
Partial Differential Equations Handout

Peyam Tabrizian

Monday, November 28th, 2011

This handout is meant to give you a couple more examples of all the techniques
discussed in chapter 10, to counterbalance all the dry theory and complicated ap-
plications in the differential equations book! Enjoy! :)

1 Boundary-Value Problems
Find the values of λ (eigenvalues) for which the following differential equa-
tions has a nonzero solution. Also find the corresponding solutions (eigen-
functions)

y′′ + λy = 0

y(0) = 0, y′(π) = 0

The auxiliary polynomial is r2 + λ = 0, which gives r = ±
√
−λ. Now we

need to proceed with 3 cases:
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Case 1: λ < 0

Then λ = −ω2, where ω > 0, so: r = ±ω, and the general solution is:

y(t) = Aeωt +Be−ωt

Then y(0) = 0 gives A+B = 0, so B = −A, whence:

y(t) = Aeωt − Ae−ωt

Then:

y′(t) = Aωeωt + Aωe−ωt

Then y′(π) = 0 gives:

Aωeωπ + Aωe−ωπ = 0

Cancelling out A 6= 0 (otherwise B = 0 and Y (y) = 0), we get:

eωπ + e−ωπ = 0

Multiply by eωπ:

e2ωπ + 1 = 0

e2ωπ = −1

However, this doesn’t have a solution because e2ωπ > 0, contradiction.

Case 2: λ = 0. Then we have a double-root r = 0, and:

y(t) = Ae0t +Bte0t = A+Bt

Then y(0) = 0 gives A = 0, and so y(t) = Bt. And y′(π) = 0 gives B = 0,
but then y(t) = 0, contradiction.

2



Case 3: λ > 0. Then λ = ω2, where ω > 0.

Then we get r = ±ωi, so:

y(t) = A cos(ωt) +B sin(ωt)

Then: y(0) = 0 gives A = 0, so:

y(t) = B sin(ωt)

Then

y′(t) = ωB cos(ωt)

So y′(π) = 0 gives:

ωB cos(ωπ) = 0

Cancelling out ω andB (because ω > 0, and becauseB 6= 0, otherwiseB = 0
and Y (y) = 0), we get:

cos(ωπ) = 0

Which tells you that ωπ = π
2
+ πM , where M is an integer, so:

ω =M +
1

2
, (M = 0, 1, 2 · · · )

Answer:
This tells you that the eigenvalues are:

λ = ω2 =

(
M +

1

2

)2

, (M = 0, 1, 2, · · · )

And the corresponding eigenfunctions are:

y(t) = B sin(ωt) = BM sin

((
M +

1

2

)
t

)
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2 Separation of variables

Use the method of separation of variables to ut = uxx to convert
the PDE into two differential equations
Suppose u(x, t) = X(x)T (t)

Then plug this back into ut = uxx:

(X(x)T (t))t = (X(x)T (t))xx

X(x)T ′(t) = X ′′(x)T (t)

Now group the X and the T :

X ′′(x)

X(x)
=
T ′(t)

T (t)

Now notice that X
′′(x)
X(x)

only depends on x, but also, by the above equation only
depends on t, hence it is a constant:

X ′′(x)

X(x)
= λ

which gives X ′′(x) = λX(x) .

Moreover: T ′(t)
T (t)

= X′′(x)
X(x)

= λ, so T ′(t) = λT (t) .

3 Fourier series

3.1 Find the Fourier series of f(x) = x2 on the interval (−3, 3)
Here (−T, T ) = (−3, 3), so T = 3

f(x) =
∞∑

M=0

AM cos

(
πMx

3

)
+BM sin

(
πMx

3

)
Now calculate AM and BM :
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A0 =

∫ 3

−3 f(x)dx∫ 3

−3 1dx
=

∫ 3

−3 x
2dx

6
=

54
3

6
= 3

AM =

∫ 3

−3 f(x) cos
(
πMx
3

)
dx∫ 3

−3 cos
2
(
πMx
3

)
dx

=

∫ 3

−3 x
2 cos

(
πMx
3

)
dx

3
=

2

3

∫ 3

0

x2 cos

(
πMx

3

)
dx

where we used the fact that x2 cos
(
πMx
3

)
is even!

