
LECTURE 28: UNIFORM CONTINUITY (II)

Recall:

f is uniformly continuous on S if: For all ε > 0 there is δ > 0
such that, for all x, y ∈ S

|x− y| < δ ⇒ |f(x)− f(y)| < ε

In other words, there is some δ independent of x and y that makes f
continuous.

Today: All about properties of uniform continuity.

Date: Wednesday, June 3, 2020.
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1. Uniform Continuity and Cauchy

Video: Uniform Continuity and Cauchy

Let’s discuss a useful property that helps us understand how uniformly
continuous behave. For this, let’s recall the definition of Cauchy se-
quences from section 10:

Recall (Section 10):

(sn) is Cauchy if for all ε > 0 there is N such that if m,n > N ,
then |sm − sn| < ε

(The terms of the sequence (sn) are eventually as close to each other
as we want. This is great way of talking about convergence without
mentioning the limit)

If f is continuous and (sn) converges (to x0), then, by definition, f(sn)
is converges as well (to f(x0))

https://youtu.be/giDQd8EYrOo
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But what if (sn) is just Cauchy?

Question: If (sn) is Cauchy and f is continuous, is f(sn) Cauchy?

In general, the answer is:

Example:

Let f(x) = 1
x on (0, 1)

Then sn = 1
n ∈ (0, 1) is Cauchy (because it converges; here n ≥ 2),

but f(sn) = 1
sn

= n → ∞ is not Cauchy (because it doesn’t

converge)

What is going on here? Even though the inputs (sn) are close together,
the outputs f(sn) are very far apart. In some sense, f , even though
continuous, “spreads out” points near 0.
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You may have guessed it, but the reason this fails is because f is not
uniformly continuous. In fact, if f is uniformly continuous, then the
answer to the question above is YES:

Fact:

If f is uniformly continuous on a set S and (sn) is a Cauchy
sequence in S, then f(sn) is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences
to Cauchy sequences.
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Application:

f(x) = 1
x is not uniformly continuous on (0, 1) because sn = 1

n is
Cauchy in (0, 1) but f(sn) is not Cauchy.

Idea of Proof: Since (sn) is Cauchy, the inputs sn and sm are close
to each other. Since f is uniformly continuous, close inputs give you
close outputs. Hence f(sn) and f(sm) are close to each other, so f(sn)
is Cauchy.

Proof: Suppose (sn) is Cauchy and let ε > 0 be given. Since f is
uniformly continuous on S, there is δ > 0 such that if x, y ∈ S and
|x− y| < δ, then |f(x)− f(y)| < ε

But since (sn) is Cauchy (with δ instead of ε), there is N such that if
m,n > N , then |sn − sm| < δ, and therefore we get (using x = sn and
y = sm ) |f(sn)− f(sm)| < ε X

Hence f(sn) is Cauchy �
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Note: This proof works precisely because f is uniformly continuous.
Since (sn) is Cauchy, we can make sn to be δ−close, and therefore
f(sn) are ε−close. It’s very important that δ is independent of x, since
we don’t know where the sn are; they could be near 0 or near 1 or near
some other number, we don’t know!

2. Continuous Extensions

Video: Continuous Extensions

This is, in my opinion, the most important property because it re-
lates uniform continuity, a really abstract concept, with continuous
extensions, something much more concrete. Let’s motivate this with a
couple of examples:

https://youtu.be/iqhLGnxh6hc
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Example 1:

Let f(x) = x sin
(
1
x

)
on (0, 1].

(notice that f is undefined at 0)

Problem: Is there some way of defining f at 0 such that f becomes
continuous at 0?

YES, just let f(0) = 0

In other words, if you let

f̃(x) =

{
x sin

(
1
x

)
if x ∈ (0, 1]

0 if x = 0
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Then:

(1) f̃ is continuous on [0, 1] and

(2) For x ∈ (0, 1], f̃(x) = f(x)

We call f̃ a continuous extension of f :

Definition:

Suppose A ⊆ B (think A = (0, 1] and B = [0, 1])and f : A → R
is continuous. Then f̃ : B → R is a continuous extension of f
if

(1) f̃ is continuous on B and

(2) For all x ∈ A we have f̃(x) = f(x)
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So next time you ask for an extension on an assignment, ask for a
continuous extension ,

Example (not in the video):

Let f(x) = sin(x)
x for x 6= 0, then f̃ : R→ R defined by:

f̃(x) =

{
sin(x)
x if x 6= 0

1 if x = 0

Is a continuous extension of f .
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Note: The reason f̃ is continuous is because (from Calculus)

lim
x→0

sin(x)

x
→ 1

This limit is beyond the scope of the course, but check out this video for

a really elegant geometric proof: sin(x)
x as x goes to 0. It turns out that

f̃ is uniformly continuous on R (see HW) but that’s a pure coincidence.

