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Abstract—In this report, we present five different algorithms or methods for a computer to play Snake [1] automatically, including three
searching algorithms related to artificial intelligence, Best First Search, A∗ Search and improved A∗ Search with forward checking,
and two baseline methods, Random Move and Almighty Move. These methods can be the core technique in an automated Snake
Game Solver, but their performances are quite different. We conducted experiments to compare their performance and explain their
differences. Furthermore, we demonstrate how the different methods can get stuck in a dead end and anticipate possible improvements
as future work.

Index Terms—Best First Search, Breadth First Search, Greedy Search, A∗ Search, Forward Checking, Snake Game, Artificial
Intelligence.
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1 INTRODUCTION
This report is presented as a requirement for the CS 271
Introduction to Artificial Intelligence course. We decided
to assess the performance of different AI algorithms by
using them to play Snake. This involved creating an
implementation of the game together with three differ-
ent AI algorithms and two baseline methods. We will
show the difference between the different approaches
and quantitatively demonstrate their performance by
extensive experiments.

Snake can be dated back to arcade game Blockade [3],
[2], developed and published by Gremlin in 1976. The
first known personal computer version of Snake was
programmed in 1978, and various versions of snake-
similar games were developed afterwards. Traditionally,
Snake is played by a human player. The human player
plays the game using only the left and right arrow keys
which will make the snake turn relative to the direction
it is heading. The snake automatically moves forward
and it will increase its length and speed every time it
reaches a goal, which is referred as apples in this report.
This makes it difficult to achieve a high score. The final
goal of the game is to make the snake eat as many apples
as possible without running out of the board or making
the snake bite itself. When this happens, the game ends
and a final score is returned.

Even if traditional Snake is played by humans, it
can also be a good venue to test AI algorithms on
a computer, especially searching algorithms. However,
because of this test bed purpose, our Snake implemen-
tation is much simpler than commercial Snake games.
We explain the rules of our Snake implementation in

• The authors contributed equally to this project.

Section 2, followed by elaboration of the algorithms in
Section 3. We experimentally show the performance of
each algorithm in Section 4, and demonstrate when and
how the algorithm reaches a dead end and how we can
improve it in Section 5. Finally, we conclude our report
in Section 6.

2 SNAKE

In this section, we clarify some basic characteristics about
our Snake implementation.

In the most general way, our implementation consists
of the snake moving on a square board, trying to eat
as many apples as possible without biting itself. Once
the snake eats an apple, a new apple is placed in a free
position on the board and the snake length grows by
one unit. When the snake has no choice other than biting
itself, the game is over and a final score is returned. In
our implementation, we simply calculate the score as the
number of apples the snake has eaten or equivalently, the
length increased by the snake.

The following are some basic rules followed by our
implementation:

1) Goal - the snake tries to eat as many apples as
possible, within finite steps1. The first priority for
the snake is to not bite itself while the second is to
increase the score.

2) There are four possible directions the snake can
move: north, south, east, and west. However, because
of the placement of its tail some directions may not
be available. The most clear example is that the
snake can never swap to an opposite direction i.e.
north to south, east to west, etc.

1. Although it is possible to keep the snake “alive” with infinite
steps, this kind of solutions are not considered in this report.
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3) The snake grows by one unit when eating an apple.
The growth is immediately reflected by the gained
length of the tail, i.e. the tip of the tail occupies the
square on which the apple was.

4) The board size is fixed to square.
5) After an apple is eaten by the snake, another ap-

ple is placed randomly with uniform probability
on one available squares of the board. Here the
availability of a square is denoted by the fact that
it is not occupied by the snake.

3 ALGORITHMS

In this section we present three AI algorithms and two
baseline methods to play Snake. The three AI algorithms
belong to informed heuristic search while the two base-
line methods are developed intuitively based on the
character of the game.

3.1 Best First Search
This Greedy Best-First Search algorithm has a one-move
horizon and only considers moving the snake to the
position on the board that appears to be closest to the
goal, i.e. apple. We use Manhattan distance to define how
close the snake head is to the apple.

