
EE111 - p. 1 of 8 - Loops_rev4.docx

EGR 111
Loops

This lab is an introduction to loops, which allow MATLAB to repeat commands a certain
number of times.

New MATLAB commands: for, while, end, length

1. The For Loop

Suppose we want print a statement four times. One way would be to repeat the disp
function four times as follows:

disp('Are we there yet?')
disp('Are we there yet?')
disp('Are we there yet?')
disp('Are we there yet?')

If we wanted to repeat a command a large number of times, it would be very
inconvenient to copy the command over and over. Fortunately, the for command allows
MATLAB to repeat a command an arbitrary number of times. Consider the following
command:

>> for n = 1:4, disp('Are we there yet?'), end

The command above repeats the disp function four times, and keeps track of how many
times it has repeated the command using the variable n, resulting in the following:

Are we there yet?
Are we there yet?
Are we there yet?
Are we there yet?

Now let’s change the command inside the loop to print the value of n instead of the string
‘Are we there yet’.

>> for n = 1:4, n, end
n =
 1
n =
 2
n =
 3
n =
 4

EE111 - p. 2 of 8 - Loops_rev4.docx

In the command above, the vector “1:4” is a list of values that are placed into the variable
n one at a time. MATLAB begins by taking the first element from the vector 1:4 and
placing it in the variable n. Since 1:4 = [1 2 3 4], the first value is 1, which is placed into
n. Then the command “n” is executed, which prints the value of the variable n to the
screen.

Then the second element from the vector 1:4, which is 2, is placed into n, and the
command n is executed, which prints the value 2. And so on.

The for loop can be written on a single line if the commands are separated by commas
or semicolons, as we have seen so far, but it is often easier to read if each command is on
a separate line as shown below.

for variable = list
 commands
end

The for loop always has the same structure. The first line of a for loop always begins
with for, followed by a variable name, followed by the equals sign, and followed by a
list of values, which is a row vector. Next are one or more MATLAB commands, which
are executed once for each value in the list. And finally there is an end statement to
mark the end of the commands.

Note that it is good practice to indent the commands within a loop as shown above.
Although indenting is not required by MATLAB, it is highly recommended, because it
makes the code much easier for humans to read. Also do NOT put any command inside
the loop that changes the loop variable because MATLAB places values from the list into
that variable.

The list can be any vector. For example, consider the following command:

>> for n = [2 7 5 3], n, end

n =

 2

n =

 7

n =

 5

n =

 3

EE111 - p. 3 of 8 - Loops_rev4.docx

The for command above begins by taking the first element from the list, which is 2, and
places it into the variable n. Then it executes the command inside the loop, which prints
out the value of n. Then, it places the second element from the list into the variable n,
and repeats the command. And so on for each of the elements in the list.

Examine the commands below and determine what will be printed:

>> Q = [3 9 8 2];

>> for m = 4:-1:1, Q(m), end

Which value will be printed out first? Which will be printed second? Write down your
answers and then check them by running the commands in MATLAB.

In the command above, the list is 4:-1:1 = [4 3 2 1]. So MATLAB begins by taking the
first value from the list, which is 4, and places it into the variable m. Then it executes the
command inside the loop, which is “Q(m)”. Since m = 4, Q(m) = Q(4), which is the 4th
element in the vector Q, which is 2, so MATLAB will print 2. Then MATLAB takes the
second element form the list, which is 3, and places it into m. Then it prints the value of
Q(m) = Q(3) = 8. And so on until the list is exhausted.

Notice that every for command requires a corresponding end. Also notice that commas
(or semi-colons) can be used to separate commands on the same line. Semi-colons will
suppress the printing of output to the screen.

Next, let's look at the problem of computing the sum of a list of numbers, say 10, 20, 30
and 40. One way to compute this sum would be to have MATLAB add the numbers
directly as follows:

s = 10 + 20 + 30 + 40

The method above would be tedious if we wanted to add a lot of numbers, so let’s see
how we could accomplish this task using a loop. (There is an easy way to do this task
without using a loop, but let’s use a loop anyway.) Consider the following script file:

clear % clear variables
v = [10 20 30 40] % store the numbers in a vector
s = 0; % initialize s to 0
for n = 1:length(v) % loop using n = 1, 2, 3, 4
 s = s + v(n); % add v(n) to s and store result in s
end % end for statement
s % print the value of s

EE111 - p. 4 of 8 - Loops_rev4.docx

Note that the length command returns the number of elements in a vector, so in the
above script length(v) returns 4. Also recall that v(n) accesses the nth element of
the vector v. So v(1) is 10, v(2) is 20, and so on.

Before the loop, the value of s needs to be initialized to zero. If s were not initialized, the
command s + v(n) would cause an error because the variable s would be undefined
the first time through the loop.

The first time the loop is executed, the value of n is set to 1. The command s + v(n)
is computed, which results in 0 + 10 = 10, and this value is stored in the variable s.

The second time the loop is executed, the value of n is set to 2. The command s +
v(n) results in 10+20=30, and again this value is stored in the variable s. And so on.
In this way, the numbers in vector v are added.