Now, to evaluate the integral, use tabular integration:

54/Handouts/Tabular Integration.png
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2

3

∫ 3

0

x2 cos

(
πMx

3

)
dx =

2

3

[
+x2

(
sin
(
πMx
3

)
πM
3

)
−2x

(
− cos

(
πMx
3

)(
πM
3

)2
)
+2

(
− sin

(
πMx
3

)(
πM
3

)3
)]3

0

=
2

3
(−6)

(
− cos(πM)(

πM
3

)2
)

=
2

3
(6)

(
9(−1)M

(πM)2

)
=
36(−1)M

π2M2

Now for BM : First set B0 = 0 (this is just by definition), and:

BM =

∫ 3

−3 f(x) sin
(
πMx
3

)
dx∫ 3

−3 sin
2
(
πMx
3

)
dx

=

∫ 3

−3 x
2 sin

(
πMx
3

)
dx

3
= 0

because the numerator is the integral of an odd function over (−3, 3), hence 0.

Putting everything together, we get:

f(x) = 3 +
∞∑

M=1

36(−1)M

π2M2
cos

(
πMx

3

)
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3.2 To which function does the Fourier series of f converge to?

f(x) =

{
x −2 < x < 0
1 0 ≤ x < 2

Fact: The Fourier series converges to f(x) whenever f is continuous at x,
and to f(x−)+f(x+)

2
whenever f is discontinuous at x. As for the endpoints, the

Fourier series converges to f(L+)+f(R−)
2

, where R is the rightmost endpoint, and
L is the leftmost endpoint.

Discontinuity: Here the only discontinuity is at 0, hence at 0, the F.S. con-
verges to:

f(0−) + f(0+)

2
=

0 + 1

2
=

1

2

Endpoints: L = −2, R = 2, so at −2 and 2, the F.S. converges to:

f((−2)+) + f(2−)

2
=
−2 + 1

2
= −1

2

Putting everything together, we find that the F.S. converges to F , where:

F(x) =


−1

2
x = −2

x −2 < x < 0
1
2

x = 0
1 0 < x < 2
−1

2
x = 2

Note: Technically,F is a periodic fuction of period 4, so you’d have to ‘repeat’
the graph, just like the picture below!

54/Handouts/Convergence.png
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4 Fourier cosine and sine series
Same thing as before, except that we’re expressing a function only in terms of cos
or only in terms of sin. The formulas are almost the same, except that we need to
multiply things by 2 and we only integrate from 0 to T .

4.1 Calculate the Fourier cosine series of f(x) = x on (0, π)

Notice that it doesn’t matter that the function f is odd, because we’re only focus-
ing on the half-interval (0, π) and not on the full interval (−π, π).

Here T = π, and our goal is to find Am (m = 0, 1, 2, · · · ) such that:

∞∑
m=1

Am cos(mx) = x

As usual, always treat the case m = 0 separately, and notice the changes:

A0 =
2

2π

∫ π

0

xdx =

(
2

2π

)(
π2

2

)
=
π

2

And if m 6= 0:

Am =
2

π

∫ π

0

x cos(mx)dx

=
2

π

([
x
sin(mx)

m

]π
0

−
∫ π

0

sin(mx)

m
dx

)
=

2

π

(
0−

[
− cos(mx)

m2

]π
0

)
=

2

π

(
cos(mπ)

m2
− 1

m2

)
=

2

πm2
((−1)m − 1)

Hence Am = 2
πm2 ((−1)m − 1)

x “ = ”
π

2
+
∞∑
m=1

2

πm2
((−1)m − 1) cos(mx)
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Now notice that if m is even, then (−1)m − 1 = 0, and hence Am = 0. And if
m is odd,then (−1)m − 1 = −2, so Am = −4

πm2

Therefore:

x“ = ”
π

2
+

∞∑
m=1,modd

−4
πm2

cos(mx)

x“ = ”
π

2
− 4

π

∞∑
k=1

−4
π(2k − 1)2

cos((2k − 1)x)

This is because every odd numberm ≥ 1 can be written asm = 2k−1, where
k = 1, 2, · · · .

