Partial Differential Equations Handout

Peyam Tabrizian

Monday, November 28th, 2011

This handout is meant to give you a couple more examples of all the techniques
discussed in chapter 10, to counterbalance all the dry theory and complicated ap-
plications in the differential equations book! Enjoy! :)

1 Boundary-Value Problems

Find the values of )\ (eigenvalues) for which the following differential equa-
tions has a nonzero solution. Also find the corresponding solutions (eigen-
functions)

y'+ Ay =0

The auxiliary polynomial is 72 + A\ = 0, which gives » = £v/—\. Now we
need to proceed with 3 cases:



Case 1: A <0
Then A\ = —w?, where w > 0, so: r = 4w, and the general solution is:

y(t) = Ae*" + Be ™!
Then y(0) = 0 gives A + B = 0, so B = —A, whence:

y(t) = Ae”t — Ae™!
Then:

Y (t) = Awe*' + Awe ™"
Then y/(7) = 0 gives:

Awe’™ + Awe ™ =0
Cancelling out A # 0 (otherwise B = 0 and Y (y) = 0), we get:

6w7r + e—wﬂ' — 0
Multiply by e“”:

e+ 1=0

62L;.17r =_1

2w

However, this doesn’t have a solution because e““™ > 0, contradiction.

Case 2: A = 0. Then we have a double-root r = 0, and:

y(t) = A + Bte” = A+ Bt

Then y(0) = 0 gives A = 0, and so y(¢) = Bt. And y/(7w) = 0 gives B = 0,
but then y(¢) = 0, contradiction.



Case 3: A > 0. Then \ = w?, where w > 0.
Then we get r = Fwi, so:

y(t) = Acos(wt) + Bsin(wt)
Then: y(0) = 0 gives A = 0, so:

y(t) = Bsin(wt)
Then
y'(t) = wB cos(wt)
So ¢/ (m) = 0 gives:

wB cos(wrm) =0
Cancelling out w and B (because w > 0, and because B # 0, otherwise B = 0
and Y(y) = 0), we get:
cos(wm) =0

Which tells you that wr = % + M, where M is an integer, so:

1
w=M+5,(M=0,12-)

Answer:
This tells you that the eigenvalues are:

1 2
A:&:<M+§)JM:QLZ~J

And the corresponding eigenfunctions are:

0= Doty s (314 1))



2 Separation of variables
Use the method of separation of variables to u; = u., to convert

the PDE into two differential equations
Suppose u(x,t) = X (x)T(t)

Then plug this back into u; = u,:

X(x)T'(t) = X" (2)T(t)
Now group the X and the 7"

X"(x) _ T(t)
X(@) T()

Now notice that );/((xx)) only depends on z, but also, by the above equation only

depends on ¢, hence it 1s a constant:

X//(I)

X(2)

which gives | X" (x) = A\ X (x) |

Moreover: 20 = X°(@ _ ) 5o T'(t) = \T'(t)|.

3 Fourier series

3.1 Find the Fourier series of f(x) = 2” on the interval (-3, 3)

Here (=T, T) = (~3,3), 50

f(x) = f: Ay cos (7?]\343:) + By sin (7?]\343:)

M=0

Now calculate A,; and By,:



Ay =

33 f(z)dz _ ffg 22dx _

Ay = I

3

ffg ldx 6

3

JZcos? (5 du

where we used the fact that z2 cos (

3

TMx
3

) is even!

f_33 f(x) cos (”M””) dx _ fi)) 2% cos (”M‘”) dx _

Now, to evaluate the integral, use tabular integration:
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Now for B);: First set (this is just by definition), and:

By =

B ffg f(x) sin(”]\;x)dx _ f_3

3 22 sin (

”]3\/[””) dx

Sy sin® (52) da

3

because the numerator is the integral of an odd function over (—3, 3), hence 0.

Putting everything together, we get:

= 36(—1)M
f(&?) - 3 _'_ JWZ::l 7T2M2

(WM$>
— . cos

3




3.2 To which function does the Fourier series of f converge to?
r —2<x<0
J(x) = { 1 0<a<2

Fact: The Fourier series converges to f(x) whenever f is continuous at z,
and to w whenever f is discontinuous at x. As for the endpoints, the
Fourier series converges to w

L is the leftmost endpoint.