Example 2:

This time consider f(x) = sin
(
1
x

)
on (0, 1].

https://www.youtube.com/watch?v=K03dmcppA4M
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Notice that, since x 6= 0, f is continuous on (0, 1].

Can we extend f to a continuous function f̃?

NO No matter how we define f̃(0), f̃ will not be continuous on [0, 1]
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Why? (not in the Video) Let sn = 1
πn → 0. If f̃ were continuous at

0, then:

f̃(0) = lim
n→∞

f̃(sn) = lim
n→0

f(sn) = sin

(
1

sn

)
= sin(πn) = 0

(Here we used f̃ = f on (0, 1])

On the other hand, let tn = 1
π
2+2πn

→ 0. Then

f̃(0) = lim
n→∞

f̃(tn) = lim
n→0

f(tn) = sin

(
1

tn

)
= sin

(π
2

+ 2πn
)

= 1

Which contradicts f̃(0) = 0 ⇒⇐. Hence f̃ cannot exist �
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Why did Example 1 work but Example 2 fail? The key difference is
uniform continuity: In Example 1, f(x) = x sin

(
1
x

)
is uniformly con-

tinuous on (0, 1] (see below), whereas in Example 2, f(x) = sin
(
1
x

)
is

not uniformly continuous on (0, 1]

Fact 1:

Suppose f : (a, b) → R is continuous. If f has a continuous
extension f̃ on [a, b], then f is uniformly continuous.

Note: This fact works for any subset of [a, b], not just (a, b). The
main reason this proof works is because [a, b] is compact.

Application:

Let f(x) = x sin
(
1
x

)
on (0, 1] (from Example 1). Then f has

a continuous extension f̃(x) on [0, 1], so x sin
(
1
x

)
is uniformly

continuous on (0, 1].

By the same reasoning, f(x) = sin(x)
x is uniformly continuous on

(0, 1).
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Proof: Suppose f has a continuous extension f̃ on [a, b]. Then since
f̃ is continuous on [a, b] (by definition) and [a, b] is compact, f̃ is uni-
formly continuous on [a, b] (see last time). Therefore, in particular,
f̃ = f is uniformly continuous on (a, b) �

Question: Is the converse true? That is, if f is uniformly continuous,
does f have a continuous extension? YES!

Fact 2:

If f : (a, b) → R is uniformly continuous on (a, b), then f has a
continuous extension f̃ on [a, b]

Note: There is a LOT of flexibility here: You can replace [a, b] as
above by (a, b), [a, b), (a,∞) etc.

Note: The main reason this proof works is because (a, b) is dense in
[a, b], that is the closure of (a, b) is [a, b]. In fact, the same proof works
if you replace (a, b) by Q and [a, b] with R.

Application:

f(x) = sin
(
1
x

)
from Example 2 is NOT uniformly continuous on

(0, 1] because f has no continuous extension on [a, b]

Proof: The proof is magical! We’ll do some wishful thinking that
actually works.

STEP 1: Suppose f is uniformly continuous on (a, b). Since on (a, b),
f̃(x) =: f(x) is continuous, all we really need to do is define f̃(a) and
show f̃ is continuous at a (the case f̃(b) is similar)
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Main Idea:

If f̃ were continuous at a, then for any sequence (sn) in (a, b) with
sn → a, we would have

lim
n→∞

f(sn) = lim
n→∞

f̃(sn) = f̃(a)

(Here we used sn ∈ (a, b) and f̃ = f on (a, b))

The idea is then to define f̃(a) as:

f̃(a) =: lim
n→∞

f(sn)

Where (sn) is any sequence in (a, b) converging to a
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Example: (not in the video)

Take again f(x) = x sin
(
1
x

)
from Example 1. What is f̃(0)?

Let sn = 1
πn → 0. Then, by the above, we have

f̃(0) = lim
n→∞

f(sn) = lim
n→∞

sn sin

(
1

sn

)
= lim

n→∞

(
1

πn

)
sin(πn)︸ ︷︷ ︸

0

= 0

Therefore f̃(0) = 0

The definition above seems too good to be true! We’re literally defining
f̃(a) in such a way that it solves our problem. It turns out that it
actually works. But in order to make sure that f̃(a) is well-defined,
we need to answer the following questions:

(1) Does f(sn) even converge? (otherwise lim f(sn) makes no sense)

(2) More importantly: Is the above limit independent of the choice
of the sequence (sn) used?
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STEP 2:

Claim 1: If (sn) is a sequence in (a, b) that converges to a, then
f(sn) converges

Proof of Claim 1: Since (sn) converges, (sn) is Cauchy, and there-
fore, since f is uniformly continuous, by the previous section, f(sn) is
Cauchy, and therefore f(sn) converges X

STEP 3:

Claim 2: Suppose (sn) and (tn) are two sequences in (a, b) con-
verging to a, then

lim
n→∞

f(sn) = lim
n→∞

f(tn)

(This shows that the definition f̃(a) above does not depend on the
choice of (sn))

Proof of Claim 2: Suppose (sn) and (tn) both converge to a.