4.2 Calculate the Fourier sine series of f(x) = x on (0, π)

Here T = π, and our goal is to find Bm (m = 0, 1, 2, · · · ) such that:

∞∑
m=1

Bm sin(mx) = x

As usual, always treat the case m = 0 separately, namely set B0 = 0.

And if m 6= 0:

Bm =
2

π

∫ π

0

x sin(mx)dx

=
2

π

([
−xcos(mx)

m

]π
0

−
∫ π

0

− cos(mx)

m
dx

)
=

2

π

(
−π cos(mπ) +

[
sin(mx)

m2

]π
0

)
=

2

π
(−π(−1)m)

= 2(−1)m+1

Hence Bm = 2(−1)m+1 , and:
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x“ = ”
∞∑
m=1

2(−1)m+1 sin(mx)
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5 The Heat equation
Problem: Solve the following heat equation:

∂u

∂t
=

∂2u

∂x2
0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 t > 0

u(x, 0) = x 0 < x < 1

(5.1)

Step 1: Separation of variables
Suppose:

u(x, t) = X(x)T (t) (5.2)

Plug (5.2) into the differential equation (5.1), and you get:

(X(x)T (t))t =(X(x)T (t))xx
X(x)T ′(t) =X ′′(x)T (t)

Rearrange and get:

X ′′(x)

X(x)
=
T ′(t)

T (t)
(5.3)

Now X′′(x)
X(x)

only depends on x, but by (5.3) only depends on t, hence it is
constant:

X ′′(x)

X(x)
=λ

X ′′(x) =λX(x)

(5.4)

Also, we get:

T ′(t)

T (t)
=λ

T ′(t) =λT (t)

(5.5)

12



but we’ll only deal with that later (Step 4)

Step 2:
Consider (5.4):

X ′′(x) = λX(x)

Note: Always start with X(x), do NOT touch T (t) until right at the end!

Now use the boundary conditions in (5.1):

u(0, t) = X(0)T (t) = 0⇒ X(0)T (t) = 0⇒ X(0) = 0

u(1, t) = X(1)T (t) = 0⇒ X(1)T (t) = 0⇒ X(1) = 0

Hence we get: 
X ′′(x) =λX(x)

X(0) =0

X(1) =0

(5.6)

Step 3: Eigenvalues/Eigenfunctions
The auxiliary polynomial of (5.6) is p(λ) = r2 − λ

Now we need to consider 3 cases:

Case 1: λ > 0, then λ = ω2, where ω > 0

Then:

r2 − λ = 0⇒ r2 − ω2 = 0⇒ r = ±ω

Therefore:

X(x) = Aeωx +Be−ωx
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Now use X(0) = 0 and X(1) = 0:

X(0) = 0⇒ A+B = 0⇒ B = −A⇒ X(x) = Aeωx − Ae−ωx

X(1) = 0⇒ Aeω−Ae−ω = 0⇒ Aeω = Ae−ω ⇒ eω = e−ω ⇒ ω = −ω ⇒ ω = 0

But this is a contradiction, as we want ω > 0.