, where R is the rightmost endpoint, and

Discontinuity: Here the only discontinuity is at 0, hence at 0, the F.S. con-
verges to:

fOO=)+f(0+) O0+1 1
2 T2 2
Endpoints: L = —2, R = 2, so at —2 and 2, the E.S. converges to:
A2+ F20) 241 1
2 T2 2
Putting everything together, we find that the F.S. converges to F, where:

Note: Technically, F is a periodic fuction of period 4, so you’d have to ‘repeat’
the graph, just like the picture below!
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4 Fourier cosine and sine series

Same thing as before, except that we’re expressing a function only in terms of cos
or only in terms of sin. The formulas are almost the same, except that we need to
multiply things by 2 and we only integrate from 0 to 7.

4.1 Calculate the Fourier cosine series of f(z) = x on (0, 1)

Notice that it doesn’t matter that the function f is odd, because we’re only focus-
ing on the half-interval (0, 7) and not on the full interval (—, 7).

Here 7' = 7, and our goal is to find A,, (m = 0,1, 2,---) such that:

Z Ay, cos(mzx) =
m=1

As usual, always treat the case m = 0 separately, and notice the changes:

2 [T 2 2
Ay = — zdr = [ — \_T
2m J, 2m 2 2

/0 " 2 cos(ma)ds
(=] )
(- 2])

And if m # 0:

Ay =

CRECEE RN CEERECEE RN

Hence|A,, = 25 ((—1)™ — 1)




Now notice that if m is even, then (—1)™ — 1 = 0, and hence A,, = 0. And if
m is odd,then (—1)™ — 1 = —2,50 A,,, = =%

T™m

Therefore:
Tt = ”g + Z — 5 cos(mx)
m=1,modd
T 4= —4
w_»n" = - 2]43 _ 1
=TS D mae e el )7)

k=1
This is because every odd number m > 1 can be written as m = 2k — 1, where
k=1,2,---.

4.2 Calculate the Fourier sine series of f(x) = z on (0, 7)

Here T' = 7, and our goal is to find B,,, (m = 0,1,2, - - -) such that:

Z B, sin(mz) =z
m=1
As usual, always treat the case m = 0 separately, namely set By = 0.

And if m # 0:

B, = x sin(ma)dz

][ et
—rcostr) + |50 )

2
m 0

S

7 N 7 N

(=m(=1)")

_1)m+1

NN o R0 30N

—~

Hence | B,, = 2(—1)™*! |, and:

10



11



5 The Heat equation

Problem: Solve the following heat equation:

2
% = @ O<zx<l, t>0
ot Ox? 51
w(0,8) = u(1,4) =0 £>0 .1
u(z,0) = x O<z<l
Step 1: Separation of variables
Suppose:
u(z,t) = X(x)T(t) (5.2)
Plug (5.2) into the differential equation (5.1), and you get:
(X(@)T @), = (X(@)T (),
X(x)T'(t) =X"(x)T(t)
Rearrange and get:
X// !
(=) _ T 59
X(x)  T(@)
Now );((f)) only depends on z, but by (5.3) only depends on ¢, hence it is
constant:
X”(x) _/\
X(z) (5.4)
X"(x) =2X(x)
Also, we get:
T/
0 _,
(D) (5.5)

T'(t) =\T(t)

12



but we’ll only deal with that later (Step 4)

Step 2:
Consider (5.4):

X"(z) = XX (2)
Note: Always start with X (), do NOT touch 7'(¢) until right at the end!
Now use the boundary conditions in (5.1):
u(0,t) = X(0)T(t) =0= X(0)T'(t) =0= X(0) =0

u(1,t) = X()T(t) = 0 = X(1)T(t) = 0= X(1) =0

Hence we get:

X(0) =0 (5.6)

Step 3: Eigenvalues/Eigenfunctions

The auxiliary polynomial of (5.6) is p(\) = r? — A
Now we need to consider 3 cases:
Case 1: A > 0, then A = w?, where w > 0
Then:

P A=0=>r—-w=0=r==4w

Therefore:
X(z) = Ae*" 4+ Be ™"

13



Now use X (0) = 0 and X (1) = 0:

X(0)=0=>A+B=0=>B=—A= X(z) = Ae** — Ae™*"

X(1)=0=Ae"-Ae“=0=>Ac"=Ae“ =" =" mw=-w=>w=0

But this is a contradiction, as we want w > 0.
Case 2: A = 0, then » = 0, and:

X(z) = Ae™ + Bre"™ = A+ Bx
And:

X(0)=0=A=0= X(x) =Bz

X(1)=0=B=0=X(z)=0
Again, a contradiction (we want X= 0, because otherwise u(zx,t) = 0)
Case 3: \ < 0, then A = —w?, and:
- A=0=>r+uw?=0=r=+wi
Which gives:

X(z) = Acos(wz) + Bsin(wz)
Again, using X (0) = 0, X(1) = 0, we get:

X0)=0=A=0= X(x) = Bsin(wx)

X(1)=0= Bsin(w) =0=sin(w) =0=w=mm, (m=12---)
This tells us that:

Eigenvalues:\ = —w? = —(mm)? (m=1,2,---) 57)
Eigenfunctions: X (x) = sin(wx) = sin(rmx) '

14



Step 4:

Deal with (5.5), and remember that A = —(7m)?*:
T'(t) = AT(t) = T(t) = AN =T(t) = Ape ™ =12,

Note: Here we use E,; to emphasize that A\;n depends on m.

Step S:
Take linear combinations:
= Z THX(z) = Z A T sin(rma) (5.8)
m=1 m=1

Step 6:

Use the initial condition u(z,0) = x in (5.1):

o0
= Z Apsin(mmz) =« on(0, 1) (5.9)
m=1
Now we want to express x as a linear combination of sines, so we have to use
a sine series (that’s why we used Z;n instead of A,,):

— 2 1
Ay = xsin(rmzx)dz

1
_ ( cos(mmax } _/ _cos(ﬂmx)dx>
o Jo m

_ 2( cos(mm) cos(ﬂma:)dx>

0 ™m

= 2( -, [mema

m+1

_ 2= —1,2,.--
™m (m 2000

15



Step 7:
Conclude using (5.10)

=, 2(—1)mt! 2
u(z,t) = Z %e‘“m) tsin(rma) (5.10)

v
m=1

16



6 The Wave equation

Problem: Solve the following wave equation:

( @ = @ O<z< t>0
o ~ 0x "
u(0,t) = u(m,t) =0 t>0 6.1)
u(z,0) = sin(4z) + 7sin(bz) O<z<m '
| %(m, 0) = 2sin(2z) + sin(3z) O<z<m
Step 1: Separation of variables
Suppose:
u(z,t) = X(x)T(t) (6.2)
Plug (6.2) into the differential equation (6.1), and you get:
(X(@)T )y = (X(@)T(?)),.,
X()T"(t) =X"()T(t)
Rearrange and get:
X// T// t
(2) _T"(t) .
X(x) T
Now );/(Sf)) only depends on z, but by (6.3) only depends on ¢, hence it is
constant:
X”(ZE) _
X(z) (6.4)
X" (z) =AX(x)
Also, we get:
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T//(t) :)\
T(t) (6.5)
T'(t) =AT(t)

but we’ll only deal with that later (Step 4)

Step 2:
Consider (6.4):

X"(x) = XX (z)

Note: Always start with X (z), do NOT touch 7'(¢) until right at the end!
Now use the boundary conditions in (6.1):
u(0,t) = X(0)T'(t) =0= X(0)T'(t) =0 = X(0) =0

u(m,t) =X(m)T(t) =0=X(m)T(t)=0= X(m)=0

Hence we get:

X(0) =0 (6.6)

Step 3: Eigenvalues/Eigenfunctions

The auxiliary polynomial of (6.6) is p(\) = r2 — )

Now we need to consider 3 cases:
Case 1: A\ > 0, then A = w?, where w > 0

Then:

18



P-A=0=>r-w=0=r=+tw

Therefore:

X(z) = Ae“™ 4+ Be ™"
Now use X (0) = 0 and X () = 0:

X(0)=0=A+B=0=B=-A= X(z) = Ac*" — Ae™*"

X(m)=0=Ae""—Ae " =0= A" =Ae " ="M= T swur=—wr=w=0
But this is a contradiction, as we want w > 0.
Case 2: A = 0, then r = 0, and:

X(z) = A" + Bre®™ = A + Bx
And:
X0)=0=A=0= X(x) =Bz
X(r)=0=B=0= X(z)=0
Again, a contradiction (we want X= 0, because otherwise u(x,t) = 0)
Case 3: \ < 0, then A = —w?, and:
- A=0=>r4+uw?’=0=r=twi

Which gives:

X(z) = Acos(wz) + Bsin(wz)
Again, using X (0) = 0, X(7) = 0, we get:

X0)=0=A=0= X(x) = Bsin(wx)

19



X(r) =0= Bsin(wn) =0=sin(wr) =0=w=m, (m=12--)

This tells us that:

Eigenvalues:\ = —w® = —m? (m=1,2,---) 67)
Eigenfunctions: X (z) = sin(wz) = sin(mz) '
Step 4:
Deal with (6.5), and remember that A = —m?:
T"(t) = \T(t)
Aux:r? = —m? = r = +mi (m=1,2,--+)
T(t) = A, cos(mt) + By sin(mt)

Step 5:
Take linear combinations:

= Z T(t)X Z (A cos(mt) + B, sm(mt)) sin(mx)  (6.8)

m=1 m=1

Step 6:
Use the initial condition u(z, 0) = sin(4x) + 7 sin(5x) in (6.1):

Plug in ¢t = 0 in (6.8), and you get:

u(z,0) = Z A, sin(ma) = sin(4z) + 7sin(5z) on(0, ) (6.9)

m=1

20



Note: At this point you would usually have to find the sine series of a function
(see section 4). But here we’re very lucky because we’re already given a linear

combination of sines!

Equating coefficients, you get:

A =1 (coefficient of sin(4x))
:4v5 =7 (coefficient of sin(5z))

A,=0 (for all other m)

Step 7:
Use the initial condition: 2%(z, 0) = 2sin(2z) + sin(3z) in (6.1)
First differentiate (6.8) with respect to ¢:

ou = -~ . — .
E(:c, t) = mZ::l (—mAm sin(mt) + mBy, cos(mt)) sin(max) (6.10)
Now plug in ¢ = 0 in (6.10):
ou . : .
(x,0) = Z m By, sin(mx) = 2sin(2z) + sin(3x) (6.11)

ot —
Again, usually you’d have to calculate Fourier sine series, but again we’re
lucky because the right-hand-side is already a linear combination of sines!
Equating coefficients, you get:

2B, =2  (coefficient of sin(2z))
S/BZ =1 (coefficient of sin(3z))

B, =0 (for all other m)

That is:

21



B, (coefficient of sin(2x))
(coefficient of sin(3x))

(for all other m)

Step 8:
Conclude using (6.8) and the coefficients A,, and B,,, you found:

Z (A cos(mt) + B, sm(mt)) sin(mz) (6.12)
m=1
where:
Ag=1
Ag =7
;1; =0 (for all other m)
and

By=1

~ 1

Bg - g

B, =0 (for all other m)

Note: In this special case, you can write u(x,t) in the following nice form:

(x,t) = sin(2t) sin(2z) + % sin(3t) sin(3x) + cos(4t) sin(4z) 4 7 cos(5t) sin(5x)
(6.13)

But in general, you’d have to leave your answer in the form of (6.8)
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7 Laplace’s equation

Problem: Solve the following Laplace equation:

( %—i—gi;;:() O<z<l, O<y<l
u(0,y) = u(l,y) =0 0<y<1l (7.1)

u(z,0) = 6sin(brz) 0<z<1

L u(z,1)= 0 0<zx<1

Step 1: Separation of variables

Suppose:

u(z,y) = X (2)Y (y) (7.2)

Plug (7.2) into the differential equation (7.1), and you get:

(X(@)Y (1)) + (X (2)Y (1)),
X"(@)Y (y) + X (2)Y"(y)
X" (2)Y (y) =

=0
=0
X(x)Y"(y)

Rearrange and get:

X'"x) _ =Y"(y)

= (7.3)
X(x) Yy
Now );"((;;) only depends on z, but by (7.3) only depends on y, hence it is
constant:
X//
(@) _,
X(x) (7.4)
X'(x) =AX(z)
Also, we get:

23



—Y"(y)

Y (y) = (7.5)
Y'(y) = =AY (y)

but we’ll only deal with that later (Step 4)

Note: Careful about the — sign!!!

