





# Donald Bren School of Information and Computer Sciences, University of California, Irvine NSF REU IoT-SITY Summer Research Program

## INTRODUCTION

- Denial of Service (DOS) attacks are attacks meant to shutdown a machine or network, making it inaccessible to intended users
- IoT devices come with immense ricks on our security and privacy because they collect personal information and monitor user activity
- Research has been conducted to evaluate the security of IoT devices to find better ways to design them and eliminate or lessen any harmful effects done on them

### **Objectives**:

- Review literature on DoS and DDos attacks and defenses
- Install OpenCV on Raspberry Pi 3 and access webserver

### **Challenges:**

- Installing OpenCV on the Raspberry Pi 3
- Accurate algorithm to differentiate legitimate requests from malicious ones

### BACKGROUND



Figure 1. This diagram shows the typical structure of a DoS attack.

- The attacker will use the "zombies" and send attack commands though the zombies towards the target
- The Internet Protocol (IP) is based on packet-switching and supports ease of attachment of hosts to networks
- Little support for verifying the source address of packets thus making it difficult to identify the source of traffic
- Protocol-based bandwidth attacks gain their attack power based on the specific weaknesses of the Internet protocol

# Denial of Service (DoS) Attacks Against An Internet of Things (IoT) Security Camera Yocelyne Hernandez, MiraCosta College lan Harris, P.h.D

## **SYN FLOOD ATTACKS:**

python

- Exploits a vulnerability of the TCP three-way handshake
- The attacker sends SYN packets with fake source IP addresses
- The server will store the requested information in a memory stack and wait to receive confirmation packets
- Since the IP addresses are nonexistent, the server will not receive the packets and halfopen connections will start to accumulate and fill up the memory stack
- No legitimate requests will be able to be processed and the resources and services of the system will be disabled

# **METHODOLOGY**





Figure 3. Architecture of the IoT security camera

After testing multiple systems such as the Arduino, ESP8266, and Raspberry Pi 4, we found that the Raspberry Pi 3 was the best system to use for designing the IoT camera.

### REFERENCES

Peng, T., Leckie, C., and Ramamohanarao, K.2007. Survey of network-based defense mechanisms countering the DoS and DDoS problems. ACM Comput. Surv. 39, 1, Article 3 (April 2007), 42 pages DOI = 10.1145/1216370.1216373 http://doi.acm.org/10.1145/1216370.1216373













Figure 4. IoT Security Camera made using the Raspberry Pi 3.

- path to achieve

- such attacks

### ACKNOWLEDGEMENTS

I would like to thank my mentor, Dr. Ian Harris, for his support and guidance throughout this research. I am grateful for Dr. Nalini Venkatasubramanian valuable advice throughout this project. I would also like to thank Dr. Sharnnia Artis for organizing and facilitating the REU program and for Ernest Garrison's guided help in developing the security camera. I would also like to acknowledge NSF for sponsoring and funding the REU program.







### **OUTCOMES**

Advantages of using the Raspberry Pi 3:

- Features can be added smoothly
- Webserver based

Challenges with IoT security camera:

 Installing OpenCV - a open source library for computer vision, image processing and machine learning

### CONCLUSION

 Potential solutions to combating Denial of Service attacks successfully come with a long and difficult

• A key challenges for defense is how to discriminate legitimate requests for service from malicious attacks

• The most effective DoS defense scheme is to detect and block attack traffic close to the source

• Defense schemes that follow such implementation are highly costly due to the difficulty of discriminating between legitimate and malicious traffic

• It is expensive and at times impossible to eliminate DoS attack problems entirely.

Future work for this project consists of:

• Writing attack scripts against the IoT camera

• Evaluating the security of the camera

• Designing defense mechanisms that are resistant to