This method has almost guaranteed that the snake will
be able to eat in an optimal (shortest) way at least the
first four apples. The previous statement comes from the
fact that a snake with length five cannot construct a circle
on the board 2.

However, the one-step horizon also makes it easy to
get stuck on local minima and plateaus. The intuitive
explanation is that, the snake only looks for the next
step that is assumed best or closest to the apple without
considering its tail. It is easy for the snake to bite itself
once it gets longer. Eventually, this method will stop
being optimal after the snake has eaten more than four
apples.

In Section 5, we will illustrate how this method can
get stuck in a dead end.

3.2 A∗ Search
A∗ incorporates a heuristic in a multiple move horizon.
Before taking action, it considers not only where the goal
is and how far it is, but also the current state it has
searched so far.

This A∗ algorithm uses the Manhattan distance from
the head to the apple as a heuristic and the number of
steps as the “cost so far”. Each iteration of the algorithm
lasts until a path is found that leads the snake to eat
an apple. It improves the Best First Search algorithm by
finding a full path to the apple and not stopping at the
first move, this has the advantage of not getting stuck at
a dead end on the way to the apple. Without memory

2. There may exist some cases in which the algorithm does not use
an optimal path or it even gets into a dead end. This cases however,
are considered as exceptional.

or time restrictions, the algorithm is guaranteed to find
an optimal path to the apple if one exists.

There are two minor modifications compared to a stan-
dard A∗ algorithm. First, ties between nodes with same
estimated total cost (that is, the sum of heuristic and cost
to reach the node) are not broken randomly. Instead, one
of the nodes with lowest heuristic is chosen. This helps
the algorithm in finding a path with minimum cost to the
goal faster. Note that there can be many optimal paths
to the goal. Second, the maximum number of nodes
expanded is limited. This makes the algorithm stop if a
path to goal cannot be found (for any reason). In case the
maximum nodes bound is reached, the algorithm will
switch back to Best First Search for that iteration.

3.3 A∗ Search with Forward Checking
The A∗ algorithm introduced in the previous section
still has some shortcomings. One of the shortcomings
includes the fact that, once the apple is eaten, the snake
can reach a dead end which can be avoided with other
paths. In other words, the algorithm does not take into
account the effects of the selected path once the apple is
eaten. To avoid these dead ends, the A∗ algorithm is also
equipped with a Breadth First Search algorithm that is
used to compute if a path to a goal also leads to a dead
end. Once an iteration of the A∗ algorithm ends, it will
then call the Breadth First Search algorithm starting at
the goal state found by the A∗ algorithm. From here,
it will explore the full tree up to a certain number of
nodes. If the tree is contained inside this node bound,
i.e. it is a dead end, the path to the apple is rendered as
not good, and the goal node from the A∗ algorithm will
be discarded (the A∗ iteration will continue though).

This dead end check is also used when the A∗ algo-
rithm cannot find a path to the goal. It will then select
the Best First direction that does not lead to a dead end.

3.4 Random Move
Besides the three Artificial Intelligence methods de-
scribed previously in this section, we also introduce two
baseline methods for comparison. The first one of the
two is Random Move.

Just like the name suggests, Random Move selects
the next step to move randomly. We impose only one
condition: if possible, the move chosen must not end
the game. As we can imagine, this method makes the
snake spend a long time searching for apples as it
considers nothing about the position of those. Moreover,
this method can easily lead to a dead end, since it does
not consider the full position of the snake on the board.

Even though this method does not seem to work well,
it can be a good baseline for experimental comparison
with other AI methods, just as shown in Section 4.

3.5 Almighty Move
We finally introduce the second of the two baseline
algorithms: Almighty Move.
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Fig. 1. Almighty Move runs optimally on a board with
even-numbered width or height. As long as the length of
width or height is an even number, Almighty Move can
guarantee to make the snake eat the most apples.

Fig. 2. Almighty Move can also be run on a board with
odd-numbered width and height. To keep the score in-
creasing, Almighty Move iterates over the two circuiting
patterns.

