
EGR111 - p. 1 of 4 - Functions_rev5.docx

EGR 111
Functions

This lab is an introduction to writing your own MATLAB functions. The lab
also introduces relational operators and logical operators which allows MATLAB
to compare values and count the number of values that satisfy a given condition.

New MATLAB Commands: @, function

1. Anonymous Functions

In addition to the built-in functions such as cos and sin, we can create our own
functions in MATLAB to simplify common calculations and allow us to re-use programs.

There are two ways to define functions. The first way is called anonymous functions.
For example, to define an anonymous function that converts from kilometers to miles, we
would type the following command into MATLAB’s command window (there are
0.62137119 miles per km):

km2miles = @(x) x * 0.62137119;

The command above defines a function named km2miles. The “@(x)” indicates that this
is an anonymous function definition and that x represents the input value in the function
definition. Once the function has been defined, you can use it like any built-in function.
For example, to find out how many miles a 10 km run is, you could type the following:

km2miles(10)
ans =
 6.2137

When we call the function using the command above, MATLAB replaces the input x in
the function definition with the input value 10, and then computes the output.

Exercise 1: Define an anonymous function called miles2km that converts miles to km,
and test it using the input value of 6.2137 miles.

Anonymous functions are a handy way to define a function, but this method of defining a
function has some limitations. First, just like MATLAB variables, any anonymous
functions that you define are lost if you shut MATLAB down. Second, anonymous
functions are limited to a single MATLAB executable statement. Next we will see how
we can define a function in a file that allows an unlimited number of statements.

EGR111 - p. 2 of 4 - Functions_rev5.docx

2. Defining a Function in a .m File

If we want a function definition to be available the next time we run MATLAB, or if the
function requires more than a single MATLAB executable statement, then we need to
define the function in a .m file.

For example, let's write a function to convert a speed in miles per hours to meters per
second. To open MATLAB’s text editor to define a new function, click on New and then
click on Function. Then change the text to the following:

function y = mph2mps(x)
% Convert miles per hour to meters per second
y = 0.44704*x;

Save the file as mph2mps.m in your P:\MATLAB folder. Note that the filename
“mph2mps.m” needs to be the same as the function name in the first line with an added
“.m” extension. Because of the word “function” in the first line, this file will behave very
differently than the script files from previous labs.

The first line in the mph2mps.m file tells MATLAB that this file defines a new function
(as opposed to a script file) called mph2mps that has one input argument, x, and one
output argument y.

In MATLAB the symbol “%” is used to indicate a comment. All of the text on the line
after the “%” symbol is ignored by MATLAB, but is used to document the function for
people who may need to use or modify the function. Type “help mph2mps” in the
command window to see that MATLAB will print the first block of comments.

Now we can use this function to convert a speed from miles per hour to meters per
second instead of trying to remember how to do it (and possibly doing it incorrectly). For
example, to convert 55 miles per hour to meters per second, we can simply type the
following command in the MATLAB command window: mph2mps(55)

If you get an error that says something like “??? Undefined function or method
‘mph2mps’ for input arguments of type 'double'”, check to make sure that you saved the
file in your P:\MATLAB folder and that you have changed the Current Folder to point to
that folder.

When you type the command mph2mps(55), MATLAB places the value 55 into the
input argument x in the function definition, then MATLAB executes the commands in
the file (y = 0.44704*x;), and finally returns the value of the output argument y to
the workspace.

It is important to note that the variable names x and y in the function file are separate
from the variable names in the MATLAB workspace. We say that x and y are “private”

EGR111 - p. 3 of 4 - Functions_rev5.docx

(or “local”) to the function mph2mps. Type "x" and "y" (without the quotes) into the
command window:

x
y

The error message shows that the variables x and y are available only within the function
mph2mps, not within the MATLAB workspace. This is an important difference between
script files and function files. The variables in a script file are shared with the MATLAB
workspace, whereas the variables in a function file are separate from the MATLAB
workspace. Therefore, you can re-use common variables names in function files without
conflicting with the variables in the workspace.

In mathematics we use the name “function” to mean a relation that produces exactly one
output value for a given input value. However, a function in MATLAB can contain any
MATLAB commands, so a MATLAB function is more general than a mathematical
function. For example, a MATLAB function could generate a graph, make a tone,
download a webpage, or do anything else that MATLAB can do.

Exercise 2: Define a function called mps2mph in a .m file to convert speed in meters per
second to miles per hour. Test the function by using it to convert the speed of light 3x108
meters per second to miles per hour.

Checkpoint 1: Show the instructor your function and the results for Exercise 2.

A MATLAB function can accept more than one input argument and can return more than
one output argument. For example, the function below has two inputs (a and b) and two
outputs (minimum and maximum).

function [minimum, maximum] = minmax(a,b)
% function [minimum, maximum] = minmax(a,b)
% return the minimum and maximum
% of the input values a and b
minimum = min(a,b);
maximum = max(a,b);

Open a new function window, type the function above and save it to a file named
“minmax.m” in your P:\MATLAB folder. To use this function to find the minimum and
maximum of the values 4 and 2 and save the results in variables x and y, we would type
the following into the command window:

[x,y] = minmax(4,2)

EGR111 - p. 4 of 4 - Functions_rev5.docx

The above command results in the following:

x =
 2
y =
 4

If the output of a MATLAB function that returns more than one value is assigned to only
one variable, then only the first value is returned. For example, suppose we called the
minmax function as follows:

z = minmax(4,2)

The above command results in the following:

z =
 2

In this case, the first output value (minimum) is stored in the variable output z, and the
other output value (maximum) is discarded. So if you want access to all of the outputs of
a function that has more than one output, you need to specify a variable for each of the
outputs in square brackets.

Exercise 3: Write a function called windchill with two input arguments and one output
argument, where the inputs are the air temperature (in °F) and the wind speed (in miles
per hour), and the output is the wind chill (in °F).
For details, see https://www.weather.gov/safety/cold-wind-chill-chart
Test your program by using it to compute the wind chill for air temperature of 15 °F with
35 mph wind.

Checkpoint 2: Show the instructor your function and the results for Exercise 3.

https://www.weather.gov/safety/cold-wind-chill-chart

	EGR 111
	Functions