Case 2: λ = 0, then r = 0, and:

X(x) = Ae0x +Bxe0x = A+Bx

And:

X(0) = 0⇒ A = 0⇒ X(x) = Bx

X(1) = 0⇒ B = 0⇒ X(x) = 0

Again, a contradiction (we want X��≡ 0, because otherwise u(x, t) ≡ 0)

Case 3: λ < 0, then λ = −ω2, and:

r2 − λ = 0⇒ r2 + ω2 = 0⇒ r = ±ωi
Which gives:

X(x) = A cos(ωx) +B sin(ωx)

Again, using X(0) = 0, X(1) = 0, we get:

X(0) = 0⇒ A = 0⇒ X(x) = B sin(ωx)

X(1) = 0⇒ B sin(ω) = 0⇒ sin(ω) = 0⇒ ω = πm, (m = 1, 2, · · · )

This tells us that:

Eigenvalues:λ = −ω2 = −(πm)2 (m = 1, 2, · · · )
Eigenfunctions:X(x) = sin(ωx) = sin(πmx)

(5.7)
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Step 4:
Deal with (5.5), and remember that λ = −(πm)2:

T ′(t) = λT (t)⇒ T (t) = Aeλt = T (t) = Ãme
−(πm)2t m = 1, 2, · · ·

Note: Here we use Ãm to emphasize that Ãm depends on m.

Step 5:
Take linear combinations:

u(x, t) =
∞∑
m=1

T (t)X(x) =
∞∑
m=1

Ãme
−(πm)2t sin(πmx) (5.8)

Step 6:
Use the initial condition u(x, 0) = x in (5.1):

u(x, 0) =
∞∑
m=1

Ãm sin(πmx) = x on(0, 1) (5.9)

Now we want to express x as a linear combination of sines, so we have to use
a sine series (that’s why we used Ãm instead of Am):

Ãm =
2

1

∫ 1

0

x sin(πmx)dx

= 2

([
−xcos(πmx)

πm

]1
0

−
∫ 1

0

−cos(πmx)

πm
dx

)

= 2

(
−cos(πm)

πm
+

∫ 1

0

cos(πmx)

πm
dx

)
= 2

(
−(−1)m

πm
+

[
sin(πmx)

(πm)2

]1
0

)

=
2(−1)m+1

πm
(m = 1, 2, · · · )
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Step 7:
Conclude using (5.10)

u(x, t) =
∞∑
m=1

2(−1)m+1

πm
e−(πm)2t sin(πmx) (5.10)
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6 The Wave equation
Problem: Solve the following wave equation:



∂2u

∂t2
=

∂2u

∂x2
0 < x < π, t > 0

u(0, t) = u(π, t) = 0 t > 0

u(x, 0) = sin(4x) + 7 sin(5x) 0 < x < π

∂u

∂t
(x, 0) = 2 sin(2x) + sin(3x) 0 < x < π

(6.1)

Step 1: Separation of variables
Suppose:

u(x, t) = X(x)T (t) (6.2)

Plug (6.2) into the differential equation (6.1), and you get:

(X(x)T (t))tt =(X(x)T (t))xx
X(x)T ′′(t) =X ′′(x)T (t)

Rearrange and get:

X ′′(x)

X(x)
=
T ′′(t)

T (t)
(6.3)

Now X′′(x)
X(x)

only depends on x, but by (6.3) only depends on t, hence it is
constant:

X ′′(x)

X(x)
=λ

X ′′(x) =λX(x)

(6.4)

Also, we get:
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T ′′(t)

T (t)
=λ

T ′′(t) =λT (t)

(6.5)

but we’ll only deal with that later (Step 4)

Step 2:
Consider (6.4):

X ′′(x) = λX(x)

Note: Always start with X(x), do NOT touch T (t) until right at the end!

