LECTURE 28: UNIFORM CONTINUITY (II)

In other words, there is some δ independent of x and y that makes f continuous.

Today: All about properties of uniform continuity.

Date: Wednesday, June 3, 2020.

1. UNIFORM CONTINUITY AND CAUCHY

Video: Uniform Continuity and Cauchy

Let's discuss a useful property that helps us understand how uniformly continuous behave. For this, let's recall the definition of Cauchy sequences from section 10:

(The terms of the sequence (s_n) are eventually as close to each other as we want. This is great way of talking about convergence without mentioning the limit)

If f is continuous and (s_n) converges (to x_0), then, by definition, $f(s_n)$ is converges as well (to $f(x_0)$)

But what if (s_n) is just Cauchy?

Question: If (s_n) is Cauchy and f is continuous, is $f(s_n)$ Cauchy?

In general, the answer is:

Example:

Let $f(x) = \frac{1}{x}$ on (0, 1)

Then $s_n = \frac{1}{n} \in (0, 1)$ is Cauchy (because it converges; here $n \ge 2$), but $f(s_n) = \frac{1}{s_n} = n \to \infty$ is not Cauchy (because it doesn't converge)

What is going on here? Even though the inputs (s_n) are close together, the outputs $f(s_n)$ are very far apart. In some sense, f, even though continuous, "spreads out" points near 0.

You may have guessed it, but the reason this fails is because f is not *uniformly* continuous. In fact, if f is uniformly continuous, then the answer to the question above is **YES**:

Fact:

If f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then $f(s_n)$ is Cauchy as well

In other words, uniformly continuous functions take Cauchy sequences to Cauchy sequences.

Application:

 $f(x) = \frac{1}{x}$ is **not** uniformly continuous on (0, 1) because $s_n = \frac{1}{n}$ is Cauchy in (0, 1) but $f(s_n)$ is not Cauchy.

Idea of Proof: Since (s_n) is Cauchy, the inputs s_n and s_m are close to each other. Since f is uniformly continuous, close inputs give you close outputs. Hence $f(s_n)$ and $f(s_m)$ are close to each other, so $f(s_n)$ is Cauchy.

Proof: Suppose (s_n) is Cauchy and let $\epsilon > 0$ be given. Since f is uniformly continuous on S, there is $\delta > 0$ such that if $x, y \in S$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$

But since (s_n) is Cauchy (with δ instead of ϵ), there is N such that if m, n > N, then $|s_n - s_m| < \delta$, and therefore we get (using $x = s_n$ and $y = s_m$) $|f(s_n) - f(s_m)| < \epsilon \checkmark$

Hence $f(s_n)$ is Cauchy

Note: This proof works *precisely* because f is uniformly continuous. Since (s_n) is Cauchy, we can make s_n to be δ -close, and therefore $f(s_n)$ are ϵ -close. It's very important that δ is independent of x, since we don't know where the s_n are; they could be near 0 or near 1 or near some other number, we don't know!

2. Continuous Extensions

Video: Continuous Extensions

This is, in my opinion, the most important property because it relates uniform continuity, a really abstract concept, with continuous extensions, something much more concrete. Let's motivate this with a couple of examples:

Example 1:

Let $f(x) = x \sin\left(\frac{1}{x}\right)$ on (0, 1].

(notice that f is undefined at 0)

Problem: Is there some way of defining f at 0 such that f becomes continuous at 0?

YES, just let f(0) = 0

In other words, if you let

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0 \end{cases}$$

Then:

(1) \tilde{f} is continuous on [0, 1] and

(2) For $x \in (0, 1]$, $\tilde{f}(x) = f(x)$

We call \tilde{f} a **continuous extension** of f:

Definition:

Suppose $A \subseteq B$ (think A = (0, 1] and B = [0, 1]) and $f : A \to \mathbb{R}$ is continuous. Then $\tilde{f} : B \to \mathbb{R}$ is a **continuous extension** of f if

- (1) \tilde{f} is continuous on B and
- (2) For all $x \in A$ we have $\tilde{f}(x) = f(x)$

So next time you ask for an extension on an assignment, ask for a continuous extension \odot

Example (not in the video): Let $f(x) = \frac{\sin(x)}{x}$ for $x \neq 0$, then $\tilde{f} : \mathbb{R} \to \mathbb{R}$ defined by: $\tilde{f}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$ Is a continuous extension of f.

