle. In many instances the amplitude
of a cycle is relatively insensitive to other influences, and knowing
the phase of each oscillating population in a collection of inter-
acting populations gives a good description of the system. We use
the theory of weakly coupled oscillators (Kuramoto, 1984) to
derive a phase model from our original population model. The
phase model has fewer equations and is therefore easier to
analyze and measure synchrony with than the population model.
This derivation and the study of a phase model from a system of
weakly coupled oscillators have been extensively used to model
networks of neurons (Ermentrout, 1981; Somers and Kopell,
1993) and have also been used for the same predator–prey model
studied here (but without the Moran effect) with two weekly
coupled patches (Goldwyn and Hastings, 2008). Weakly coupled
systems are of ecological interest and importance because we
expect that if coupling (migration) is large, then its effect would
be directly observable or measurable, and that the expected
outcome would be synchrony on a fast time scale.

A model consisting of populations in discrete patches is an
effective representation of populations existing in patchy habitats
and is often a good approximation for habitats existing in
continuous space (Hanski, 1998). While continuous space models
have been used to study synchrony in natural population (Engen
et al., 2002), discretizing these populations often allows for more
detailed analysis. In either case, the goal is to find a model that
best approximates the actual spatio-temporal dynamics of the
system. The choice of patch size (and therefore the number of
patches) in a theoretical model is crucial and is usually deter-
mined by the dominant process in the regulation of the popula-
tion dynamics, as is done by Bjørnstad et al. (1999) in a study of
the voles and mice of Hokkaido. Williams and Liebhold (2000)
varied the size of patches (cells) in a study of the defoliation by
the spruce budworm in Eastern North America. They found that
taking larger cells obscured the density dependence present in
the dynamics of the budworm, possibly due to asynchrony within
these cells. Ray and Hastings (1996) found this same phenom-
enon in their review of 79 insect populations with variable spatial
scales. When studying the effect of migration occurring on
a continuous landscape with a discrete patch approximation,
careful attention needs to be paid to the relationship between
the number of patches used and the migration rate. Intuitively,
increasing the number of patches in a theoretical study (decreas-
ing the size of each patch) increases the migration rate. As we
show, increasing the number of patches in a model without also
increasing the migration rate leads to a much slower rate of
convergence to the steady state behavior.

Unlike global (spatially correlated) perturbations that can
either increase or decrease synchrony (Hastings, 2004), natural
populations are also subject to spatially varying perturbations
which tend to destroy synchrony. Due to these external perturba-
tions, any realistic explanation of the cause of observed synchro-
nous behavior in natural systems must allow for convergence to
synchrony to occur on a faster time scale than that of these
spatially uncorrelated external perturbations. While in general,
weakly coupled systems often take many more unperturbed
cycles to converge to synchrony than are likely in natural systems,
relaxation type oscillators can converge to synchrony much faster
(Izhikevich, 2000). These types of systems do occur in ecology
when there is a difference in the characteristic time scale of the
interacting populations, as explored by Ludwig et al. (1978), and
in the context of a weakly coupled system in Goldwyn and
Hastings (2008). As we find here, adding in the Moran effect
can also help decrease the time until synchrony. Since perfect
synchrony is not a common occurrence in natural populations,
our explanation need only yield near synchronous behavior on
some short time scale. The idea is to determine the circumstances
under which migration, the Moran effect, or some combination of
the two, can bring the system to some near synchronous beha-
vior, even while it is being perturbed by some uncorrelated
extrinsic stochastic effects. As we will see, system size can be
very important, so our use here of large systems of (rather than
just two) coupled spatial patches will shed new light on the
dynamics of synchrony in ecological systems.
2. Model

Our model is a predator–prey system in N patches coupled by
density independent migration and subject to external perturba-
tions. The variables Vi and Pi represent the number of prey
(victims) and predators respectively in patch i (1r irN). We
assume that the intrinsic dynamics of each patch are identical
with logistic growth of the prey species, predation following a
Holling Type II functional response, and a linear predator death
rate. The increase of the prey population is described by growth
parameter s and carrying capacity K. Predation is described by the
parameters a and b, with the latter being the half saturation
coefficient. The loss of prey due to predation also depends linearly
on c (c41), a measurement of the ratio of the loss of prey to the
gain in predators, implying that the loss in prey population due to
predation is faster than the gain in predators. The parameter m

represents the mortality rate of the predator.
Migration of the prey and predator species are determined by

the per capita rates DV and DP and the connectivity matrix Mi,j.
The matrix Mi,j has entries 0 and 1 (before being scaled by the
number of other oscillators to which each oscillator is coupled), is
symmetric, and describes the coupling configuration of the
system. Each patch represents a hunting region for the predator
and a foraging region for the prey such that migration is
independent from these activities. We model the Moran effect
through instantaneous spatially correlated Poisson perturbations.
These perturbations depend on the prey and predator population
sizes and are Dirac delta impulses with amplitudes AV(V) and
AP(P). This model is the Rosenzweig and MacArthur (1963) model,
in N patches with extrinsic perturbations, and consists of 2N