Essentially, Almighty Move makes the snake circuit
within the board, just as demonstrated in Fig. 1 and
Fig. 2. Note that when the width or height of board are
even numbers, it is easy to understand why a maximum
score is guaranteed with this method, see Fig. 1. How-
ever, in boards with odd-numbered width and height the
circuiting pattern needs to be modified a bit, see Fig. 2.

With further analysis, it can be shown that if we start
the snake with length 1, i.e. with only one unit of tail,
then the snake will eat (hw − 2) apples3 if h and w
are the even-numbered height and width of the board.
However, in a board with odd-numbered height and
width, Almighty Move can only guarantee that the final
length of the snake is greater than (h−2)(w−2), but less
than (hw − 2).

In conclusion, Almighty Move is an extreme case that
has guaranteed a maximum score by not caring about
how much time is needed. Note that it does achieve the
goal within finite time though.

4 EXPERIMENT AND RESULTS

To fairly compare different algorithms and methods, we
run each method 100 times and get the averaged perfor-

3. This is because after eating the last apple, the snake occupies the
whole board, with its head on one square and total body length of
(hw−1). As the snake starts with a 1-length body, it finally eats (hw−2)
apples.

mance with standard deviation. We ran the algorithms
on different boards with different sizes but in this report,
we only consider the board of size 10 × 10, as it is the
largest square board on which all the algorithms can be
run with a reasonable amount of time. Each run is stored
as a vector with each element being the score at that step.
The different outcomes of the experiment are discussed
in the following paragraphs.

Fig. 3 shows all the runs for all the algorithms. From
this figure we can get information not only about the
final scores achieved or how many steps did it take but
also about how successful each algorithm is, how consis-
tent, or how fast does it eat the apples. Clearly, only two
of the algorithms achieve the maximum score: A∗ with
forward checking and Almighty Move. However, the
way they achieve this maximum score is clearly different.
While A∗ with dead end checking is much faster all
the way to half the maximum score it loses efficiency
from there onwards. It is the opposite case for Almighty
Move. While at the beginning eats apples way slower
than any informed search algorithm, the way the snake
is organized at the end makes it very efficient, making it
extremely fast at the end games. A∗ and Best First Search,
match the efficiency of A∗ with forward checking at the
initial stages of the game but they are unable to reach
scores as high as A∗ with forward checking or Almighty
Move. Random Move is unreliable and inefficient but it
serves as a baseline.

Fig. 4 shows the mean score that each algorithm has
reached at a certain step. Note that if a run has finished
in an earlier step number, it is discarded, that is the
reason of the ripple in the figure. The thinner lines in the
graph show the values a standard deviation above and
below the mean. From this figure we confirm how Best
First Search, A∗, and A∗ with forward checking share
a similar efficiency at the beginning of the game while
Almighty Move’s is way lower. More importantly, we
see that Random Move struggles to increase the score
and how chances are that whatever the step number is,
Random Move score will be very low.

Fig. 5 shows the ratio of how many runs of each
algorithm will reach a certain score i.e. how reliable
each algorithm is. Unsurprisingly, Almighty Move keeps
a success ratio of 1 no matter what the score is, in
other words, each run of the Almighty Move will reach
the maximum score. However, Almighty Move is an
exception and the other algorithms will show a lower
success rate. Looking at the figure, it is easy to sort the
algorithms in ascending reliability order, from Random
Move to Almighty Move.

Finally, Fig. 6 shows the mean final score vs. the mean
number of steps needed to achieve it for each algorithm.
The ellipses axes are two standard deviations long. The
figure shows which region of the score-steps plane the
algorithm is most likely to end up. Disregarding the
Random Move algorithm, we see that the higher the
expected score is the more steps are also expected. Once
more, the figure shows how Almighty Move is able to
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Fig. 3. All the runs for the different algorithms in a 10x10 board. This figure is best seen in color and zoomed in.
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Fig. 4. The thicker lines correspond to the score average for all the runs that made it to that step. The thinner lines
show the values one standard deviation above and below the average. This figure is best seen in color and zoomed
in.
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Fig. 5. Success rate expressed as the number of runs
that made it to that score divided by the total number of
runs. From lowest success rate to highest, the algorithms
are: Random Move, Best First Search, A*, A* with forward
checking, and Almighty Move.
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Fig. 6. The central point of the ellipses correspond to the
average number of steps and final score for each run. The
axes length correspond to two standard deviations of the
mentioned metrics.

achieve the highest scores at expenses of using the most
steps.