Note: The reason \tilde{f} is continuous is because (from Calculus)

$$\lim_{x \to 0} \frac{\sin(x)}{x} \to 1$$

This limit is beyond the scope of the course, but check out this video for a really elegant geometric proof: $\frac{\sin(x)}{x}$ as x goes to 0. It turns out that \tilde{f} is uniformly continuous on \mathbb{R} (see HW) but that's a pure coincidence.

Example 2:

This time consider $f(x) = \sin\left(\frac{1}{x}\right)$ on (0, 1].

Notice that, since $x \neq 0$, f is continuous on (0, 1].

Can we extend f to a continuous function \tilde{f} ?

NO No matter how we define $\tilde{f}(0)$, \tilde{f} will not be continuous on [0, 1]

Why? (not in the Video) Let $s_n = \frac{1}{\pi n} \to 0$. If \tilde{f} were continuous at 0, then:

$$\tilde{f}(0) = \lim_{n \to \infty} \tilde{f}(s_n) = \lim_{n \to 0} f(s_n) = \sin\left(\frac{1}{s_n}\right) = \sin(\pi n) = 0$$

(Here we used $\tilde{f} = f$ on (0, 1])

On the other hand, let $t_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \to 0$. Then

$$\tilde{f}(0) = \lim_{n \to \infty} \tilde{f}(t_n) = \lim_{n \to 0} f(t_n) = \sin\left(\frac{1}{t_n}\right) = \sin\left(\frac{\pi}{2} + 2\pi n\right) = 1$$

Which contradicts $\tilde{f}(0) = 0 \Rightarrow \Leftarrow$. Hence \tilde{f} cannot exist

Why did Example 1 work but Example 2 fail? The key difference is uniform continuity: In Example 1, $f(x) = x \sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0, 1] (see below), whereas in Example 2, $f(x) = \sin\left(\frac{1}{x}\right)$ is not uniformly continuous on (0, 1]

Note: This fact works for any subset of [a, b], not just (a, b). The main reason this proof works is because [a, b] is compact.

Application:

Let $f(x) = x \sin\left(\frac{1}{x}\right)$ on (0,1] (from Example 1). Then f has a continuous extension $\tilde{f}(x)$ on [0,1], so $x \sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0,1].

By the same reasoning, $f(x) = \frac{\sin(x)}{x}$ is uniformly continuous on (0, 1).

Proof: Suppose f has a continuous extension \tilde{f} on [a, b]. Then since \tilde{f} is continuous on [a, b] (by definition) and [a, b] is compact, \tilde{f} is uniformly continuous on [a, b] (see last time). Therefore, in particular, $\tilde{f} = f$ is uniformly continuous on (a, b)

Question: Is the converse true? That is, if f is uniformly continuous, does f have a continuous extension? **YES!**

Fact 2:

If $f:(a,b) \to \mathbb{R}$ is uniformly continuous on (a,b), then f has a continuous extension \tilde{f} on [a,b]

Note: There is a **LOT** of flexibility here: You can replace [a, b] as above by (a, b), [a, b), (a, ∞) etc.

Note: The main reason this proof works is because (a, b) is *dense* in [a, b], that is the closure of (a, b) is [a, b]. In fact, the same proof works if you replace (a, b) by \mathbb{Q} and [a, b] with \mathbb{R} .

Application:

 $f(x) = \sin\left(\frac{1}{x}\right)$ from Example 2 is **NOT** uniformly continuous on (0, 1] because f has no continuous extension on [a, b]

Proof: The proof is magical! We'll do some wishful thinking that actually works.

