LECTURE 28: UNIFORM CONTINUITY (II)

f is uniformly continuous on S if: For all € > 0 there is § > 0
such that, for all z,y € S

[z —yl <d=|f(x) - fy)| <e

")
N < {®

f(y)

\\4

In other words, there is some ¢ independent of x and y that makes f
continuous.

Today: All about properties of uniform continuity.

Date: Wednesday, June 3, 2020.
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1. UNIFORM CONTINUITY AND CAUCHY
Video: Uniform Continuity and Cauchy
Let’s discuss a useful property that helps us understand how uniformly

continuous behave. For this, let’s recall the definition of Cauchy se-
quences from section 10:

(sn) is Cauchy if for all € > 0 there is N such that if m,n > N,
then |s,, — s,| <€

(The terms of the sequence (s,) are eventually as close to each other
as we want. This is great way of talking about convergence without
mentioning the limit)

If f is continuous and (s,) converges (to xg), then, by definition, f(s,)
is converges as well (to f(xg))


https://youtu.be/giDQd8EYrOo
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But what if (s,,) is just Cauchy?

Question: If (s,) is Cauchy and f is continuous, is f(s,) Cauchy?

In general, the answer is:

Then s, = + € (0, 1) is Cauchy (because it converges; here n > 2),
but f(s,) = = = n — oo is not Cauchy (because it doesn’t
converge)

What is going on here? Even though the inputs (s,,) are close together,
the outputs f(s,) are very far apart. In some sense, f, even though
continuous, “spreads out” points near 0.
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f(Sn)

B .
f(Sm) 1g

f(x)

You may have guessed it, but the reason this fails is because f is not
uniformly continuous. In fact, if f is uniformly continuous, then the
answer to the question above is YES:

If f is uniformly continuous on a set S and (s,) is a Cauchy
sequence in S, then f(s,) is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences
to Cauchy sequences.
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f(sm)
f(sn) 7| | Small

Sn  Sm

h\ 4

Small

Application:

f(x) = 1 is not uniformly continuous on (0, 1) because s, = & is

Cauchy in (0,1) but f(s,) is not Cauchy.

Idea of Proof: Since (s,) is Cauchy, the inputs s, and s,, are close
to each other. Since f is uniformly continuous, close inputs give you
close outputs. Hence f(s,) and f(s,,) are close to each other, so f(s,)
is Cauchy.

Proof: Suppose (s,) is Cauchy and let € > 0 be given. Since f is
uniformly continuous on S, there is 6 > 0 such that if z,y € S and

|z —y| <0, then |f(x) — f(y)| <e

But since (s,) is Cauchy (with ¢ instead of €), there is NV such that if
m,n > N, then |s, — s,,| < 9, and therefore we get (using x = s,, and

y=sm) |f(sn) = flsm)| < eV

Hence f(s,) is Cauchy O]
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: o o }8 f(Sm)/g }g

‘ f(x)

Sm Sn

N \""

O

Note: This proof works precisely because f is uniformly continuous.
Since (s,) is Cauchy, we can make s, to be d—close, and therefore
f(sn) are e—close. It’s very important that J is independent of x, since
we don’t know where the s, are; they could be near 0 or near 1 or near
some other number, we don’t know!

2. CONTINUOUS EXTENSIONS

Video: Continuous Extensions

This is, in my opinion, the most important property because it re-
lates uniform continuity, a really abstract concept, with continuous
extensions, something much more concrete. Let’s motivate this with a
couple of examples:


https://youtu.be/iqhLGnxh6hc
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Let f(z) = xsin (2) on (0,1].

T

(notice that f is undefined at 0)

f(x) = x sin(1/x)

r
p.

o

Undefined

Problem: Is there some way of defining f at 0 such that f becomes
continuous at 07

YES, just let f(0) =0

In other words, if you let

o L
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f(x)

Undefined f(o) = 0

Then:

(1) f is continuous on [0, 1] and

(2) For z € (0,1], f(x) = f(x)

We call f a continuous extension of f:

Suppose A C B (think A = (0,1] and B = [0,1])and f: A — R
is continuous. Then f : B — R is a continuous extension of f
if

(1) f is continuous on B and

(2) For all z € A we have f(z) = f(z)
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£(x) f(x) = {(x)
TN ~—~_ >~
=> fx)
A A
B

So next time you ask for an extension on an assignment, ask for a
continuous extension ©

Example (not in the video):

Let f(z) = 222 for £ 0, then f : R — R defined by:

. snle) f g £ 0
f(x)_{1 fr—0

Is a continuous extension of f.
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1 f(x) = SiI}l{(X)

Note: The reason f is continuous is because (from Calculus)

lim S8
z—0 €T

This limit is beyond the scope of the course, but check out this video for
sin(x)

a really elegant geometric proof: —= as x goes to 0. It turns out that

f is uniformly continuous on R (see HW) but that’s a pure coincidence.

