Introduction to DNA Methylation Data Analysis

Jenny Wu
Director of Bioinformatics
Genomics Research and Technology Hub
Chao Family Comprehensive Cancer Center
UC Irvine
Outline

• Why DNA methylation
• Technologies for genome wide DNA methylation profiling
• Experimental design and data analysis pipeline
 • Infinium array based
 • Sequencing based: BS-Seq (RRBS, WGBS), EM-Seq, Pacbio, Nanopore
• DNA Methylation data analysis
 ✓ Pre-processing: platform dependent
 ✓ *Downstream Analysis: DMS, DMR*
 ✓ *Software choices*
Why DNA Methylation

• One of the most well studied epigenetic mechanisms

• Plays important roles in genomic imprinting, transposon inactivation, stem cell pluripotency and differentiation
Commonly Used Profiling Methods

- Illumina Infinium Array
- Short and Long read sequencing

- MBD Enrichment
- Antibody Enrichment
- Bisulphite Conversion
- TET Oxidation

- Genomic DNA
- Sequencing
Experimental Design

• Choose the platforms/protocols based on the biological question you wish to address
 • Array based or Sequencing based, cost, throughput
 • Targeted (RRBS, twist) or whole methylome
• For BS-Seq and EM-Seq 30x coverage (PE100, 500M+ reads)
• 3+ replicates per group
• Do not confound sample groups by sex, age, or batch
Infinium Methylation BeadChip

• Two types of beads to detect methylation

• Target site matches with the probe, enabling single-base extension and detection. Single-base mismatch inhibits extension

• M value: Ratio of the intensity from M/U bead probes
Illumina Methylation Arrays

- **Infinium Human MethylationEPIC Array**
 - V2 has ~935k methylation sites with coverage of RefSeq genes, CpG islands, enhancer regions, open chromatin sites etc.
 - Compatible with FFPE samples
 - 8 Samples per BeadChip

- **Infinium Mouse Methylation Array**
 - >285k methylation sites per sample at single-nucleotide resolution
 - 24 samples per BeadChip
Infinium Methylation Assay Workflow

Bisulfite Conversion → Whole Genome amplification and enzyme fragmentation → Array Processing Scanning

Template: (Double Stranded)
A: 5’-GACCGTCCAGCTGCAGTCGTGCT-3’
B: 3’-CTGGCAACGCAGTCGTGCTGAGGA-5’

Bisulfite Converted: (Single Stranded)
A: 5’-GATCATTCTTTAGCTACTGTTT-3’
B: 3’-TTCGTAACCTTTTAGCTACTGTTT-5’
Methylation Array Data Analysis Work Flow

Data Generation
- Lab Preparation
- Array Processing
- Idat file

QC and Pre Processing
- Quality Control and Normalization
- Bisulfite conversion
- Beta value density
- SWAN
- GenomeStudio

Methylation Calling
- M values and Beta values for each site
- GenomeStudio, minfi, Champ, missMethyl

Differential Methylation
- Identify differentially methylated sites and regions
- Limma, bumphunter, DMRFinder

Common Software Tools
Illumina GenomeStudio

- Basic QC, visualization and analysis and generate reports.
- Does not container control probes
- No advanced analysis

https://support.illumina.com/array/array_software/genomestudio/downloads.html
GenomeStudio Methylation Module v2011

• Basic QC, methylation calling and two group comparison

• View CpG island methylation status across the genome

• Generate plots for the single-site resolution data
R Based Tools for Methylation

• End to End solution for methylation Analysis
 • Preprocessing, QC assessment, normalization, methylation calling, plotting functionality (MDS)
 • DMC and DMR analysis
• **Minfi, Champ, SeSaMe**
Methylation Array Pricing

• Reagent Expenses:
 • Human: Infinium Methylation EPIC v2.0 Kit – 8 samples per chip
 • Mouse: Infinium Mouse Methylation BeadChip kit - 24 samples per chip

• Labor Expense: $425 per chip

<table>
<thead>
<tr>
<th># samples</th>
<th>Human Kit ($)</th>
<th>Mouse Kit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2,392</td>
<td>5,366</td>
</tr>
<tr>
<td>16</td>
<td>4,576</td>
<td>9,734</td>
</tr>
<tr>
<td>32</td>
<td>8,320</td>
<td>19,468</td>
</tr>
<tr>
<td>96</td>
<td>24,960</td>
<td></td>
</tr>
</tbody>
</table>
WGBS Workflow

1. Sample QC
 - Sample Preparation
2. Bisulfite Treatment
3. Library QC
 - Library Construction
4. Sequencing
5. Data QC
 - Bioinformatics Analysis
Drawbacks of BS-Seq

• Harsh chemical reaction causes severe DNA degradation, therefore short DNA fragment

• Reduced sequence complexity caused by C-to-T conversion of unmodified cytosines, which accounts for ~95% of all cytosines in the human genome. Poor sequencing quality, low mapping rate and uneven genome coverage.
EM-Seq Mechanism and Workflow
Enzymatic Methyl Sequencing (EM-Seq)