differential equations:

dV i

dt
¼ sV ið1�Vi=KÞ�

caPiVi

bþVi
þDV

XN

j ¼ 1

Mi,jðVj�ViÞþAV ðViÞdðt�t1Þ

dPi

dt
¼

aPiVi

bþVi
�mPiþDP

XN

j ¼ 1

Mi,jðPj�PiÞþAPðPiÞdðt�t1Þ i,j¼ 1;2, . . . ,N; ia j:

ð1Þ

To study the role of migration in leading to synchrony in a
predator–prey system we vary the number of discrete patches
and the manner in which the patches are coupled together (i.e.
nearest neighbor or all-to-all). To include the Moran effect, we
vary the strength and timing (t1) of the spatially correlated
external perturbations.

Eq. (1) can be non-dimensionalized, as is done by Goldwyn and
Hastings (2008), reducing the number of intrinsic parameters to
the following three dimensionless quantities:

e¼ a=s,

a¼ b=K ,
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Z¼m=a: ð2Þ

These three dimensionless parameters completely describe the
entire range of parameter space for the intrinsic dynamics (there
is also a new time scale t¼ at, and the prey and predator
populations are rescaled).

If the intrinsic dynamics of the system described in Eq. (1)
produce an asymptotically stable limit cycle (ao1 and
Zoð1�aÞ=ð1þaÞ Hastings, 1997), then there will be a saddle
steady state point at the origin of the phase plane (where the prey
and predator populations are both extinct), with the predator axis
(corresponding to prey extinction) acting as the stable manifold.
Smaller values of any of the three dimensionless parameters in (2)
correspond to the system spending more time close to this stable
manifold, which is the mechanism which creates a separation in
time scales between the two species and large amplitude oscilla-
tions of the prey population. Dynamics of different interacting
ecological populations often occur on separate time scales, as in
the class of models studied by Rinaldi and Scheffer (2000). This
difference in characteristic time scale between the two species
modeled in Eq. (1) plays a crucial role in the rate of convergence
of the system to a phase locked state, as we see below.

2.1. Weakly coupled oscillators and the iPRC

We can use the theory of weakly coupled oscillators to derive a
phase model from Eq. (1) if certain conditions are met. First, the
system must have an asymptotically stable limit cycle. Next,
either the perturbations must be sufficiently small or there must
be sufficient time after a perturbation and before the system is
perturbed again. In the former case, the effect of these perturba-
tions (which describe migration) on the dynamics of the systems
needs to be an order of magnitude smaller than that of
the intrinsic dynamics. In the latter case, the populations must
be allowed to relax back to the limit cycle, before the next
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Fig. 1. The phase plane dynamics of the dimensionless version of Eq. (1) with parameter

a¼ 0:4, and Z¼ 0:15, and (c) from scenario 3, e¼ 0:1, a¼ 0:3, and Z¼ 0:3, Eq. (2). The th

isochrons (lines of constant asymptotic phase).
(small or large) perturbation occurs. In Eq. (1), and for the range
of parameters that we use, weak coupling implies that about 1% of
the population migrates per cycle and that between one and ten
unperturbed cycles occur after a large perturbation and before
migration or another large perturbation occur. As reviewed in
Chapter 10 of Izhikevich (2007), the phase model can be derived
using any of three different methods: Kuramoto (1984), Winfree
(2001) or Malkin (1949, 1956), see Chapter 9 of Hoppensteadt and
Izhikevich (1997) for a proof of Malkin’s theorem.

The derivation of a phase model for weakly coupled oscillators
reduces this system of 2N ordinary differential equations model-
ing the prey and the predator populations in each patch, to a
system of N ordinary differential equations modeling the phase of
the oscillation in each patch. The phase model with weak
coupling is commonly written as:

dyi

dt
¼ 1þd

XN

j ¼ 1

Hi,jðyj�yiÞ: ð3Þ

The variable yiA ½0;2pÞ refers to the phase of the oscillator in
the ith patch, with the intrinsic frequency of each oscillator scaled
to 1. The parameter d is related to the dispersal rates, DV and DP in
Eq. (1), and needs to be sufficiently small to ensure weak coupling
(it is naturally scaled by one divided by the number of oscillators
to which it is coupled). The function Hi,j (often called the
interaction function, Izhikevich, 2007) quantifies the effect of
migration between oscillators i and j on the phase of the ith
oscillator, and is a function of the difference in phase between the
two oscillators. The interaction function depends on the coupling
function (we use diffusive coupling, Eq. (1)), and on a nonlinear
function called the infinitesimal phase response curve or iPRC
(Kuramoto, 1984). The iPRC measures the sensitivity of the
oscillator to an infinitesimally small, instantaneous external
perturbation (weak migration), and is a function only of the
phase of the oscillator. Graphically, the sensitivity of the oscillator
0.8 1 1.2 1.4
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values (a) from scenario 1, e¼ 0:1, a¼ 0:4, and Z¼ 0:4, (b) from scenario 2, e¼ 0:1,