Here’s a neat idea: let’s interlace the two sequences (sn) and (tn) to
get a new sequence (un):

(un) = (s1, t1, s2, t2, . . . )

Claim 3: (un) converges to a

(See optional proof below)

Since un → a and f is continuous,
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f(un) = (f(s1), f(t1), f(s2), f(t2), . . . )

converges to some s ∈ R. Therefore, any subsequence of f(un) con-
verges to s as well.

But f(sn) = (f(s1), f(s2), . . . ) is a subsequence of f(un), and hence
converges to s. Similarly f(tn) = (f(t1), f(t2), . . . ) is a subsequence of
f(un), hence converges to s as well.

Therefore

lim
n→∞

f(sn) = s = lim
n→∞

f(tn)X

Proof of Claim 3: (optional, not in the video)

Let ε > 0 be given.

Since sn → a, there is N1 such that if n > N1, then |sn − a| < ε, and
since tn → a, there is N2 such that if n > N2, then |tn − a| < ε.
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Let N = N1 +N2

Then if n > N , either un = sm for some m > N1 in which case
|un − a| = |sm − a| < ε; or un = tm for some m > N2, in which case
|un − a| = |tm − a| < ε as well X

STEP 4:

Define

f̃(a) =: lim
n→∞

f(sn)

Where (sn) is any sequence in (a, b) converging to a

By STEP 2 and STEP 3, f̃(a) is well-defined.

It is enough to check that f̃ is continuous at x = a
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This is mathemagical: Let (sn) be a sequence in [a, b] converging to a,
we need to show f̃(sn)→ f̃(a)

WLOG, assume sn ∈ (a, b) for all n, because, since we only care
about things close to a, we may assume sn < b, and if sn = a, then
f̃(sn) = f̃(a) anyway.

Therefore (sn) is a sequence in (a, b) converging to a, and therefore:

lim
n→∞

f̃(sn) = lim
n→∞

f(sn) = f̃(a)X

(where, in the first step, we used sn ∈ (a, b) and in the second step we
used the DEFINITION of f̃(a))

Hence f̃ is a continuous extension of f X �

3. Uniform Continuity and Derivatives

Video: Uniform Continuity and Derivatives

I really saved the best for last, because here is the most useful way to
show that f is uniformly continuous.

Fact:

If f is continuous on [a, b] (and differentiable on (a, b)).

Suppose f ′ is bounded, that is there is M > 0 such that
|f ′(x)| ≤M for all x ∈ (a, b).

Then f is uniformly continuous on [a, b]

https://youtu.be/UJ9Xaj3m7zg
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Note: The same result holds if you replace [a, b] by (a, b) or by [a,∞)
or variations thereof; and even for R (Otherwise there would be no
point in proving this fact because continuous functions on [a, b] are
automatically uniformly continuous)

Example 1:

Let f(x) = 1
x on [2,∞) (continuous). Then f ′(x) = − 1

x2 and
therefore, for all x ∈ (2,∞) have

|f ′(x)| =
∣∣∣∣− 1

x2

∣∣∣∣ =
1

x2
≤ 1

22
=

1

4
= M

Therefore f is uniformly continuous on [2,∞)

Example 2:

Let f(x) = sin(x) on R

Then for all x, |f ′(x)| = |cos(x)| ≤ 1 = M , hence sin(x) is uni-
formly continuous on R

The proof of this uses the Mean Value Theorem from Calculus (which
you’ll cover in Math 140B)

Mean Value Theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there
is c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c)
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In other words, the slope f ′(c) of the tangent line of f c is equal to the

slope f(b)−f(a)
b−a of the secant line of f . In other words, there is a point

c in (a, b) at which the tangent line of f and the secant line are parallel.

Note: In case you’re interested, here’s a proof of the Mean Value The-
orem: MVT Proof

Proof of Fact: Suppose |f ′(x)| ≤M for all x.

Let ε > 0 be given and let δ = ε
M .

Then if x, y ∈ (a, b) and |x− y| < δ, so by the Mean Value Theorem
with x and y, there is c between x and y such that

f(y)− f(x)

y − x
= f ′(c)⇒ f(y)− f(x) = f ′(c)(y − x)

But then we get

|f(y)− f(x)| = |f ′(c)|︸ ︷︷ ︸
≤M

|y − x| ≤M |y − x| < M
( ε

M

)
= εX

https://www.youtube.com/watch?v=PloNnv_DWas
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Hence f is uniformly continuous on [a, b] �

Congratulations!!! We are now officially done with the material of the
course! , In the next lecture, we will review the main concepts of the
course in a series called The Essence of Analysis.
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