Determining Splitting Patterns in Benzene Derivatives

Monosubstituted Benzene Rings

A monosubstituted benzene ring will always have symmetry. Therefore, H_a is equivalent to H_e and H_b is equivalent to H_d.

H_a has only one neighbor (H_b) and therefore it should be a doublet.
H_b has two neighbors (H_a and H_c) and therefore it should be a triplet.
H_c has two neighbors (H_b and H_d) and therefore it should be a triplet.

Therefore, the observed splitting pattern should be:
one doublet with integration of 2H, one triplet with integration of 2H, and one triplet with integration of 1H.

1,2 - Disubstituted Benzene Rings

When R_1 is different from R_2 there is no plane of symmetry and therefore each proton is unique.

H_a has only one neighbor (H_b) and therefore it should be a doublet.
H_b has two neighbors (H_a and H_c) and therefore it should be a triplet.
H_c has two neighbors (H_b and H_d) and therefore it should be a triplet.
H_d has only one neighbor (H_c) and therefore it should be a doublet.

Therefore, the observed splitting pattern should be:
two doublets with integration of 1H each and two triplets with integration of 1H each.

When R_1 is the same as R_2, H_a and H_d are equivalent due to symmetry. Analogously, H_b and H_c are also equivalent due to symmetry.

Therefore, the observed splitting pattern should be:
one doublet with integration of 2H and one triplet with integration of 2H.

1,3 - Disubstituted Benzene Rings

When R_1 is different from R_2 there is no plane of symmetry and therefore each proton is unique.

H_a has no neighbors and therefore it should be a singlet.
H_b has one neighbor (H_c) and therefore it should be a doublet.
H_c has two neighbors (H_b and H_d) and therefore it should be a triplet.
H_d has one neighbor (H_c) and therefore it should be a doublet.

Therefore, the observed splitting pattern should be:
one singlet with integration of 1H, two doublets with integration of 1H each, and one triplet with integration of 1H.

When R_1 is the same as R_2, H_b and H_d are equivalent due to symmetry.

Therefore, the observed splitting pattern should be:
one singlet with integration of 1H, one doublet with integration of 2H, and one triplet with integration of 1H.

1,4 - Disubstituted Benzene Rings

A 1,4-disubstituted benzene ring will always have symmetry. Therefore, H_a is always equivalent to H_d and H_b is always equivalent to H_c.

H_a has one neighbor (H_b) and therefore it should be a doublet.
H_b has one neighbor (H_a) and therefore it should be a doublet.

Therefore, the observed splitting pattern should be:
two doublets with integration of 2H each.

Trisubstituted Benzene Rings

These are the three possible choices for regiochemistry in the trisubstituted benzenes. As an exercise you should use the example above and determine what kinds of splitting patterns you would expect to see in each case.