ick line is the limit cycle and the thinner lines are numerical approximations of 12
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Fig. 2. Phase response curves (sensitivity of each oscillator to external perturbations) for parameters yielding a system where the prey and predator operate on similar

characteristic time scales (parameter values from scenario 1, e¼ 0:1, a¼ 0:4, and Z¼ 0:4, left side) and on different time scales (scenario 3, parameter values of e¼ 0:1,

a¼ 0:3, and Z¼ 0:3, right side). The perturbations correspond to reductions in the prey population by 10% (top row), 30% (middle row), and 50% (bottom row). The y-axis is

the number of 2p radians that the oscillator is perturbed forward and the x-axis is the phase of the oscillator before the perturbation (phase of zero is chosen to correspond

to they prey population increasing past (1). The 50% perturbation for the system with no difference in time scales between the two species is qualitatively different than

the other perturbations because the perturbed system no longer contains the fixed point and therefore does not intersect all of the isochrons. This PRC is often referred to

as being Type 0, as opposed to Type 1 (Winfree, 2001).
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at a given phase to an external perturbation can be seen by the
density of the isochrons (Fig. 1). An isochron is a collection of
points that have the same asymptotic phase: every point on a
given isochron converges to the same point on the limit cycle of
the oscillator (Winfree, 2001). Several numerical approximations
of the iPRC for different parameter values of Eq. (1), as well as a
more detailed derivation of Eq. (3), can be seen by Goldwyn and
Hastings (2008).

2.2. External perturbations and the PRC

When studying the Moran effect with an instantaneous exter-
nal perturbation (pulse), we use the following equation to
describe the phase of the ith oscillating predator–prey patch:

ynew
i ¼ yold

i þZðyold
i ,AyÞ ð4Þ

The function Zðy,AyÞ measures the degree to which this
external pulse advances or delays the phase of the oscillator, as
measured by how many isochrons are crossed (Fig. 1). This
function is often referred to as the phase response curve (PRC)
and it is a function of the timing within the cycle of the external
pulse and, unlike the iPRC, the magnitude of the pulse, Ay (Fig. 2).

2.3. Defining synchrony

Phase locking occurs when the difference in phase between
each oscillator remains constant over time and can be either
in-phase (the difference in phase between the oscillators is zero)
or out-of-phase (a range of non-zero phase differences). In a two
oscillator system, for y1ðtÞ�y2ðtÞ ¼ r, full in-phase behavior occurs
when r¼ 0, and out-of-phase behavior occurs when ra0, with
r¼ p describing anti-phase behavior. Defining in-phase vs.
out-of-phase behavior is less straightforward for larger systems.
Instead of looking at the pairwise phase difference between
oscillators, we want a global measurement of the coherence of
the system. The derived phase models, Eqs. (3) and (4), allow us to
find the following sequence of order parameters, rk (0rrkðtÞr1):

rkeic ¼
1

N

XN

j ¼ 1

eikyj : ð5Þ

The first order parameter, r1ðtÞ, is the Kuramoto (1984)
Synchronization Index and cðtÞ is the average phase of the N

oscillators. If r1ðtÞ ¼ 1, the system is in-phase, with smaller values
of r1ðtÞ indicating a less coherent system. Unlike the two oscillator
case which has a clear definition of anti-phase, r1ðtÞ ¼ 0 can be
caused by different configurations of the oscillators: the phases of
each oscillator can be equally spaced apart (often referred to as
splay phase), or there can be clusters of multiple oscillators that
have a particular distance in phase from the other clusters,
balancing each other, as can occur in a system of nearest neighbor
coupled chaotic oscillators (Belykh et al., 2000). Higher order
values of rk explain clustering of the oscillators. An rk¼1, with all
lower order parameter values equal to zero, indicates oscillators
that are equally spaced in k clusters. Using these order para-
meters as a measurement of synchrony enables deeper analysis
than is possible with other measurements of synchrony that are
used in the absence of a mathematically derived phase model,
such as the Pearson product-moment correlation coefficient or lag
0 cross-correlation coefficient. Like the study of Gil et al. (2009),
who analyzed many globally coupled phase oscillators affected by
common white noise, we were unable to find states containing
greater than three clusters (excepting splay phase).
3. Results

3.1. Separation of time scales

We previously (Goldwyn and Hastings, 2008) used the method
of phase reduction to study the Rosenzweig–MacArthur model in
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two patches coupled together by migration. We found that for
biologically realistic parameters (and no extrinsic perturbations),
there were three distinct qualitatively different steady state
configurations for the system described in Eq. (1).