So the program above is equivalent to the commands below (you do NOT need to type
the commands below, they are just to explain how the loop above works).

clear
v = [10 20 30 40]
s = 0;
n = 1;
s = s + v(n); % s = 0 + 10 = 10
n = 2;
s = s + v(n); % s = 10 + 20 = 30
n = 3;
s = s + v(n); % s = 30 + 30 = 60
n = 4;
s = s + v(n); % s = 60 + 40 = 100
s

Exercise 1: Write a loop to sum the even numbers from 2 to 100 (that is find
2 + 4 + 8 + … + 100). There is an easy way to do this without a loop, but let’s use a loop
here because we are practicing loops.

EE111 - p. 5 of 8 - Loops_rev4.docx

2. Nested For Loops

Since the for loop allows MATLAB to repeat any MATLAB command, what would
happen if we put a for loop inside another for loop? We call a structure like this a
nested loop. Consider the script file shown below.

clear
disp(' i j')
for i = 1:3
 for j = 1:2
 disp([i j])
 end % end for j
end % end for i

In the script above, the first end statement marks the end of the commands in the inner
loop "for j = 1:2". The second end statement marks the end of the commands in
the outer loop "for i = 1:3". It is good programming practice to indent the end
statement the same amount as the corresponding for command to make the program
easier for humans to read, but MATLAB does not require this indentation.

First try to figure out what MATLAB will print to the Command Window when the script
above is run, then run the script and see if you were correct.

In the script above, the first for loop causes the second for loop to be repeated three
times, first with i = 1, then with i = 2, and then with i = 3. The second for loop causes
the disp command to be repeated twice, first with j = 1, and then with j = 2.

So the script above is equivalent to the following commands (you do NOT need to type
the commands below, they are just to explain how the loop above works).

clear
disp(' i j')

i = 1;
j = 1;
disp([i j])
j = 2;
disp([i j])

i = 2;
j = 1;
disp([i j])
j = 2;
disp([i j])

EE111 - p. 6 of 8 - Loops_rev4.docx

i = 3;
j = 1;
disp([i j])
j = 2;
disp([i j])

In the same way that a single for loop can be used to access each element of a vector,
nested for loops can be used to access the elements of a matrix. For example, the script
below uses a nested loop to set all of the elements of a matrix to one.

A = zeros(3,2)
for i = 1:3
 for j = 1:2
 A(i,j) = 1
 end
end

In the script above, the zeros command creates a 3x2 matrix, sets all of the elements to
zero, and saves the result in a matrix called A. Then the nested loop accesses each
element one at a time and changes each element to one. The variable i is used to store the
row number, and the variable j is used to store the column number. The script above is
equivalent to the following commands (you do NOT need to type the commands below,
they are just to explain how the loop above works).

A = zeros(3,2)
i = 1;
j = 1;
A(i,j) = 1
j = 2;
A(i,j) = 1

i = 2;
j = 1;
A(i,j) = 1
j = 2;
A(i,j) = 1

i = 3;
j = 1;
A(i,j) = 1
j = 2;
A(i,j) = 1

EE111 - p. 7 of 8 - Loops_rev4.docx

Exercise 2: Write a script that generates a 5x5 matrix of zeros and save it in variable A.
Then, using a nested loop, check to see if the row number is greater than the column
number, and if so, set the value of that element of A to 1. If the row number is NOT
greater than the column number, leave the value of the element unchanged. Print out the
final matrix. The result is shown below.

A =
 0 0 0 0 0
 1 0 0 0 0
 1 1 0 0 0
 1 1 1 0 0
 1 1 1 1 0

Checkpoint 1: Show the instructor your script file and results from Exercises 2.

3. The While Loop

For loops are mainly used when the number of times the loop will be repeated is known
in advance, which was the case in all of the preceding examples. The while loop is
often used when the number of times the loop will repeat is not known in advance. For
example, consider the following program.

clear
x = 1
while x == 1
 x = input('To keep doing this, type 1: ');
end

First the variable x is set to 1. Then the while command checks to see if x == 1 is true,
and if so it executes the input command to prompt the user for a value and save that value
in x. Then it repeats. So the loop will keep repeating an unknown number of times until
the user types something other than 1. Run the program to verify that works.

A Common Error: Note that if the command inside of the loop does not modify the
variable that is being tested, the loop will never terminate. We call that an infinite loop.
In the script file below, the user’s guess is stored in the variable g instead of x. Since x is
never changed, this loop will keep repeating regardless of the value the user types. Note,
however, that you can force a program to quit by holding down the Ctrl key and pressing
c (Ctrl-c).

clear
x = 1
while x == 1 % Oops, this is an infinite loop!
 g = input('To keep doing this, type 1: ');
end

EE111 - p. 8 of 8 - Loops_rev4.docx

Let’s write a program to play a guessing game where MATLAB picks a number between
1 and 10, and repeatedly prompts the user until the user guesses correctly.

clear
x = randi(10); % generate an integer between 1 and 10
g = 0; % initialize the guess to zero
while g ~= x
 g = input('Guess what it is: ');
end
disp('Yep')

In the program above, the randi function generates a pseudorandom integer from 1 to
10. (Pseudorandom numbers have the properties of random numbers, but are completely
predictable if you know the algorithm used to generate them.) The variable g will hold
the user's guess and is initialized to 0 so that it cannot be equal to the pseudorandom
number. The while statement checks to see if g ~= x is true, and if so, it will prompt
the user for another guess. This process repeats until the user guesses the correct number
(or the user forces the program to quit using Ctrl-C).

Exercise 3: Modify the program above to tell the user whether the guess is too high or
too low.

Checkpoint 2: Show the instructor your script file from Exercise 3.

	EGR 111
	Loops