Step 2:
Consider (7.4):

X"(z) = A\X (2)

Note: Always start with X (), do NOT touch Y (y) until right at the end!
Now use the boundary conditions in (7.1):

u(0,y) = X(0)Y(y) = 0= X(0)Y(y) = 0= X(0) =0

u(ly) = XY (1) =0= X()Y(y) = 0= X(1) =0

Hence we get:

X(0) =0 (7.6)

Step 3: Eigenvalues/Eigenfunctions

The auxiliary polynomial of (7.6) is p(\) = r? — A
Now we need to consider 3 cases:

Case 1: A\ > 0, then A\ = w?, where w > 0

24



Then:

P A=0=>r—-w=0=>r=4w

Therefore:
X(z) = Ae*" 4+ Be ™"

Now use X (0) = 0 and X (1) = 0:

X0)=0=A+B=0=B=-A= X(z) = Ae*" — Ae™"

X(1)=0=Ae*—Ae“ =0= A" =A== mw=-w=>w=0
But this is a contradiction, as we want w > 0.
Case 2: A = 0, then » = 0, and:

X(z) = A" + Bre®™ = A + Bx
And:

X0)=0=A=0= X(x) =Bz
X(1)=0=B=0= X(z) =0
Again, a contradiction (we want X= 0, because otherwise u(z,y) = 0)
Case 3: A\ < 0, then A\ = —w?, and:

- A=0=>r"4+uw=0=r=dwi

Which gives:

X(x) = Acos(wz) + Bsin(wz)
Again, using X (0) = 0, X(1) = 0, we get:

X(0)=0=A=0= X(z)= Bsin(wx)

25



X(1)=0= Bsin(w) =0=sin(w) =0=w=mm, (m=12,---)

This tells us that:

Eigenvalues:\ = —w® = —(mm)* (m=1,2,---) 77
Eigenfunctions: X (z) = sin(wz) = sin(mmax) '
Step 4:
Deal with (7.5), and remember that A = —(7m)?:
Y'(y) = =AY (y)
Aux: r? = (mm)* = r = +mm (m=1,2,--+)
Y(y) = Ape™ + Bpe ™™ (7.8)

IMPORTANT REMARK: If you leave your answer like that, your algebra
becomes messy! Instead, use the following nice formulas:

ete " _ cosh(w)
2
< _26 =sinh(w)
And you get:
Y(y) = A, cosh(mmy) + B, sinh(7mmy) (7.9)

Note: The constants En and E,/n are different in (7.8) and (7.9), but it doesn’t
matter because they are only (general) constants!

Step S:

Take linear combinations:
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= Z Y(y)X Z <A cosh(mmy) + B, smh(wmy)) sin(mmax)
e " (7.10)

Step 6:

Use the initial condition u(z,0) = 6 sin(57z) in (7.1):

Plug in y = 0 in (7.10), and using cosh(0) = 1, sinh(0) = 0, you get:

u(@,0) =Y Apsin(rmz) = 6sin(57z)  on(0,1) (7.11)
m=1
Note: At this point you would usually have to find the sine series of a function
(see the heat equation example). But here again we’re very lucky because we’re
already given a linear combination of sines!

Equating coefficients (notice this is why we used cosh and sinh instead of
exponential functions), you get:

Zr) =6 (coefficient of sin(57z))
— (7.12)
A, =0 (for all other m)

Step 7:

Use the initial condition: u(x,1) = 0in (7.1)
Plug in y = 1 in (7.8), and you get:

Z (A cosh(mm) + B, Smh(ﬂm)> sin(rmax) =0 on(0,1)
m=1

(7.13)
Again, usually you’d have to use a Fourier sine series, but again you’re lucky
because the function is 0, so if you equate the coefficients, you get:

cosh(ﬂm);l\,; + sinh(mm)B,, =0 (m=1,2,--+) (7.14)
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But now combining (7.10) and (7.18), we get:

Form # 5 A, =0, so:

sinh(mm)B,, =0 (7.15)

which gives you | B,,, = 0 |for m # 5.

For m = 5:
cosh(57)6 + sinh(57)Bs = 0 (7.16)
which gives you:
~ 6 cosh(5)
Bs = ——————> = —6coth
i sinh(57) 6 coth(5m)

Step 8:

Conclude using (7.10) and the coefficients A,, and B,, you found:

u(z,y) = Z Y(y)X(z) = Z (21:” cosh(mmy) + B, sinh(wmy)) sin(mmaz)
" " (7.17)

where: | A,, = B,, = 0|if m # 5, and | A5 = 6, B = —6 coth(57) |

Note: In this special case, you can write u(z, t) in the following nice form:

u(z,y) = (6 cosh(bry) — 6 coth(57) sinh(57y)) sin(rmx) (7.18)

But in general, you’d have to leave your answer in the general form (7.10).
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