Now use the boundary conditions in (6.1):

u(0, t) = X(0)T (t) = 0⇒ X(0)T (t) = 0⇒ X(0) = 0

u(π, t) = X(π)T (t) = 0⇒ X(π)T (t) = 0⇒ X(π) = 0

Hence we get: 
X ′′(x) =λX(x)

X(0) =0

X(π) =0

(6.6)

Step 3: Eigenvalues/Eigenfunctions
The auxiliary polynomial of (6.6) is p(λ) = r2 − λ

Now we need to consider 3 cases:

Case 1: λ > 0, then λ = ω2, where ω > 0

Then:
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r2 − λ = 0⇒ r2 − ω2 = 0⇒ r = ±ω

Therefore:

X(x) = Aeωx +Be−ωx

Now use X(0) = 0 and X(π) = 0:

X(0) = 0⇒ A+B = 0⇒ B = −A⇒ X(x) = Aeωx − Ae−ωx

X(π) = 0⇒ Aeωπ−Ae−ωπ = 0⇒ Aeωπ = Ae−ωπ ⇒ eωπ = e−ωπ ⇒ ωπ = −ωπ ⇒ ω = 0

But this is a contradiction, as we want ω > 0.

Case 2: λ = 0, then r = 0, and:

X(x) = Ae0x +Bxe0x = A+Bx

And:

X(0) = 0⇒ A = 0⇒ X(x) = Bx

X(π) = 0⇒ B = 0⇒ X(x) = 0

Again, a contradiction (we want X��≡ 0, because otherwise u(x, t) ≡ 0)

Case 3: λ < 0, then λ = −ω2, and:

r2 − λ = 0⇒ r2 + ω2 = 0⇒ r = ±ωi

Which gives:

X(x) = A cos(ωx) +B sin(ωx)

Again, using X(0) = 0, X(π) = 0, we get:

X(0) = 0⇒ A = 0⇒ X(x) = B sin(ωx)
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X(π) = 0⇒ B sin(ωπ) = 0⇒ sin(ωπ) = 0⇒ ω = m, (m = 1, 2, · · · )

This tells us that:

Eigenvalues:λ = −ω2 = −m2 (m = 1, 2, · · · )
Eigenfunctions:X(x) = sin(ωx) = sin(mx)

(6.7)

Step 4:
Deal with (6.5), and remember that λ = −m2:

T ′′(t) = λT (t)

Aux: r2 = −m2 ⇒ r = ±mi (m = 1, 2, · · · )

T (t) = Ãm cos(mt) + B̃m sin(mt)

Step 5:
Take linear combinations:

u(x, t) =
∞∑
m=1

T (t)X(x) =
∞∑
m=1

(
Ãm cos(mt) + B̃m sin(mt)

)
sin(mx) (6.8)

Step 6:
Use the initial condition u(x, 0) = sin(4x) + 7 sin(5x) in (6.1):

Plug in t = 0 in (6.8), and you get:

u(x, 0) =
∞∑
m=1

Ãm sin(mx) = sin(4x) + 7 sin(5x) on(0, π) (6.9)
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Note: At this point you would usually have to find the sine series of a function
(see section 4). But here we’re very lucky because we’re already given a linear
combination of sines!

Equating coefficients, you get:

Ã4 = 1 (coefficient of sin(4x))

Ã5 = 7 (coefficient of sin(5x))

Ãm = 0 (for all other m)

Step 7:
Use the initial condition: ∂u

∂t
(x, 0) = 2 sin(2x) + sin(3x) in (6.1)

First differentiate (6.8) with respect to t:

∂u

∂t
(x, t) =

∞∑
m=1

(
−mÃm sin(mt) +mB̃m cos(mt)

)
sin(mx) (6.10)

Now plug in t = 0 in (6.10):

∂u

∂t
(x, 0) =

∞∑
m=1

mB̃m sin(mx) = 2 sin(2x) + sin(3x) (6.11)

Again, usually you’d have to calculate Fourier sine series, but again we’re
lucky because the right-hand-side is already a linear combination of sines!