Here, through many simulations, we find that there are also
exactly three different steady state configurations in the N oscillator
case covering the same regions of parameter space (assuming all-to-
all coupling). As we explain below and can be seen in Fig. 3, the actual
behavior of the N oscillator system is much richer than it is in the two
oscillator system. Our approach takes advantage of the known
property that the rate of convergence to a phase locked state in any
weakly coupled oscillating system depends only on the strength of
the coupling and on the sensitivity of the oscillators to this coupling,
as described by the iPRC (Winfree, 2001; Kuramoto, 1984).

We refer to the range of parameters where the prey and
predator operate on similar characteristic time scales (sinusoidal
dynamics of the populations through time) as scenario 1. In
scenario 1, the only stable phase locked state for the two
oscillator system is an in-phase solution (a phase locked state at
anti-phase is unstable). The N oscillator system with all-to-all
coupling will also always converge to the in-phase solution (left
column of Fig. 3). This system is relatively insensitive to the small
perturbations (Fig. 1a) coming from migration, and therefore the
iPRC has small magnitude throughout the cycle (Goldwyn and
Hastings, 2008), leading to slow convergence to synchrony.
Furthermore, Strogatz (2000) showed that a large number of all-
to-all coupled Kuramoto oscillators (which fall under scenario 1),
Fig. 3. Typical simulation results for 10 oscillators with all to all weak coupling, as w

arbitrarily chosen oscillator and the other nine. These phase differences are scaled by 2

oscillator. The bottom row shows the Kuramoto Synchronization Index (r1ðtÞ) of the syst

r3ðtÞ in the far right) in red, Eq. (5). The left column corresponds to a system with no sep

with the same parameter values in Fig. 1(a), and DV ¼DP ¼ 10�3). The other figures all

populations. The second column from the left (scenario 2, has parameters as in Fig. 1(b)

the same parameters (scenario 3, Fig. 1c with DV ¼DP ¼ 10�6) and experience bistability

clusters. While the left column appears to phase lock in a similar time frame as the

magnitude larger. (For interpretation of the references to color in this figure legend, th
having a unimodal symmetric distribution of frequencies, will
also experience phase locking and near in-phase behavior of
all the oscillators with natural frequencies close to the mean
frequency. Only the oscillators with frequencies on the tails of the
distribution will not experience near in-phase behavior and will
exhibit phase drift.

Increasing the separation in time scales between the two
populations leads to the prey population experiencing short time
interval outbreaks separated by longer time intervals of lower
population levels. This behavior occurs when any of the three
non-dimensional parameters, e, a, or Z in Eq. (2), are decreased
and is caused dynamically by an increase in time spent near the
stable manifold of the system. A system with this separation in
time scales is very sensitive to small perturbations occurring near
this stable manifold (as can be seen by the high density of
isochrons, Fig. 1) and therefore migration has a larger effect on
the phase of the oscillators. This increased sensitivity leads to a
larger maximum magnitude of the iPRC and increases the rate of
convergence to phase locking (Goldwyn and Hastings, 2008). This
increase in the separation of time scales yields either a pitchfork
(scenario 2) or saddle-node (scenario 3) bifurcation of the phase
locked states in the two oscillator system, depending on the other
parameter values. Both of these bifurcations create an additional
stable steady state (out-of-phase in the case of a saddle-node
bifurcation, and anti-phase for a pitchfork bifurcation) that does
not occur when the populations operate on similar time scales
(Goldwyn and Hastings, 2008).
ritten in Eq. (3). The top row shows the phase difference (Eq. (3)) between one

p, i.e. a value of 1 corresponds to being one cycle ahead of the arbitrarily chosen

em in blue and higher order parameters (r2ðtÞ in the second panel from the left and

aration in characteristic time scales between the prey and the predator (scenario 1,

correspond to parameters where there is a difference in time scales between the

with DV ¼DP ¼ 10�5) and leads to anti-phase behavior. The right two columns have

, full in-phase behavior, and multiple (three in this example) distinct out-of-phase

other columns, the migration parameters are actually two and three orders of

e reader is referred to the web version of this article.)
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Scenario 2 occurs when the parameters are in the region
where both anti-phase and in-phase stable steady states are
possible in the two oscillator case. Our simulations found that
for many oscillators in-phase behavior is a very unlikely outcome,
much more unlikely than it is with two oscillators. Numerous
simulations showed that there is a transient behavior with a low
and fluctuating synchronization index, but larger values for the
second orders of r2ðtÞ. These oscillators group in few distinct
(nearly anti-phase) clusters that are not phase locked with each
other. This transient period can have various lengths before the
system eventually converges to anti-phase with the oscillators in
two clusters half an oscillation apart from each other in phase
space, (second column from the left Fig. 3).