This time consider f(z) = sin (1) on (0, 1].

X



https://www.youtube.com/watch?v=K03dmcppA4M
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f(x) = sin(1/x)

L

Notice that, since  # 0, f is continuous on (0, 1].
Can we extend f to a continuous function f?

NO No matter how we define f(0), f will not be continuous on [0, 1]
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Why? (not in the Video) Let s, = = — 0. If f were continuous at
0, then:

FO) = Jim ) = tim 7(s,) = sin () =sin(an) =0

n—00 Sn

(Here we used f = f on (0,1])

On the other hand, let t,, = #2— — 0. Then

Sta2mn

f(O) = lim f(tn) = lim f(¢,) = sin (tl) = sin (g + 27rn> =1

n—00 n—0 n

Which contradicts f(0) = 0 =<«=. Hence f cannot exist O
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Why did Example 1 work but Example 2 fail? The key difference is
uniform continuity: In Example 1, f(x) = xsin (%) is uniformly con-
tinuous on (0,1] (see below), whereas in Example 2, f(z) = sin (1) is
not uniformly continuous on (0, 1]

Suppose [ : (a,b) — R is continuous. If f has a continuous
extension f on [a, b], then f is uniformly continuous.

e s

O O o, O
a b a b

Note: This fact works for any subset of [a,b], not just (a,b). The
main reason this proof works is because [a, b] is compact.

Application:

Let f(z) = xsin(2) on (0,1] (from Example 1). Then f has
a continuous extension f(z) on [0,1], so xsin (1) is uniformly
continuous on (0, 1].

By the same reasoning, f(x) = Singfx) is uniformly continuous on

(0,1).
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Proof: Suppose f has a continuous extension f on [a,b]. Then since
f is continuous on [a, b] (by definition) and [a, b] is compact, f is uni-
formly continuous on [a,b] (see last time). Therefore, in particular,
f = f is uniformly continuous on (a, b) ]

Question: Is the converse true? That is, if f is uniformly continuous,
does f have a continuous extension? YES!

If f: (a,b) — R is uniformly continuous on (a,b), then f has a
continuous extension f on [a, b]

Note: There is a LOT of flexibility here: You can replace [a,b] as
above by (a,b), |a,b), (a,00) etc.

Note: The main reason this proof works is because (a,b) is dense in
la, b], that is the closure of (a,b) is [a, b]. In fact, the same proof works
if you replace (a,b) by Q and [a, b] with R.

Application:

f(z) = sin () from Example 2 is NOT uniformly continuous on
(0,1] because f has no continuous extension on [a, b]

Proof: The proof is magicall We’ll do some wishful thinking that
actually works.

STEP 1: Suppose f is uniformly continuous on (a,b). Since on (a, b),
f(z) =: f(x) is continuous, all we really need to do is define f(a) and
show f is continuous at a (the case f(b) is similar)
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Main Idea:

If f were continuous at a, then for any sequence (sn) in (a,b) with
sp — a, we would have

n—oo

(Here we used s, € (a,b) and f = f on (a,b))

The idea is then to define f(a) as:

Fa) =: lm f(s,)

Where (s,,) is any sequence in (a, b) converging to a

f(Sn)

o) o T—" 1

Oe—e—0
a < Sn b
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Example: (not in the video)

Take again f(z) = zsin (1) from Example 1. What is £(0)?

X

Let s, = W—ln — 0. Then, by the above, we have

- 1 1
f(0) = lim f(s,) = lim s,sin (—) = lim (—> sin(mn) =0
n—00 n—00 Sp, n—00 \ TN | N——~
0

Therefore f(0) =0

f(x) = x sin(1/x)

()

The definition above seems too good to be true! We're literally defining
f(a) in such a way that it solves our problem. It turns out that it
actually works. But in order to make sure that f(a) is well-defined,
we need to answer the following questions:

(1) Does f(s;,) even converge? (otherwise lim f(s,,) makes no sense)

(2) More importantly: Is the above limit independent of the choice
of the sequence (s,) used?



LECTURE 28: UNIFORM CONTINUITY (II) 17

STEP 2:

Claim 1: If (s,) is a sequence in (a,b) that converges to a, then
f(sn) converges

Proof of Claim 1: Since (s,) converges, (s;,) is Cauchy, and there-
fore, since f is uniformly continuous, by the previous section, f(s,) is
Cauchy, and therefore f(s,) converges v/

STEP 3:

Claim 2: Suppose (s,) and (t,) are two sequences in (a, b) con-
verging to a, then

nhj& f(sp) = lim f(¢,)

n—oo

(This shows that the definition f(a) above does not depend on the
choice of (s,))

Proof of Claim 2: Suppose (s,) and (¢,) both converge to a.