Equating coefficients, you get:

2B̃2 = 2 (coefficient of sin(2x))

3B̃3 = 1 (coefficient of sin(3x))

B̃m = 0 (for all other m)

That is:
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B̃2 = 1 (coefficient of sin(2x))

B̃3 =
1

3
(coefficient of sin(3x))

B̃m = 0 (for all other m)

Step 8:
Conclude using (6.8) and the coefficients Am and Bm you found:

u(x, t) =
∞∑
m=1

(
Ãm cos(mt) + B̃m sin(mt)

)
sin(mx) (6.12)

where:

Ã4 = 1

Ã5 = 7

Ãm = 0 (for all other m)

and

B̃2 = 1

B̃3 =
1

3

B̃m = 0 (for all other m)

Note: In this special case, you can write u(x, t) in the following nice form:

u(x, t) = sin(2t) sin(2x)+
1

3
sin(3t) sin(3x)+cos(4t) sin(4x)+7 cos(5t) sin(5x)

(6.13)
But in general, you’d have to leave your answer in the form of (6.8)
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7 Laplace’s equation
Problem: Solve the following Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
= 0 0 < x < 1, 0 < y < 1

u(0, y) = u(1, y) =0 0 ≤ y ≤ 1

u(x, 0) = 6 sin(5πx) 0 ≤ x ≤ 1

u(x, 1) = 0 0 ≤ x ≤ 1

(7.1)

Step 1: Separation of variables
Suppose:

u(x, y) = X(x)Y (y) (7.2)

Plug (7.2) into the differential equation (7.1), and you get:

(X(x)Y (y))xx + (X(x)Y (y))yy =0

X ′′(x)Y (y) +X(x)Y ′′(y) =0

X ′′(x)Y (y) =−X(x)Y ′′(y)

Rearrange and get:

X ′′(x)

X(x)
=
−Y ′′(y)
Y (y)

(7.3)

Now X′′(x)
X(x)

only depends on x, but by (7.3) only depends on y, hence it is
constant:

X ′′(x)

X(x)
=λ

X ′′(x) =λX(x)

(7.4)

Also, we get:
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−Y ′′(y)
Y (y)

=λ

Y ′′(y) =− λY (y)

(7.5)

but we’ll only deal with that later (Step 4)

Note: Careful about the − sign!!!

Step 2:
Consider (7.4):

X ′′(x) = λX(x)

Note: Always start with X(x), do NOT touch Y (y) until right at the end!

Now use the boundary conditions in (7.1):

u(0, y) = X(0)Y (y) = 0⇒ X(0)Y (y) = 0⇒ X(0) = 0

u(1, y) = X(1)Y (1) = 0⇒ X(1)Y (y) = 0⇒ X(1) = 0

Hence we get: 
X ′′(x) =λX(x)

X(0) =0

X(1) =0

(7.6)

Step 3: Eigenvalues/Eigenfunctions
The auxiliary polynomial of (7.6) is p(λ) = r2 − λ

Now we need to consider 3 cases:

Case 1: λ > 0, then λ = ω2, where ω > 0
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Then:

r2 − λ = 0⇒ r2 − ω2 = 0⇒ r = ±ω

Therefore:

X(x) = Aeωx +Be−ωx

Now use X(0) = 0 and X(1) = 0:

X(0) = 0⇒ A+B = 0⇒ B = −A⇒ X(x) = Aeωx − Ae−ωx

X(1) = 0⇒ Aeω−Ae−ω = 0⇒ Aeω = Ae−ω ⇒ eω = e−ω ⇒ ω = −ω ⇒ ω = 0

But this is a contradiction, as we want ω > 0.

