
An Introduction to Equation Solving in Finite Systems
UCI Math Circle

1 Introduction

Tonight we will be learning about the finite systems (rings) Zn, where n is a natural number greater
than or equal to 2. When we solve linear or quadratic equations over the real numbers, we have a
set of techniques that after time become second nature to us. For instance, suppose we try to solve
the linear equation y = mx + b for x. We subtract b from both sides and multiply by 1

m , so long
as m is not zero. Or suppose we want to factor x2 − 4 as (x− 2)(x + 2). If you were asked to find
where this product is zero, you would set (x − 2) = 0 and (x + 2) = 0 and have your solution. As
you will see tonight, however, these techniques we take for granted may have strange behavior in
finite systems. In fact, some of these finite systems will even have non-zero elements that together
multiply to zero (these are called zero divisors) and fail to have multiplicative inverses!

1.1 Acknowledgments
This lesson was heavily influenced by the Teachers’ Circle Workshop paper on finite systems. The
challenge problem found later in this lesson was influenced by Chapter 19, Exercise 12 in Fraleigh’s
“A First Course in Abstract Algebra.”

2 Directions for the Instructor

Begin by defining Zn as the set {0, 1 . . . , n − 1} together with multiplication and addition modulo
n. Introduce the notation +n and ×n for addition and multiplication modulo n, respectively, and
define the modulo operation. To help the students understand these concepts, fill out addition and
multiplication tables together as a class for Z3 and Z4, given below.

+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

×3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Addition and multiplication tables for Z3.

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

×4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Addition and multiplication tables for Z4.

To check the understanding of the class, ask whether Z3 and Z4 have multiplicative and additive
inverses and to identify them. Ask students to find a non-zero element of Z4 which does not have
a multiplicative inverse and ask students if such an element exists in Z3. Ask the students to find
an example of a zero divisor. To demonstrate the usefulness of the tables, help students solve
3x + 3 = 2 in Z4. Ask them for the additive inverse of 3 (what added to 3 makes 0 in Z4) and for
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the multiplicative inverse of 3 (what times 3 makes 1 in Z4.) Demonstrate the following.

3x + 3 ≡4 2 ⇐⇒ 3x + 3 + 1 ≡4 2 + 1

⇐⇒ 3x ≡4 3

⇐⇒ (3)3x ≡4 (3)3

⇐⇒ x ≡4 1.

Explain that when we are working modulo n the solutions we find to equations are not single values.
Using the example above, explain that x ≡4 1 means that any integer of the form 4m + 1 will be a
solution to our equation.
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3 Worksheet for Students

3.1 Introduction and Background Information
Here is a copy of the introduction and examples done together as a class. If you are comfortable
with the material so far feel free to move on to the problems!

Tonight we will be learning about the finite systems (rings) Zn, where n is a natural number greater
than or equal to 2. When we solve linear or quadratic equations over the real numbers, we have a
set of techniques that after time become second nature to us. For instance, suppose we try to solve
the linear equation y = mx + b for x. We subtract b from both sides and multiply by 1

m , so long
as m is not zero. Or suppose we want to factor x2 − 4 as (x− 2)(x + 2). If you were asked to find
where this product is zero, you would set (x − 2) = 0 and (x + 2) = 0 and have your solution. As
you will see tonight, however, these techniques we take for granted may have strange behavior in
finite systems. In fact, some of these finite systems will even have non-zero elements that together
multiply to zero (these are called zero divisors) and fail to have multiplicative inverses!

Let’s start by defining what we mean by Zn. Let n be an integer greater than or equal to 2.
Then Zn is the set of numbers {0, 1, 2, . . . , n− 1}. Using this set of numbers, instead of adding and
multiplying how we normally would, we do these operations modulo n. This is just a fancy way
of saying that we record the remainder when we divide by n and take that as our answer. Let’s
look at an example to see what this means. The set Z3 is equal to {0, 1, 2}. To add in Z3 we
add numbers like we normally would but divide by 3 and take the remainder as our answer. For
example, 1 + 2 = 3 and 3 divide by 3 is 1, which has 0 remainder. We say that 1 +3 2 ≡3 0; +3

just tells us that we are doing addition modulo 3 and ≡3 tells us that our solution is an element of
Z3 (there is one more important thing to note about this symbol, but we will talk about it a little
later.) Notice that the elements of Z3 are all the possible remainders we can get when we divide by 3.

