
LECTURE 10: MONOTONE SEQUENCES

1. Monotone Sequence Theorem

Video: Monotone Sequence Theorem

Notice how annoying it is to show that a sequence explicitly converges,
and it would be nice if we had some easy general theorems that guar-
antee that a sequence converges.

Definition:

(sn) is increasing if sn+1 > sn for each n
(sn) is decreasing if sn+1 < sn for each n
If either of the above holds, we say that (sn) is monotonic.

Date: Monday, April 20, 2020.
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https://youtu.be/vcobLxuAXlw
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Examples: sn =
√
n is increasing, sn = 1

n is decreasing, sn = (−1)n

is neither increasing nor decreasing.

The following theorem gives a very elegant criterion for a sequence to
converge, and explains why monotonicity is so important.

Monotone Sequence Theorem:

(sn) is increasing and bounded above, then (sn) converges.

Note: The same proof works if (sn) is nondecreasing (sn+1 ≥ sn)

Intuitively: If (sn) is increasing and has a ceiling, then there’s no way
it cannot converge. In fact, try drawing a counterexample, and you’ll
see that it doesn’t work!
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WARNING: If (sn) is bounded above by M , it does NOT mean that
sn converges to M , as the following picture shows. But what is true
in this case is that sn converges to s where s is the sup of all the sn.

Proof: Elegant interplay between the concept of sup (section 4) and
the concept of convergence (section 8).

STEP 1: Consider

S = {sn | n ∈ N}
Since sn ≤M for all M , S is bounded above, hence S has a least upper
bound s = sup(S) .

Claim: limn→∞ sn = s.

STEP 2: Let ε > 0 be given.
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We need to find N such that if n > N , then |sn − s| < ε.

Consider s − ε < s. By definition of a sup, this means that there is
sN ∈ S such that sN > s− ε

But then, for that N , if n > N , since sN is increasing, we have

sn − s > sN − s > −ε

On the other hand, since s = sup(S) by definition of sup, we have
sn ≤ s for all s and so
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sn − s ≤ s− s = 0 < ε

Therefore we get

−ε < sn − s < ε⇒ |sn − s| < ε

And so (sn) converges to s �

Of course, by considering −sn we get the following corollary:

Corollary:

(sn) is decreasing and bounded below, then (sn) converges.

Why? In that case (−sn) is increasing and bounded above, so con-
verges to s, and therefore (sn) converges to −s (or repeat the above
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proof, but with inf) �

In fact: We don’t even need (sn) to be bounded above, provided that
we allow ∞ as a limit.

Theorem:

(sn) is increasing, then it either converges or goes to ∞

So there are really just 2 kinds of increasing sequences: Either those
that converge or those that blow up to ∞.

Proof:
Case 1: (sn) is bounded above, but then by the Monotone Sequence
Theorem, (sn) converges X

Case 2: (sn) is not bounded above, and we claim that limn→∞ sn =∞.

Let M > 0 be given, want to find N such that if n > N , then sn > M .
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Notice first of all that there is N such that sN > M , because otherwise
sN ≤M for all N and so M would be an upper bound for (sn).

With that N , if n > N , then since (sn) is increasing, we get sn > sN =
M , so sn > M and hence sn goes to ∞ X �

Finally, notice that the proof of the Monotone Sequence Theorem uses
the Least-Upper Bound Property (because we defined sup), but in fact
something even more awesome is true:

Cool Fact:

The Least Upper Bound Property is equivalent to the Monotone
Sequence Theorem! (WOW)

2. Decimal Expansions
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Video: Decimal Expansions

There is a more natural (but less elegant) construction of R than us-
ing cuts that you’re probably more acquainted with, namely decimal
expansions.

Motivation: What does is mean for π = 3.1415 · · · ?