5 DISCUSSION

In this section, we will analyze each method in depth
and show how and why each method can get stuck
in a dead end and finish the run prematurely. Based
on these observations, we will introduce a good way
to improve the overall performance by combining the
different methods carefully.

5.1 Dead End
5.1.1 Random Future Search
Random Move can easily reach a dead end since it
blindly moves forward. For instance, an example of a
current state is shown in Fig. 7 (a), if Random Move

Fig. 7. Random Move can easily reach a dead end since
it blindly moves forward. In this example the current state
is (a). If Random Move chooses to move up, then a dead
end will be reached.

Fig. 8. Best First Search will choose to move up based
on the current state (a). Once it moves up, a dead end is
reached, as shown in (b). Note that A∗ will avoid this dead
end.

chooses to move up, as shown in Fig. 7 (b), then a dead
end will be reached.

5.1.2 Best First Search
Best First Search has a one-move horizon and selects the
next move based on the Manhattan distance to the goal.
It is expected to run quite well and fast for the first few
apples as discussed in Section 3.1. However, when the
snake gets long it can easily lead to a dead end.

For example, in Fig. 8, Best First Search will choose
to move up, because the square on the top of the head
of the snake is closer to the apple than the one below.
However, once the move is done, the snake has reached
a dead end and the run will terminate.

5.1.3 A∗ Search
A∗ is guaranteed to find an optimal path if it exists.
In Snake, A∗ Search uses the Manhattan distance as
a heuristic. Up to some extend, A∗ is comparable to
Breadth First Search as both can find the optimal path.
However, A∗ Search considers heuristic information and
only expands nodes that can potentially lead to an op-
timal path, therefore expanding less nodes than Breadth
First Search.

Even though it can outperform Breadth First Search or
Depth First Search, A∗ Search can still lead a dead end if
the snake is long enough. Fig. 9 shows such a situation.
In this case, A∗ Search makes the snake succeed in eating
the apple but after that the snake can not do anything but
move forward until there are no more moves available.
This is incurred by the property of A∗ Search that it only
considers current situation and how to reach the goal
more efficiently without considering possible effects after
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Fig. 9. A∗ Search can always find the shortest path as
long as a valid path to the goal exists. However, it does not
consider the effects when the snake succeeds in eating
the apple. In this figure, A∗ Search chooses to move right
and up. However, after eating the apple, the snake does
not have any other choice but to continue going up until
no more moves are available. In contrast to Fig. 8 in this
case both Best First Search and A∗ will get stuck in the
dead end.

Fig. 10. A∗ Search with forward checking can still lead to a
dead end. To clearly see how the snake moves, we added
a gray line along the snake body to clarify the shape of the
snake. With the current state in (a), A∗ Search will choose
to move right and up. This would lead to a dead end, as
shown in (b). However, A∗ Search with forward checking
will consider possible effects by looking ahead a specified
number of steps. For instance, a forward checking depth
of three moves would make the snake move down, right,
and up. This results in (c). Even though the snake has
avoided a first dead end, it will eventually still run into a
dead end.

achieving the goal. In the next subsection we discuss
how the improvements in A∗ help avoiding this type of
situations.

5.1.4 A∗ Search with Forward Checking
As we see how and why A∗ Search can still lead to
a dead end, we modify it by adding some Forward
Checking capabilities as discussed in Section 3.3. This
forward checking will check several steps ahead to see if
this move incurs in a dead end. This upgrade is expected
to improve performance when comparing it to the plain
A∗ Search.