STEP 1: Suppose f is uniformly continuous on (a, b). Since on (a, b), $\tilde{f}(x) =: f(x)$ is continuous, all we really need to do is define $\tilde{f}(a)$ and show \tilde{f} is continuous at a (the case $\tilde{f}(b)$ is similar)

Main Idea:

If \tilde{f} were continuous at a, then for any sequence (s_n) in (a, b) with $s_n \to a$, we would have

$$\lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} \tilde{f}(s_n) = \tilde{f}(a)$$

(Here we used $s_n \in (a, b)$ and $\tilde{f} = f$ on (a, b))

The idea is then to define $\tilde{f}(a)$ as:

$$\tilde{f}(a) =: \lim_{n \to \infty} f(s_n)$$

Where (s_n) is any sequence in (a, b) converging to a

Example: (not in the video)

Take again $f(x) = x \sin\left(\frac{1}{x}\right)$ from Example 1. What is $\tilde{f}(0)$?

Let $s_n = \frac{1}{\pi n} \to 0$. Then, by the above, we have

$$\tilde{f}(0) = \lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} s_n \sin\left(\frac{1}{s_n}\right) = \lim_{n \to \infty} \left(\frac{1}{\pi n}\right) \underbrace{\sin(\pi n)}_0 = 0$$

Therefore
$$\tilde{f}(0) = 0$$

The definition above seems too good to be true! We're *literally* defining $\tilde{f}(a)$ in such a way that it solves our problem. It turns out that it actually works. But in order to make sure that $\tilde{f}(a)$ is well-defined, we need to answer the following questions:

- (1) Does $f(s_n)$ even converge? (otherwise $\lim f(s_n)$ makes no sense)
- (2) More importantly: Is the above limit independent of the choice of the sequence (s_n) used?

STEP 2:

Claim 1: If (s_n) is a sequence in (a, b) that converges to a, then $f(s_n)$ converges

Proof of Claim 1: Since (s_n) converges, (s_n) is Cauchy, and therefore, since f is uniformly continuous, by the previous section, $f(s_n)$ is Cauchy, and therefore $f(s_n)$ converges \checkmark

STEP 3:

Claim 2: Suppose (s_n) and (t_n) are two sequences in (a, b) converging to a, then

$$\lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} f(t_n)$$

(This shows that the definition f(a) above does not depend on the choice of (s_n))

Proof of Claim 2: Suppose (s_n) and (t_n) both converge to a.

Here's a neat idea: let's *interlace* the two sequences (s_n) and (t_n) to get a new sequence (u_n) :

$$(u_n) = (s_1, t_1, s_2, t_2, \dots)$$

Claim 3: (u_n) converges to a

(See optional proof below)

Since $u_n \to a$ and f is continuous,

$$f(u_n) = (f(s_1), f(t_1), f(s_2), f(t_2), \dots)$$

converges to some $s \in \mathbb{R}$. Therefore, any subsequence of $f(u_n)$ converges to s as well.

But $f(s_n) = (f(s_1), f(s_2), ...)$ is a subsequence of $f(u_n)$, and hence converges to s. Similarly $f(t_n) = (f(t_1), f(t_2), ...)$ is a subsequence of $f(u_n)$, hence converges to s as well.

Therefore

$$\lim_{n \to \infty} f(s_n) = s = \lim_{n \to \infty} f(t_n) \checkmark$$

Proof of Claim 3: (optional, not in the video)

Let $\epsilon > 0$ be given.

Since $s_n \to a$, there is N_1 such that if $n > N_1$, then $|s_n - a| < \epsilon$, and since $t_n \to a$, there is N_2 such that if $n > N_2$, then $|t_n - a| < \epsilon$.