- Superior sensitivity of detection of 5-mC and 5-hmC
- More uniform GC coverage
- Detection of more CpGs with fewer sequence reads
- Uniform dinucleotide distribution
- High-efficiency library preparation, with larger library insert sizes
- Good for challenging samples and lower DNA inputs, opens new avenues for research and clinical applications
Methyl-Seq Data Analysis Work Flow

Data Generation
- Lab Preparation
- Sequencing
- FASTQ files

QC and Alignment
- Quality Control and Alignment to ref genome
 - FastQC, Qualimap
 - bowtie2, bwa-meth

Methylation Calling
- Deduplication M/Beta values for each site
 - Picard-tools, bismark, BSMAP, MethylDakel

Differential Methylation
- Identify differentially methylated sites and regions
 - bisseq, camel, DSS, methylSeekR

Common Software Tools
Bismark Alignment and Methylation Calling

A genomic fragment sequence after bisulfite treatment

...ccggctgtttaatgtct...
TTGGCATGTTAACGT

C-to-T

TTGGTATGGTTAATGTT

G-to-A

TTAACATTTAACAATTT

read conversion

align to bisulfite converted genomes

forward strand C-to-T converted genome

forward strand G-to-A converted genome

(1) (2) (3) (4)

determine unique best alignment

read all four alignment outputs simultaneously to determine if the sequence can be mapped uniquely

B BS-read corresponds to converted original top strand

5’-TTGGCATGTTAACGT-3’ 5’...ccggctgtttaatgtct...3’
bisulfite read genomic sequence

z unmethylated C in CpG context
Z methylated C in CpG context
x unmethylated C in CHG context
X methylated C in CHG context
h unmethylated C in CHH context
H methylated C in CHH context

xz...Hz...........Zhz.
methylation call
M values and Beta values

Beta Value

\[\text{Beta Value} = \frac{M}{M + U} \times 100 \]

M Value

\[\text{M Value} = \log_2\left(\frac{M+a}{U+a}\right) \]

In the above example, the methylation level of the locus is 40%
Methylation Table

<table>
<thead>
<tr>
<th>CpG 1</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>...</th>
<th>Sample N</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{11}</td>
<td></td>
<td></td>
<td></td>
<td>K_{1N}</td>
</tr>
<tr>
<td>K_{21}</td>
<td></td>
<td></td>
<td></td>
<td>K_{2N}</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>K_{p1}</td>
<td></td>
<td></td>
<td></td>
<td>K_{pN}</td>
</tr>
</tbody>
</table>

- K_{ij} is between 0 and 1 for beta values, or normally distributed for M values.
- $p \gg N$ small number of replicates for bulk samples.
- Downstream dimension reduction is similar to other analysis such as in RNA-seq
PacBio Long Read Sequencing for Methylation

• Genome-wide detection and phasing of genetic and epigenetic variants from a single library prep
• No bisulfite treatment needed!
• Need high coverage (250X for 5mC) and high amount starting material!
PacBio Long Read Sequencing for Methylation

SMRTbell® library ➔ PacBio® long-read systems ➔ 5-base HiFi sequencing with A, C, G, T, +5mC

5mC encoded with standard BAM tags:
MM:ZC+m,4,12,16,4,16,19,44,10
ML:8:O,249;4,247;777,210,228,245,244

The PacBio long-read systems directly output long, highly accurate HiFi reads with annotation of 5mC methylation at all CpG sites. No special library preparation like bisulfite treatment is required.
Pacbio SMRT Link v11.0

Run QC

<table>
<thead>
<tr>
<th>Instrument Name</th>
<th>Instrument Status</th>
<th>SMRT Cell Status</th>
<th>Run Completion</th>
<th>Sequencing ZMWs</th>
</tr>
</thead>
<tbody>
<tr>
<td>64002</td>
<td>Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64009</td>
<td>Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64012</td>
<td>Ready</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64263e</td>
<td>Running</td>
<td></td>
<td>in 4 days and 14 hours</td>
<td></td>
</tr>
<tr>
<td>64303e</td>
<td>Running</td>
<td></td>
<td>in 12.2 hours</td>
<td></td>
</tr>
</tbody>
</table>
Pacbio Methylation Tools Under Development

Kinetic tags

CallCpG.py <bamIn> <bamOut>
(available to early access collaborators)

Pr(methylated) at CpG
Useful Links

• Minfi manual

• Workshop data and notebooks:

 /dfs8/commondata/workshop/methylation/

• Bismark manual

• Illumina GenomeStudio

 https://support.illumina.com/array/array_software/genomestudio/downloads.html
Figure 2. Principle of detecting modified DNA bases during SMRT sequencing. The presence of the modified base in the DNA template (top), shown here for 6-mA, results in a delayed incorporation of the corresponding T nucleotide, i.e., longer interpulse duration (IPD), compared to a control DNA template lacking the modification (bottom).
General Workflow