However, A∗ Search with forward checking also can
lead to an avoidable dead end. Fig. 10 demonstrates such
an example. With the current state in Fig. 10 (a), A∗

Search will choose to move right and up. This easily
leads to a dead end, as shown in (b). However, A∗

Search with a 3-step forward checking will make the
snake move down by one unit, before moving right and
up. This will result in (c), which is NOT a dead end at

Fig. 11. Almighty Move makes the snake circuit within the
board as in Fig. 1. (a) and (b) are the last two states of a
run of the Almighty Move in a 6 × 6 board. Note that the
snake reaches the maximum possible length.

present, because the snake can move left and the tip of
the tail will move downward to give way to the head.
This is determined by the snake’s growth mechanism.
But as the snake keeps moving left for some more steps,
the dead end will be eventually be reached. Still, this
dead end can be avoided if the snake moves down by
5 steps at (a), which will make room around the tip of
the tail. In other words, checking for more steps will
eliminate more dead ends that will otherwise occur with
fewer forward checking steps.

There is still one more possibility in which A∗ with
forward checking can lead to a dead end. When using
Breadth First Search to look for possible dead ends, apple
placement is not considered. The placement of the apple
can turn states that were initially thought not to be part
of a dead end into one. Imagine a case were the head
and the first parts of the snake are moved in a way that
fit in a certain region of the board, the placement of the
apple in that region will make the snake grow by one
unit potentially making the computations made by the
Breadth First Search algorithm useless.

Therefore, A∗ Search with forward checking can still
reach a dead end if the forward check depth is not
high enough. Even though checking for more steps will
eliminate more dead ends, the time spent on the check-
ing, can slow down the process significantly, making the
automated snake game solver unpractical.

5.1.5 Almighty Move
As analyzed previously, A∗ Search with forward check-
ing eliminates some dead ends by checking a specified
number of steps ahead, which means it makes the snake
circuit a bit to avoid dead ends by making more room
for the head to move. Therefore, it is intuitive to design a
sophisticated method for Snake which makes the snake
circuit within the board as introduced in Section 3.5.

Fig. 11 shows the last two steps of the snake using
Almigthy Move on a 6× 6 board. We see that the length
of the snake will finally equal the number of the units
in the board. This dead end is unavoidable and means
the game will end with the maximum score.

5.2 Improvement
Based on experiments and the analysis performed in
the previous subsection, we see that we can carefully



COMPSCI 271 INTRO ARTIFCL INTEL 7

combine some of the algorithms to get a better method
that works more efficiently and effectively.

First, we can run Best First Search algorithm for the
snake to eat the first apples. This algorithm has almost
guaranteed optimality before the snake eats the first
four apples. After eating these apples, we can switch
to A∗ Search with forward checking as a more reliable
alternative. Once the snake reaches a certain score we
can use Almighty Move as it keeps maximum reliability
while being the most efficient of the methods in the end-
game. This final switch will lead to perfect score game.

However, determining the score threshold at which to
switch to another algorithm is not easy. For instance, we
do not have theoretical analysis on when to switch from
A∗ Search with forward checking to Almighty Move. We
anticipate the threshold depends on the size of the board
and the snake’s length. This, however, is considered to
be outside of the scope of this course project.

6 CONCLUSION

In this report, we presented five algorithms and methods
to build an automated Snake Game solver. We analyzed
the different algorithms and conducted experiments to
study their performance.

Except Random Move, which is only used as a base-
line, the rest seem to offer advantages and disadvantages
depending on if the main priority is speed or reliabil-
ity. While the informed search algorithms can show a
reasonable reliability and the highest efficiency at the
beginning of the run this properties disappear at the end
game. In contrast, Almighty Move is a slow algorithm at
the beginning of the run but has guaranteed a maximum
score and its efficiency is the highest at the end game.
Intuition makes the authors think that a combination of
the different algorithms can achieve perfect reliability
while keeping the beginning of the game efficiency high.

However, determining at which score threshold the
switch between algorithms has to be done is a nontrivial
problem which is left as future work. We anticipate the
score threshold will depend on the size of the board and
the different parameters of each algorithm. Performance
can still be further improved by implementing some
other AI algorithms as the ones introduced in [4].
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