Let $N = N_1 + N_2$

Then if n > N, either $u_n = s_m$ for some $m > N_1$ in which case $|u_n - a| = |s_m - a| < \epsilon$; or $u_n = t_m$ for some $m > N_2$, in which case $|u_n - a| = |t_m - a| < \epsilon$ as well \checkmark

STEP 4:

Define

$$\tilde{f}(a) =: \lim_{n \to \infty} f(s_n)$$

Where (s_n) is any sequence in (a, b) converging to a

By STEP 2 and STEP 3, $\tilde{f}(a)$ is well-defined.

It is enough to check that \tilde{f} is continuous at x = a

This is mathemagical: Let (s_n) be a sequence in [a, b] converging to a, we need to show $\tilde{f}(s_n) \to \tilde{f}(a)$

WLOG, assume $s_n \in (a, b)$ for all n, because, since we only care about things close to a, we may assume $s_n < b$, and if $s_n = a$, then $\tilde{f}(s_n) = \tilde{f}(a)$ anyway.

Therefore (s_n) is a sequence in (a, b) converging to a, and therefore:

$$\lim_{n \to \infty} \tilde{f}(s_n) = \lim_{n \to \infty} f(s_n) = \tilde{f}(a) \checkmark$$

(where, in the first step, we used $s_n \in (a, b)$ and in the second step we used the DEFINITION of $\tilde{f}(a)$)

Hence \tilde{f} is a continuous extension of $f \checkmark$

3. UNIFORM CONTINUITY AND DERIVATIVES

Video: Uniform Continuity and Derivatives

I really saved the best for last, because here is the most useful way to show that f is uniformly continuous.

Fact:

If f is continuous on [a, b] (and differentiable on (a, b)).

Suppose f' is bounded, that is there is M > 0 such that $|f'(x)| \leq M$ for all $x \in (a, b)$.

Then f is uniformly continuous on [a, b]

 \square

Note: The same result holds if you replace [a, b] by (a, b) or by $[a, \infty)$ or variations thereof; and even for \mathbb{R} (Otherwise there would be no point in proving this fact because continuous functions on [a, b] are automatically uniformly continuous)

Example 1:

Let $f(x) = \frac{1}{x}$ on $[2, \infty)$ (continuous). Then $f'(x) = -\frac{1}{x^2}$ and therefore, for all $x \in (2, \infty)$ have

$$|f'(x)| = \left| -\frac{1}{x^2} \right| = \frac{1}{x^2} \le \frac{1}{2^2} = \frac{1}{4} = M$$

Therefore f is uniformly continuous on $[2,\infty)$

Example 2:

Let $f(x) = \sin(x)$ on \mathbb{R}

Then for all x, $|f'(x)| = |\cos(x)| \le 1 = M$, hence $\sin(x)$ is uniformly continuous on \mathbb{R}

The proof of this uses the Mean Value Theorem from Calculus (which you'll cover in Math 140B)

Mean Value Theorem:

If f is continuous on [a, b] and differentiable on (a, b), then there is $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

In other words, the slope f'(c) of the tangent line of f c is equal to the slope $\frac{f(b)-f(a)}{b-a}$ of the secant line of f. In other words, there is a point c in (a, b) at which the tangent line of f and the secant line are parallel.

Note: In case you're interested, here's a proof of the Mean Value Theorem: MVT Proof

Proof of Fact: Suppose $|f'(x)| \le M$ for all x.

Let $\epsilon > 0$ be given and let $\delta = \frac{\epsilon}{M}$.

Then if $x, y \in (a, b)$ and $|x - y| < \delta$, so by the Mean Value Theorem with x and y, there is c between x and y such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) \Rightarrow f(y) - f(x) = f'(c)(y - x)$$

But then we get

$$|f(y) - f(x)| = \underbrace{|f'(c)|}_{\leq M} |y - x| \leq M |y - x| < M \left(\frac{\epsilon}{M}\right) = \epsilon \checkmark$$

Hence f is uniformly continuous on [a, b]

Congratulations!!! We are now officially done with the material of the course! \odot In the next lecture, we will review the main concepts of the course in a series called *The Essence of Analysis*.