Case 2: λ = 0, then r = 0, and:

X(x) = Ae0x +Bxe0x = A+Bx

And:

X(0) = 0⇒ A = 0⇒ X(x) = Bx

X(1) = 0⇒ B = 0⇒ X(x) = 0

Again, a contradiction (we want X��≡ 0, because otherwise u(x, y) ≡ 0)

Case 3: λ < 0, then λ = −ω2, and:

r2 − λ = 0⇒ r2 + ω2 = 0⇒ r = ±ωi

Which gives:

X(x) = A cos(ωx) +B sin(ωx)

Again, using X(0) = 0, X(1) = 0, we get:

X(0) = 0⇒ A = 0⇒ X(x) = B sin(ωx)
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X(1) = 0⇒ B sin(ω) = 0⇒ sin(ω) = 0⇒ ω = πm, (m = 1, 2, · · · )

This tells us that:

Eigenvalues:λ = −ω2 = −(πm)2 (m = 1, 2, · · · )
Eigenfunctions:X(x) = sin(ωx) = sin(πmx)

(7.7)

Step 4:
Deal with (7.5), and remember that λ = −(πm)2:

Y ′′(y) = −λY (y)

Aux: r2 = (πm)2 ⇒ r = ±πm (m = 1, 2, · · · )

Y (y) = Ãme
πmy + B̃me

−πmy (7.8)

IMPORTANT REMARK: If you leave your answer like that, your algebra
becomes messy! Instead, use the following nice formulas:

ew + e−w

2
= cosh(w)

ew − e−w

2
= sinh(w)

And you get:

Y (y) = Ãm cosh(πmy) + B̃m sinh(πmy) (7.9)

Note: The constants Ãm and B̃m are different in (7.8) and (7.9), but it doesn’t
matter because they are only (general) constants!

Step 5:
Take linear combinations:
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u(x, t) =
∞∑
m=1

Y (y)X(x) =
∞∑
m=1

(
Ãm cosh(πmy) + B̃m sinh(πmy)

)
sin(πmx)

(7.10)

Step 6:
Use the initial condition u(x, 0) = 6 sin(5πx) in (7.1):

Plug in y = 0 in (7.10), and using cosh(0) = 1, sinh(0) = 0, you get:

u(x, 0) =
∞∑
m=1

Ãm sin(πmx) = 6 sin(5πx) on(0, 1) (7.11)

Note: At this point you would usually have to find the sine series of a function
(see the heat equation example). But here again we’re very lucky because we’re
already given a linear combination of sines!

Equating coefficients (notice this is why we used cosh and sinh instead of
exponential functions), you get:

Ã5 = 6 (coefficient of sin(5πx))

Ãm = 0 (for all other m)
(7.12)

Step 7:
Use the initial condition: u(x, 1) = 0 in (7.1)

Plug in y = 1 in (7.8), and you get:

u(x, 1) =
∞∑
m=1

(
Ãm cosh(πm) + B̃m sinh(πm)

)
sin(πmx) = 0 on(0, 1)

(7.13)
Again, usually you’d have to use a Fourier sine series, but again you’re lucky

because the function is 0, so if you equate the coefficients, you get:

cosh(πm)Ãm + sinh(πm)B̃m = 0 (m = 1, 2, · · · ) (7.14)
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But now combining (7.10) and (7.18), we get:

For m 6= 5 Am = 0, so:

sinh(πm)B̃m = 0 (7.15)

which gives you B̃m = 0 for m 6= 5.

For m = 5:

cosh(5π)6 + sinh(5π)B̃5 = 0 (7.16)

which gives you:

B̃5 = −
6 cosh(5π)

sinh(5π)
= −6 coth(5π)

Step 8:
Conclude using (7.10) and the coefficients Am and Bm you found:

u(x, y) =
∞∑
m=1

Y (y)X(x) =
∞∑
m=1

(
Ãm cosh(πmy) + B̃m sinh(πmy)

)
sin(πmx)

(7.17)

where: Ãm = B̃m = 0 if m 6= 5, and Ã5 = 6, B̃5 = −6 coth(5π) .

Note: In this special case, you can write u(x, t) in the following nice form:

u(x, y) = (6 cosh(5πy)− 6 coth(5π) sinh(5πy)) sin(πmx) (7.18)

But in general, you’d have to leave your answer in the general form (7.10).
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