
LECTURE 20: SERIES (II)

Let’s continue our series extravaganza! Today’s goal is to prove the
celebrated Ratio and Root Tests and to compare them.

1. The Root Test

Video: Root Test Proof

Among all the convergence tests, the root test is the best one, or at
least better than the ratio test. Let me remind you how it works:

Example 1:

Use the root test to figure out if the following series converges:

∞∑
n=0

n

3n

Let an = n
3n , then the root test tells you to look at:

|an|
1
n =

∣∣∣ n
3n

∣∣∣ 1n =
n

1
n

3n(
1
n)

=
n

1
n

3

n→∞→ 1

3
= α < 1

Therefore
∑
an converges absolutely.

Since limn→∞ |an|
1
n doesn’t always exist, we need to replace this with

lim supn→∞ |an|
1
n , which always exists. Therefore, we obtain the root
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https://youtu.be/iZvb-r6gzZw
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test:

Root Test

Consider
∑
an and let

α = lim sup
n→∞

|an|
1
n

(1) If α < 1, then
∑
an converges absolutely (that is

∑
|an|

converges)

(2) If α > 1, then
∑
an diverges

(3) If α = 1, then the root test is inconclusive, meaning that
you’d have to use another test

Proof of (1): (α < 1⇒ converges absolutely)

Main Idea: Since lim supn→∞ |an|
1
n = α < 1, then for large n we will

have |an|
1
n ≤ α. So |an| ≤ αn and therefore

∑
|an| ≤

∑
αn, which is a

geometric series that converges, since α < 1.

However, keep in mind that this is just an (incorrect) idea, which we’ll
have to make precise below.

The proof itself is similar to the Pre-Ratio Test in section 12.

Since α < 1, let ε > 0 be such that α < α + ε < 1. This is because
we need a little bit of wiggle room between α and 1 (it also shows why
the case α = 1 doesn’t work).



LECTURE 20: SERIES (II) 3

Now by definition of lim sup, we have

lim sup
n→∞

|an|
1
n = lim

N→∞
sup

{
|an|

1
n | n > N

}
= α

Hence, by definition of a limit with ε as above, there is N1 such that if
N > N1, then ∣∣∣sup

{
|an|

1
n | n > N

}
− α

∣∣∣ < ε

Upshot: Since the above is true for all N > N1, it is in particular
true for some N (> N1).

Analogy: If everyone passes a class, then at least some student passes
the class

With that N , we then get:
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∣∣∣sup
{
|an|

1
n | n > N

}
− α

∣∣∣ <ε
⇒ sup

{
|an|

1
n | n > N

}
− α <ε

⇒ sup
{
|an|

1
n | n > N

}
<α + ε

But then, by definition of sup (think of it like a max), we get that for
all n > N (so n ≥ N + 1) we have:

|an|
1
n < α + ε⇒ |an| < (α + ε)n

And, in particular:

∞∑
n=N+1

|an| ≤
∞∑

n=N+1

(α + ε)n =
∞∑
n=1

rn

Where r = α + ε < 1. But the latter is just a geometric series with
|r| < 1 and therefore converges. Hence, by the comparison test,

∞∑
n=N+1

|an| converges

And therefore:

∞∑
n=1

|an| = |a1|+ |a2|+ · · ·+ |aN |︸ ︷︷ ︸
Finitely many terms

+
∞∑

n=N+1

|an|︸ ︷︷ ︸
Converges

converges

Here
∑
an converges absolutely X

Proof of (2): (α > 1⇒ diverges)
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Even easier! Remember that for any sequence (sn), there is a subse-
quence (snk) converging to lim supn→∞ sn.