As in scenario 2, the region of parameter space yielding stable
out-of-phase (but not anti-phase) steady states in the two patch
model has bistability in the many oscillator system. We refer to
the region of parameter space leading to this out-of-phase
behavior as scenario 3. The asymptotic state for these parameter
values depends on the initial conditions. If the system starts in a
sufficiently incoherent state, then it is likely to converge to an
out-of-phase state containing several clusters of oscillators that
are in-phase with each other. This behavior can be considered
partially synchronized. While the Kuramoto Synchronization
Index, r1ðtÞ is quite low, the third order term approaches one
(right column of Fig. 3). The other possibility for this range of
parameters is full synchrony, which occurs when the initial
phases are more coherent (second column from the right of
Fig. 3). In this case the oscillators approach a synchronization
index of close to one relatively quickly, but take a long time to
actually converge to one. For this range of parameter values, if an
external perturbation increases the synchrony of the system, it
can shift it from a state that would have deterministically
approached the state containing clusters of oscillators, to a state
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Fig. 4. The strength of the Moran effect with spatially correlated perturbations decreas

and 50% (bottom row). Each simulation is taken with the phase of each oscillator as it

(r1ðtÞ, Eq. (5)). We performed 1000 simulations for each level of synchrony with the init

simulations are the open circles, and the error bars represent one standard deviation

perturbation and the y-axis shows the difference between the perturbed index (base

a perturbation is likely to increase the coherence of the system while systems with

opposite can happen depending on the where in the cycle these predator–prey oscilla
that deterministically approaches the synchronous state (Fig. 4).
A perturbation that significantly decreases the level of synchrony
can do the opposite.

The other possible behavior that can occur in each of the above
cases (but is very rare for all-to-all coupling) is when the
oscillators are all equally spaced in phase space, often referred
to as splay phase. Strogatz and Mirollo (1991) found that a system
of homogeneous phase oscillators in splay phase will remain
stable until a bifurcation occurs when either heterogeneity or
noise becomes sufficiently large. Both splay phase and the two
cluster solutions yield first order synchronization indexes of zero.

While decreasing any of these dimensionless parameters
increases the effect of migration on the phase behavior due to
the sensitivity of these types of systems at low prey density
populations, we find here that it decreases the Moran effect. This
can be seen by the smaller values of the PRC (Fig. 2) and their
impact on Eq. (4). This agrees with the results from Vasseur and
Fox (2009), who simulated a stochastic Rosenzweig–MacArthur
model and found that the Moran effect alone was unlikely to
synchronize populations due to its small impact on low density
populations. On the other hand, as mentioned above, decreasing
these parameters leads to a large magnitude of the iPRC when the
system is near the stable manifold, indicating that the system will
be very sensitive to noise or spatially uncorrelated perturbations at
that time in the cycle and is likely to become desynchronized by
these effects, also agreeing with the results of Vasseur and Fox (2009).

We also analyze nearest neighbor coupling, where migration
occurs only between adjacent patches in a one dimensional
lattice. We allow for the structure to be either a ring or a chain
of oscillators, with the former occurring if the first and last patch
are connected. This is written by changing Mi,j in Eq. (1) to a
tri-diagonal matrix with entries of 1=2 above and below the main
diagonal and all other entries (including the main diagonal) are 0.
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Our simulations show that the time until the system is synchro-
nous is larger for nearest neighbor coupling than it is for all-to-all
coupling, even though the coupling might seem stronger (indivi-
dual entries in Mi,j are larger for nearest neighbor coupling). The
larger convergence time for nearest neighbor coupling occurs
because each oscillator is only communicating with nearby
oscillators as opposed to the whole system. This introduces a
distance between the model patches that corresponds to an actual
distance in a natural system. Synchrony taking longer for nearest
neighbor coupling is consistent with data showing that degree of
synchrony decreases as distance increases (Hanski and Woiwod,
1993; Ranta et al., 1995). Goldwyn and Hastings (2009) showed
that increased spatial heterogeneity in a weakly coupled system
also reduces synchrony. These two observations lead us to believe
that if migration is the primary cause of synchrony, either some
type of nearest neighbor coupling must be occurring or spatial
heterogeneity exists in a way that increases with distance.