Notice:

π =3 +
1

10
+

4

100
+

1

1000
+ · · ·

=3 +
1

10
+

4

102
+

1

103
+ · · ·

=k +
d1
10

+
d2
102

+
d3
103

+ · · ·

Now consider the following sequence (sn)

s0 =3 = k

s1 =3.1 = k +
d1
10

s2 =3.14 = k +
d1
10

+
d2
102

s3 =3.141 = k +
d1
10

+
d2
102

+
d3
103

sn =3.1415 · · · dn = k +
d1
10

+
d2
102

+ · · ·+ dn
10n

Notice that (sn) is bounded above by 4 = k + 1 and moreover, (sn)
is increasing (since we’re only adding positive terms), therefore by the
monotone sequence theorem, (sn) is converging to s, and this limit is
what we call

https://youtu.be/oUEkllO946s


LECTURE 10: MONOTONE SEQUENCES 9

π = 3.1415 · · · = k.d1d2d3 · · ·

So, in some sense, it is reasonable to define real numbers as follows:

Definition:

R is the set of all numbers of the form

k.d1d2 · · ·

Where k ∈ Z and each di is a digit between 0 and 9 (and · · · is
to be understood in the limit sense as above)

Of course, this leaves many questions to be unanswered, such as: “Does
every real number (such as

√
2) even have a decimal expansion?” or

“How can you show that a rational number is a real number?” Those
questions are answered in section 16 (which we unfortunately won’t
cover /)

More importantly, how would you show that R (as constructed above)
has the least-upper bound property? In some sense, as hard as cuts
seem, they make proving this property much easier!

Even worse, there is actually a glitch in the above definition. For this
we need the following formula, which you might remember from cal-
culus (for a proof, see exercise 9.18)

Geometric Series:

If |r| < 1, then

lim
n→

1 + r + r2 + · · ·+ rn =
1

1− r
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0.99999 · · · = 9

10
+

9

102
+

9

103
+ · · ·

=
9

10

(
1 +

1

10
+

1

102
+ · · ·

)
=

9

10

(
1

1− 1
10

)
=

9

10

(
1
9
10

)
=1

So actually we have 0.999999 · · · = 1.00000 · · · , so both of those deci-
mal expansions actually represent the same real number! So the above
construction is bad in the sense that different decimal expansions might
give you the same number. This is different for cuts; different cuts ac-
tually give different real numbers!

There is an easy way to get around that, actually: In the above con-
struction, simply throw away decimal expansions that end with an
infinite string of 9′s. That is, in the above definition, consider just the
decimal expansions that don’t end with 9′s.

3. lim sup

Video: What is lim sup?

Finally, let me discuss the second most important concept in analysis
(after sup of course): The lim sup. Because so far we talked about con-
vergent sequences. But in reality, a lot of sequences don’t converge!
How do we deal with them?

https://youtu.be/EvTpC5FlirE
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Note: For the following, assume that (sn) is bounded (but see below).

Consider the following example:

Even though (sn) doesn’t converge, we would like to say that the largest
possible limit (= limsup) of (sn) is 1 and the smallest possible limit (=
liminf) of (sn) is −1.

Notice that the lim sup is NOT the same as the sup. In this example,
the sup is 4 but the limsup is 1.

The idea is as follows: The limsup of sn is essentially the sup of sn,
but for large values of n.
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To make this more precise: Given N , define the following helper se-
quence (vN) by:

vN = sup {sn | n > N}

Namely, you look at the largest value of sn, but after N . You ignore
what’s happening before N .

(vN) isn’t just some random sequence, but actually has some nice prop-
erties! For this, let’s plot a couple of values of vN
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v0 = sup {sn | n > 0} = 4

v1 = sup {sn | n > 1} = 3

v2 =2

v3 =1

v4 =1

v5 =1

Notice that the values of vN seem to stabilize!
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Although things generally don’t always stabilize, what is true is that:

Fact:

(vN) is a decreasing sequence

Why? For example, notice that for v0 = sup {sn | n > 0} you have
lots of values of sn to compare, and here in fact the sup is 4. But for
vN = sup {sn | n > N} you have much fewer values to compare, so the
sup cannot be as big as the original one!
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Analogy: Suppose you have a class of 10 students and the highest
score on an exam is 98. Now if 5 students drop, then the highest score
now isn’t necessarily as big any more, since some of the dropped stu-
dent may have had very good scores.