Here’s a neat idea: let’s interlace the two sequences (s,) and () to
get a new sequence (uy):

(un) = (81, tl, S9, tQ, .. )

Claim 3: (u,) converges to a

(See optional proof below)

Since u,, — a and f is continuous,
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f(un) = <f<31>7 f(tl)a f<52)7f(t2)7 . )

converges to some s € R. Therefore, any subsequence of f(u,) con-
verges to s as well.

But f(s,) = (f(s1), f(s2),...) is a subsequence of f(u,), and hence
converges to s. Similarly f(t,) = (f(t1), f(t2),...) is a subsequence of
f(uy), hence converges to s as well.

Therefore

lim f(s,) =s= lim f(t,)v

n—oo n—oo

Proof of Claim 3: (optional, not in the video)
Let € > 0 be given.

Since s, — a, there is Ny such that if n > Ny, then |s, — a|] < €, and
since t,, — a, there is Ny such that if n > N, then |t, — a| < e.

Sn tl’l

N Sy /N tn

A\

N/

N1 N2
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LetN:N1+N2

Then if n > N, either u, = s, for some m > N; in which case
lu, — al = |sym —al < € or u, = t, for some m > Ny, in which case
|up, —al = |t, —al < e as well v/
Un 4\ Sm tm
° o o (] Py }8
LA [ ] ° [ ]
N
7
N; + N»
STEP 4:
Define

f(a) =: lim f(sn)

n—oo

Where (s,,) is any sequence in (a, b) converging to a
By STEP 2 and STEP 3, f(a) is well-defined.

It is enough to check that f is continuous at z = a
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This is mathemagical: Let (s,) be a sequence in [a, b] converging to a,
we need to show f(s,) — f(a)

WLOG, assume s, € (a,b) for all n, because, since we only care
about things close to a, we may assume s, < b, and if s, = a, then

f(sn) = f(a) anyway.

Therefore (s,) is a sequence in (a,b) converging to a, and therefore:

lim f(s,) = lim f(sn) = f(a)v

n—oo

(where, in the first step, we used s, € (a,b) and in the second step we
used the DEFINITION of f(a))

Hence f is a continuous extension of f v/ ]

3. UNIFORM CONTINUITY AND DERIVATIVES

Video: Uniform Continuity and Derivatives

I really saved the best for last, because here is the most useful way to
show that f is uniformly continuous.

If f is continuous on [a,b] (and differentiable on (a,b)).

Suppose f' is bounded, that is there is M > 0 such that
|f'(z)] < M for all x € (a,b).

Then f is uniformly continuous on [a, b]



https://youtu.be/UJ9Xaj3m7zg
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Note: The same result holds if you replace [a, b] by (a,b) or by [a, o)
or variations thereof; and even for R (Otherwise there would be no
point in proving this fact because continuous functions on [a,b] are
automatically uniformly continuous)

Example 1:

Let f(z) = 1 on [2,00) (continuous). Then f'(z) = —=; and
therefore, for all x € (2, 00) have

1 1 1 1

I e

4
Therefore f is uniformly continuous on [2; c0)

12

Example 2:

Let f(z) =sin(x) on R

Then for all z, |f'(x)| = |cos(x)| < 1 = M, hence sin(z) is uni-
formly continuous on R

The proof of this uses the Mean Value Theorem from Calculus (which
you’ll cover in Math 140B)

If f is continuous on |[a, b] and differentiable on (a,b), then there
is ¢ € (a,b) such that
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f(x)

Slope = 1'(c)

Slope = 1(b)-f(a)

b-a

f(a)

|
|
b

QO -
- ——

In other words, the slope f’(c) of the tangent line of f ¢ is equal to the

slope w of the secant line of f. In other words, there is a point

cin (a,b) at which the tangent line of f and the secant line are parallel.

Note: In case you're interested, here’s a proof of the Mean Value The-
orem: MV'T Proof

Proof of Fact: Suppose |f'(z)| < M for all .
Let € > 0 be given and let § = 5.

Then if x,y € (a,b) and |z — y| < 0, so by the Mean Value Theorem
with x and y, there is ¢ between x and y such that

fly) — f(x)
y—x
But then we get

fly) — f@)|=f©O)|ly—z<Mly—z| <M (%) — v

= f'(c) = fly) — f(x) = f'(o)(y — 2)

<M


https://www.youtube.com/watch?v=PloNnv_DWas
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Hence f is uniformly continuous on |[a, 0] O

Congratulations!!! We are now officially done with the material of the
course! @ In the next lecture, we will review the main concepts of the
course in a series called The Essence of Analysis.
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