With nearest neighbor coupling, there exists another possible
spatial population structure, a traveling wave solution. In a nearest-
neighbor model coupled on a one dimensional lattice, this occurs
when the phase difference between the iþ1st and the ith oscillator
is the same as the phase difference in phase between the ith and the
i�1st oscillator. The occurrence of a traveling wave solution is not
an artifact of the discrete patch model, Crook et al. (1997) found a
traveling wave solution in a model with a continuum of neural
oscillators. Traveling wave solutions have been found in natural
populations of voles in Finland (Ranta and Kaitala, 1997) and in
measles epidemics in England and Wales (Grenfell et al., 2001).
Blasius et al. (1999) found a U-shaped traveling wave solution to a
tritrophic population model with nearest neighbor coupling on a
two dimensional lattice, and Grenfell et al. (2001) found traveling
waves for their model of the above mentioned measles epidemic.
Ermentrout and Kopell (1984) found that nearest neighbor coupled
oscillators with a linear gradient in frequency will have multiple
phase locked clusters of oscillators with jumps in frequency
between the clusters.

3.2. The effect of changing the number of oscillators on convergence

rates

In addition to studying the asymptotic behavior of the system,
we examine how increasing the number of oscillators and altering
the connectivity of the patches affect the rate of convergence to
phase locking. For fixed intrinsic parameter values in Eq. (1), the
rate of convergence in the two patch case depends linearly on the
coupling strength, d Eq. (3). In an N oscillator system, determining
the actual coupling strength is more complicated than simply
finding the DV and DP terms in Eq. (1). In the case of all-to-all
coupling, the convergence of the oscillators to their phase locked
states depends on the degree of coherence of the system, r1ðtÞ,
and the weighted average phase, cðtÞ, Eq. (5), as discussed in
Strogatz (2000). These averages often behave in a very non-linear
way and are much more complicated than the migration rate
parameters from the two patch case.

Our simulations of the unperturbed model (done with initial
phases of each oscillator distributed uniformly random, with the
condition that the Kuramoto Synchronization index is less that
0.3) show that increasing the number of oscillators increases the
time of convergence to the stable steady state of phase locking,
regardless of whether this state is in-phase or out-of-phase. Fig. 5
shows the results from a system of varying numbers of oscillators
when prey and predators operating on similar characteristic time
scales (scenario 1). The time until the system converges to the
synchronous steady state (here we define synchrony as a
Kuramoto synchronization index r1ðtÞ4 :9) is close to linear on a
log scale of the number of oscillators. We can see from Eq. (3), and
as simulations show that if a mean field coupled system of
in-phase oscillators has one patch perturbed away from the cluster
of in-phase oscillators, then that patch will be pulled back to the
main cluster with a force that is scaled by the number of patches
coupled to it. Additionally, the greater the number of oscillators, the
smaller the effect the one oscillator has on the big cluster leading to
a longer time until full synchronization of the system.

We can analytically find the convergence rate to synchrony
when the system is already near the synchronous steady state by
linearizing around this state and finding the eigenvalues. To do
this we expand the numerical approximation of the interaction
function, H from Eq. (3), in a Fourier series. We find that if the
prey and predator populations operate on similar time scales,
then one of the eigenvalues will be equal to zero while all other
eigenvalues will be identical and negative (the zero eigenvalues
correspond to a phase shift of both oscillators which naturally will
not affect their difference in phase, y1�y2). Furthermore, the
non-zero eigenvalues increase monotonically while remaining
negative (their absolute value decreases) as the number of
oscillators is increased. Smaller magnitude eigenvalues indicate
a slower convergence to synchrony when the system is suffi-
ciently close to synchrony. The eigenvalues of the Kuramoto
oscillator, where the interaction function is simply the first sine
mode of the Fourier series, can be calculated analytically. After
finding the Jacobian of this system for a fixed number of
oscillators N, we can see that the non-zero eigenvalues are
l¼�1�1=ðN�1Þ. If the system is not near the fixed point of
synchrony, then linearization is not applicable, so we look at the
results from our simulations (Fig. 5).

While we find that increasing the number of oscillators slows
convergence to the phase locked steady states due to migration,
this increase does not change the expected Moran effect in our
model. The synchronization index of the system after a perturba-
tion can be found using Eq. (5), by inputting the phase of each
oscillator after the perturbation (Eq. (4)). We see that degree of
synchrony of the system depends only on the initial phase of each
oscillator and its PRC (which in turn depends on the magnitude
and timing within the oscillation of the perturbation). Therefore,
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for any given distribution of initial phases, the expected coher-
ence of the system after a perturbation is independent of the
number of oscillators, N, though the variance of the coherence
will depend on N.