Not only is (vN) decreasing, but it’s also bounded below (since (sn)
is). Therefore, by the Monotone Sequence Theorem, (vN) must exist:

Fact:

limN→∞(vN) exists

And it is that limit that we call lim sup:

Definition:

lim sup
n→∞

sn = lim
N→∞

vN = lim
N→∞

sup {sn | n > N}
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Interpretation: All this means is that the lim sup is the sup of sn
but for large values of n, so it’s really essentially the largest possible
limit of sn

Example:

Find lim supn→∞ sn where sn = (−1)n
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Notice that for every N (not necessarily large),

vN = sup {sn | n > N} = 1

And therefore

lim sup
n→∞

sn = lim
N→∞

sup {sn | n > N} = lim
N→∞

1 = 1

And why is lim sup SO important? Because even though limn→∞ sn
doesn’t always exist, we have:

Upshot:

lim supn→∞ sn ALWAYS exists!

And it’s GOOD for things to exist! For example, notice how useful it
is for sup(S) to always exist (we used that a LOT), and same goes for
lim sup.

Note: So far we assumed that (sn) is bounded, but even if it’s not we
say that:

Definition:

If (sn) is not bounded above, then we define

lim sup
n→∞

sn =∞
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4. lim inf

Everything that we said for lim sup can be defined analogously with
lim inf.

Consider this time the following sequence:
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And this time define (uN) by:

uN = inf {sn | n > N}

(So this time you look at the smallest value of sn after N)
Let’s plot a couple of values of uN

u0 = inf {sn | n > 0} = −4

u1 = inf {sn | n > 1} = −3

u2 =− 2

u3 =− 1

u4 =− 1

u5 =− 1
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And just as before, we have:

Fact:

(uN) is an increasing sequence

Why? Again, it’s because we have fewer and fewer values to compare,
which causes to increase the inf.
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Analogy: If you have 10 students and the lowest score is 20%. Now
suppose 5 (bad) students dropped. Then the lowest score is now (prob-
ably) higher.

And since (uN) is increasing and bounded above, by the Monotone
Sequence Theorem we get that (uN) converges and in particular:

Definition:

lim inf
n→∞

sn = lim
N→∞

uN = lim
N→∞

inf {sn | n > N}

Example: (not in the video)

Find lim infn→∞ sn where sn = (−1)n

Notice that for every N (not necessarily large),

uN = inf {sn | n > N} = −1

And therefore

lim inf
n→∞

sn = lim
N→∞

inf {sn | n > N} = lim
N→∞

−1 = −1

And just as before:

Upshot:

lim infn→∞ sn ALWAYS exists!

Finally:



22 LECTURE 10: MONOTONE SEQUENCES

Definition:

If (sn) is not bounded below, then we define

lim inf
n→∞

sn = −∞

5. lim inf vs lim sup

The good news is that we never have to deal with lim inf explicitly,
because we have the following identity:

Fact:

lim inf
n→∞

sn = − lim sup
n→∞

(−sn)

Why? Recall that for any set S we have:

inf(S) = − sup(−S)

Now if N is given, let S = {sn | n > N}, then −S = {−sn | n > N}
and the above identity becomes

inf {sn | n > N} = − sup {−sn | n > N}
Finally take limN→∞ on both sides:

lim
N→∞

inf {sn | n > N} = lim
N→∞

− sup {−sn | n > N}

lim
N→∞

inf {sn | n > N} =− lim
N→∞

sup {−sn | n > N}

lim inf
n→∞

sn =− lim sup
n→∞

(−sn) �
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