Therefore here there is a subsequence |ank|
1
nk of |an|

1
n converging to

lim supn→∞ |an|
1
n = α > 1

But this means that for all k large enough, we must have1

|ank|
1
nk > 1⇒ |ank| > 1nk = 1

Now if an → 0, then in particular for the subsequence ank above, we
must have ank → 0. But for this cannot happen since |ank| > 1 for
every k ⇒⇐

1Here’s a proof if you want: Let ε = α − 1, then since |ank
|

1
nk → α, there is K such that if

k > K, then
∣∣∣|ank

|
1

nk − α
∣∣∣ < ε = α− 1, and therefore in particular |ank

|
1

nk −α > −(α− 1) = 1−α

and therefore for k > K, we have |ank
|

1
nk > 1
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(In the picture above, (an) cannot converge to 0 because (ank) (in red)
doesn’t even get close to 0.

Therefore an 9 0, and so
∑
an diverges by the divergence test. X

Proof of (3): All we need to do is find two series with α = 1, one of
which converges absolutely, and the other one diverges.

Consider
∑∞

n=1
1
n . Then

|an|
1
n =

(
1

n

) 1
n

=
1

n
1
n

→ 1

1
= 1

So α = lim supn→∞ |an|
1
n = 1 but

∑∞
n=1

1
n diverges (because it’s a

1−series)
Now consider

∑∞
n=1

1
n2 . Then
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|an|
1
n2 =

(
1

n

) 1
n2

=
1

n
2
n

=
1(
n

1
n

)2 → 1

1
= 1

So α = lim supn→∞ |an|
1
n = 1 but

∑∞
n=1

1
n2 converges (because it’s a

2−series)
Therefore, even though α = 1 in both case, in the first case the series
diverges, and in the second case case, the series converges (absolutely)
X �

2. The Ratio Test

Video: Ratio Test Proof

Now, on the other side of the spectrum is the ratio test:

Example 2:

Use the ratio test to figure out if the following series converges:

∞∑
n=0

n

3n

This time look at ratios of successive terms:

∣∣∣∣an+1

an

∣∣∣∣ =
n+1
3n+1

n
3n

=

(
3n

3n+1

)(
n+ 1

n

)
=

(
1

3

)(
n+ 1

n

)
→ 1

3
< 1

Therefore the series converges absolutely.

Note: The ratio test is excellent for series involving n!, like
∑

1
n! for

instance.

https://youtu.be/yV04ZawxmKI
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Here again, since limn→∞

∣∣∣an+1

an

∣∣∣ might not exist, we need to replace the

limit with lim sup and lim inf:

Ratio Test:

Consider
∑
an. Then:

(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑
an converges absolutely.

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then
∑
an diverges

(3) If lim infn→∞

∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim supn→∞

∣∣∣an+1

an

∣∣∣, then the ratio

test is inconclusive.

Note: Think of lim sup as the worst possible limit and lim inf as the
best possible limit. In (1) we’re saying that the worst possible limit
is < 1, so not bad at all, in which case the series converges. In (2),
the best possible limit is > 1, which is already bad, in which case the
series diverges. In, (3), we can’t really say anything: The best possible
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limit is good (≤ 1) and the worst possible limit is bad (≥ 1), which is
pretty typical.

Proof: Muuuuuch easier than the proof of the root test, because we’ve
already done the hard part in section 12 ,

Recall: Pre-Ratio Test

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf
n→∞

|an|
1
n ≤ lim sup

n→∞
|an|

1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣
(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then, in the above, we get

lim sup
n→∞

|an|
1
n ≤ lim sup

n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

So

α =: lim sup
n→∞

|an|
1
n < 1

And therefore by the root test, we conclude that
∑
an con-

verges absolutely X

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then, in the above, we get:

lim sup
n→∞

|an|
1
n ≥ lim inf

n→∞
|an|

1
n ≥ lim inf

n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1

Therefore:
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α =: lim sup
n→∞

|an|
1
n > 1

And hence by the root test,
∑
an diverges. X

(3) Finally, just as before, we need to find two series
∑
an with

lim infn→∞

∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim supn→∞

∣∣∣an+1

an

∣∣∣ and such that the first

series is divergent and the second series is absolutely convergent.