3.3. Stochasticity vs. determinism

Natural systems are subject to a great deal of stochasticity,
such as the climatic events envisioned by Moran. While the model
we study here has intrinsic dynamics that are strictly determi-
nistic, the variabilities in individual trials of our simulation come
from the random phases of each oscillator when the Poisson
distributed extrinsic perturbation occurs. Incorporating other
forms of stochasticity into the intrinsic dynamics of the popula-
tion model makes the system too complicated to analyze in the
detailed way that we do here. We can, however, use the results
from our approach to understand the influence of random
perturbations. We focus on large instantaneous Poisson perturba-
tions as is done in Arai and Kakao (2008) and Ko and Ermentrout
(2009). Perturbations in ecological systems can be spatially
correlated, which can either increase or decrease synchrony
(Fig. 4), or spatially uncorrelated, tending to destroy synchrony.
The interplay between deterministic coupling and (correlated or
uncorrelated) external perturbations leads to a variety of possible
dynamics. The deterministic dynamics tend to synchronize popu-
lations in-phase (though they can lead to out-of-phase or
anti-phase behavior depending on if the system falls under
scenario 1, 2, or 3), while external forces can either encourage
or discourage this convergence to in-phase synchrony depending
on the strength of the perturbation, the synchronization index of
the system, the specific phase of each oscillator, and the para-
meters of the system. The effect of these forces is shown
schematically in Fig. 6.

Fig. 3 shows that if both populations have similar character-
istic time scales (scenario 1), then migration alone deterministi-
cally increases synchrony in a sigmoidal fashion. If the system is
either very coherent or very incoherent, the deterministic
dynamics slowly increase the level of synchrony, whereas if this
system has a moderate level of coherence, the synchronization
index will be increased more quickly by migration. The system
has an unstable steady state at a synchronization index of zero,
therefore when the system in near this state, the deterministic
coupling does little until a stochastic perturbation forces it away
from this steady state to some moderate level on synchrony. Then
the deterministic intrinsic dynamics can bring the system into
some level of near synchrony. The system will stay synchronous
until another perturbation (likely spatially uncorrelated) occurs
and knocks the system out of synchrony again. This interaction
between stochastic external perturbations and deterministic
dynamics demonstrates how both processes can be necessary
for this type of system to synchronize. Vasseur and Fox (2009)
simulated a stochastic version of this same Rosenzweig–
MacArthur model in two patches and found that both the Moran
effect and dispersal were necessary for synchrony to occur. Their
simulation results agreed with their experimental results in a
system consisting of the protist Tetrahymena pyriformis and its
predator Euplotes patella.

For systems where a separation in the characteristic time
scales between the prey and the predator population exists
(scenarios 2 and 3), the intrinsic dynamics can generate asymp-
totic behavior that will be either in-phase or out-of-phase,
depending on the initial coherence of the system and the para-
meter values. For parameter values as in scenario 3, a sufficiently
coherent system will approach synchrony by intrinsic dynamics
alone, while an incoherent system will form multiple synchro-
nized clusters that are out-of-phase with each other (Fig. 3).
A synchronous natural system can therefore be explained either
by extrinsic forces pushing the oscillators into a range of phases
that are sufficiently coherent allowing for the intrinsic dynamics
alone to lead to synchrony, or by the synchrony in each individual
cluster in an otherwise seemingly incoherent population. Fig. 3
shows that when this system is very uncorrelated, weak deter-
ministic migration will never lead to global synchronization.
However, a spatially correlated perturbation can knock the
system to a state where coupling can yield high global synchrony
levels.

Additionally, for systems that are exhibiting a traveling wave
solution (or splay phase), an external perturbation can knock the
system away from that steady state to allow for the intrinsic
dynamics to lead to an in-phase or out-of-phase solution. This can
occur regardless of whether the system has all-to-all or nearest
neighbor coupling.
4. Discussion

The ubiquity of synchronous oscillations in natural ecological
populations and its potential impact on metapopulation
persistence has led to a large number of theoretical and experi-
mental studies (as reviewed in Liebhold et al., 2004) which have
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attempted to determine its cause as well as its effect on persis-
tence. Metapopulations exhibiting extreme oscillations are at risk
for local extinction (Hastings, 2001), though migration from
asynchronous populations can reduce this risk through recoloni-
zation or the ‘Rescue Effect’ (Brown and Kodric-Brown, 1977). The
most likely causes of intraspecific species synchrony are either
dispersal, the Moran effect (Moran, 1953), or some combination
of both. The observed phenomenon that synchrony decreases
with distance (Hanski and Woiwod, 1993; Ranta et al., 1995) has
implications on the management of spatial populations.

The direct combination of dispersal and the Moran effect has
been analyzed by Kendall et al. (2000). In a discrete time model
where local dynamics, dispersal, and environmental stochasticity
all enter linearly, they found that the effects of the two synchro-
nizing forces are subadditive. Gouhier et al. (2010) examined the
combined effects of dispersal and environmental fluctuations on
synchrony and stability of a two prey, one predator, one resource
system on a local and global level. They focused on the case where
these effects are sufficiently large to disrupt the compensatory
dynamics of the system, so their study complements our
approach of focusing on the interaction between relatively weak
migration and the Moran effect. As in Goldwyn and Hastings
(2008), if the two species are operating on similar time scales,
then convergence to synchrony from migration alone, will be
quite slow and therefore the Moran effect is the likely cause
(or one of the likely causes) of synchrony. However, if there exists
difference in time scale between the prey and predator popula-
tions, as is the case with the spruce budworm (Ludwig et al.,
1978), then convergence to synchrony from migration alone can
occur in fewer cycles and can be a realistic explanation of
synchrony. As in Fig. 3, for certain systems, convergence to
synchrony due to migration occurs much faster when the system
already has a moderate level of synchrony. This implies that
spatially correlated external input plays an important role in
taking a highly incoherent system and bringing in into some
moderate level of synchrony (Fig. 6). The other important role
that external input plays in synchronizing this system is shifting
it between initial conditions yielding in-phase and out-of-phase
behavior due to migration when this bistability occurs. The fact
that both in-phase and out-of-phase solutions are possible with
the same parameter values indicates the importance of the
relationship between migration and extrinsic input. We also
notice that near synchronous populations will be continually
forced toward synchrony by dispersal. These populations are
likely to stay synchronized unless there is a sufficiently large
perturbation which knocks them far enough away from
synchrony where dispersal will not immediately resynchronize them.

While studies of two oscillators, as in Goldwyn and Hastings
(2008), give valuable insight into the necessity of the existence of
a separation in time scale in order for synchrony to occur on a
biologically relevant time scale, two patch results do not tell the
entire story for the cases of out-of-phase behavior. Only through
the use of many patches can we see that anti-phase and other
out-of-phase behavior can actually contain clusters of patches
that are themselves in-phase. These clusters of in-phase patches
make the system partially in-phase, and depending on the spatial
location of the patches in each cluster, can ultimately lead to
many of the same ecological outcomes as a completely in-phase
habitat. We recognize that there are many other ways to model
the temporal behavior of spatially distributed systems (Durrett
and Levin, 1994), including using partial differential equations in
a reaction diffusion model, using systems similar to ours but with
nearest neighbor coupling in two-dimensional lattices, as well as
varying levels of distance dependent dispersal. We view our
model as a good first approximation to these more complicated
systems.
How would the results we generate here inform the analysis,
interpretation, or collection of data from empirical systems? First,
our results provide the general and important guidance that a
much more nuanced approach to the causes of synchrony is
needed: only through considering the relative combination of
stochastic and deterministic forces can the forces leading to
synchrony be unraveled. Other features of our results can be used
directly to suggest manipulations or data interpretation. The
results that the rate of convergence from deterministic forces
slows as the number of patches goes up, in contrast to the fact
that for the Moran effect this is determined only by the area of
synchrony, suggests that developing tests to compare synchrony
as a function of system size would be important. For example, if
there are two systems in the same geographical area, our results
would predict similar levels of synchrony if the Moran effect were
operating, and greater synchrony for the species with fewer
subpopulations than for the species that was more subdivided
(which is different than saying that the species with the higher
rate of connectivity) if migration were the principle driver of
synchrony. For example, Liebhold et al. (2004) contrasted the
studies of Paradis et al. (2000) on British breeding birds who
found that synchrony was related to dispersal ability, Peltonen
et al. (2002) on forest insects who found that dispersal was not
related to synchrony, and Sutcliffe et al. (1996) who found a more
complex pattern depending on spatial scale. Our results clearly
indicate an important role for the number of subpopulations in
determining the degree of synchrony which can help explain the
appearance of contrasting results for systems where the only
focus was on dispersal.

The analysis presented here provides new insights into the
combined and contrasting roles of dispersal and the Moran effect
in synchronizing populations. Our work is able to put a new
emphasis on the importance of the interaction between stochas-
ticity at different spatial scales and internal dynamics in gener-
ated patterns of synchrony observed in natural systems. This
more synthetic view will provide a way to go beyond current
studies (e.g. those reviewed in Liebhold et al., 2004) that have
tended to emphasize the importance of one or the other explana-
tion. Although the importance of this combined view of popula-
tion dynamics has long been emphasized in understanding
single populations (Hastings et al., 1993), the importance of the
combined effects of stochasticity and deterministic forces in
producing synchrony in spatial dynamics has received less atten-
tion. Studies of disease dynamics (Rohani et al., 1999) are an
exception, but our study provides a much more general analysis
that provides insights across a range of systems. While our work
focuses on stochasticity as it relates to larger external perturba-
tions, ecological populations are known to be affected by noise
(Bjørnstad and Grenfell, 2001). More work on the nature of the
interactions, both direct and indirect, between dispersal and
extrinsic perturbations (both large and small) needs to be done
to continue to flesh out their combined effect on the synchroniza-
tion of these biological populations. Specifically, using the method
of phase reduction to study the effect of noise, as has been done in
the context of phase oscillators for white noise in Ly and
Ermentrout (2009) and colored noise in Nakao et al. (2010), could
prove very helpful in that regard.
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