Consider
∑

1
n , then∣∣∣∣an+1

an

∣∣∣∣ =
1

n+1
1
n

=
n

n+ 1
→ 1

Therefore

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 ≤ 1 ≤ 1 = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣
But

∑
1
n diverges (because it’s a 1−series)

Now consider
∑

1
n2 , then

∣∣∣∣an+1

an

∣∣∣∣ =

1
(n+1)2

1
n2

=
n2

(n+ 1)2
=

(
n

n+ 1

)2

→ 1

Therefore

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 ≤ 1 ≤ 1 = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣
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But
∑

1
n2 converges absolutely (because it’s a 2−series) X �

Note: Already in the proof above we can see that the root test is more
powerful than the ratio test, because we used the root test to prove
the ratio test!

In fact, notice that the above proof shows that if a series
∑
an con-

verges (or diverges) using the ratio test, then it must converge (or
diverge) using the root test as well, so the root test is more general
and powerful than the ratio test.

3. Root Test > Ratio Test

Video: Ratio Test Vs Root Test

As another illustration of why the root test is better than the ratio
test, consider the following:

Example 3:

Does the following series converge?

∞∑
n=0

2(−1)
n−n = 2 +

1

4
+

1

2
+

1

16
+

1

8
+ . . .

This is what I’d like to call the stock market series, or the Not Stonks
series:

https://youtu.be/g9VquWf9xMI
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Let’s try to apply both the ratio test and the root test to this series,
in order to see who wins.

Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
2(−1)

n+1−(n+1)

2(−1)n−n

=2(−1)
n+1−�n−1−(−1)n+�n

=2−(−1)
n−(−1)n−1

=2−((−1)
n+(−1)n+1)

=2−(2(−1)
n+1)

=

(
1

8
, 2,

1

8
, 2,

1

8
, 2, . . .

)



LECTURE 20: SERIES (II) 13

Therefore lim infn→∞

∣∣∣an+1

an

∣∣∣ = 1
8 and lim supn→∞

∣∣∣an+1

an

∣∣∣ = 2 and so:

lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≤ 1 ≤ lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣

So we are in the third case of the ratio test (the typical case, neither
good nor bad), and so the ratio test is inconclusive.

Root Test:

|an|
1
n =

(
2(−1)

n−n
) 1

n

= 2
(−1)n

n −1 → 20−1 = 2−1 =
1

2
< 1

(Here we used (−1)n
n → 0 by the squeeze theorem, since it is squeezed

between − 1
n and 1

n)

Hence
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lim sup
n→∞

|an|
1
n =

1

2
< 1

And therefore by the root test,
∑
an converges absolutely.

Summary:

The Root test is strictly better than the ratio test:

If
∑
an converges (or diverges) by the ratio test, then it converges

(or diverges) by the root test as well.

But there are examples of series (like the above) which converge
(or diverge) by the root test, but for which the ratio test is incon-
clusive.

4. Root Test Pitfall
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Video: Root Test Pitfall

That said, don’t get too overexcited, the root test doesn’t always work.
In particular, don’t think that just because you see something to the
power of n, you have to apply the root test!

Example 4:

Does the following series converge?

∞∑
n=0

(
2

(−1)n − 3

)n

First try: Let’s try using the root test:

|an|
1
n =

∣∣∣∣ 2

(−1)n − 3

∣∣∣∣ =

(
1,

1

2
, 1,

1

2
, . . .

)

Careful: Just because it alternates it doesn’t necessarily mean that
the root test is inconclusive! You really have to look at the limsup to
figure out if it’s inconclusive or not:

α = lim sup
n→∞

|an|
1
n = 1

https://youtu.be/27Opxu5rwSs
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Therefore the root test is inconclusive, and we’ll have to try another
method.

Note: The ratio test would also be inconclusive (by the pre-ratio test),
so we’ll have to try to find another way of doing this:

Second try: Look at the sequence (an) itself!

an =

(
2

(−1)n − 3

)n
=

(
1,−1

2
, 1,−1

8
, 1,

(
−1

2

)5

, 1,

(
−1

2

)7

, 1, . . .

)
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Notice that every other term of an is 1, hence an 9 0, and therefore∑
an diverges by the divergence test.
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