Let’s do one more example with multiplication this time: 2 × 2 = 4 and 4 divided by 3 has re-
mainder 1. We say that 2 ×3 2 ≡3 1. Notice that similar to addition, ×3 just tells us that we are
doing multiplication modulo 3. Below you will find the addition and multiplication tables for Z3

and Z4. You read them by taking a number in a row and a number in a column. Then the sum
(or product) of the numbers is equal to the number you find where the row and column intersect.
Suppose we wanted to find what 2×4 2 is in Z4. The highlighted cell in the multiplication table for
Z4 shows where we could find the answer to 2×4 2.

+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

×3 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Addition and multiplication tables for Z3.

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

×4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Addition and multiplication tables for Z4.
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Looking at the multiplication table for Z4, do you notice anything strange? We see that 2 is a
non-zero number, but it has no multiplicative inverse. If we look along the row for 2 we see that
there is no 1. This means that there is no other element in Z4 that we could multiply 2 with to
get 1. The number 2 in Z4 is what we call a zero divisor. Notice that 2 is not equal to 0 but
2×4 2 ≡4 0. Are there any elements in Z3 with this property? We will now try to solve the equation
3x +4 3 ≡4 2. Looking at the table for Z4, we see that the additive inverse of 3 is 1 (3 +4 1 ≡4 0)
and the multiplicative inverse of 3 is 3 (3×4 3 ≡4 1.) Then, to solve the equation we first add 1 to
both sides and then multiply both sides by 3.

3x +4 3 +4 1 ≡4 2 +4 1 (Add 1 to both sides.)

3x ≡4 3 (2 +4 1 ≡4 3)

3×4 3x ≡4 3×4 3 (Multiply both sides by 3.)

x ≡4 1

So we see that x ≡4 1 is our solution. The other important thing to note about the ≡4 notation is
that it means our equation does not just have one solution, but a family of them. Notice that x ≡4 1
means that any x that has a remainder of 1 when divided by 4 will be a solution to our equation.

3.2 Problem Set
1. Similar to how we filled out addition and multiplication tables for Z3 and Z4 as a class, fill out

the corresponding tables for Z6.

+6 0 1 2 3 4 5

0

1

2

3

4

5
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×6 0 1 2 3 4 5

0

1

2

3

4

5

2. Fill out the addition and multiplication tables for Z7.

+7 0 1 2 3 4 5 6

0

1

2

3

4

5

6

×7 0 1 2 3 4 5 6

0

1

2

3

4

5

6
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3. Using your tables for addition and multiplication in Z7, answer the following questions.

(a) What is the additive inverse of 2 in Z7 ? (what number added to 2 is 0?)

(b) What is the multiplicative inverse of 2 in Z7 ? (what number multiplied with 2 is 1?)

(c) Using parts (a) and (b), solve 2x + 2 = 4 in Z7.

(d) Since Z7 only has 7 elements, it is easy to check for solutions to linear equations. We just
have to try all possible values of x. Show that you can also find solutions to 2x + 2 = 4
in Z7 by filling out the table below.

x 2x + 2

0

1

2

3

4

5

6

(e) What is the range of f(x) = 2x + 2 in Z7 ? (Range is the set of values the function
outputs. What are the possible values of 2x + 2 in Z7?) Do you notice anything special
about it? How does it compare to the range of f(x) = 2x + 2 in the real numbers?
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4. We now try to solve 3x + 2 = 4 in Z6. Fill out the table below (remember that all addition
and multiplication should be done modulo 6.) Do you see any solutions?

x 3x + 2

0

1

2

3

4

5

5. Why doesn’t 3x + 2 = 4 have a solution in Z6? (Hint: think about multiplicative inverses.
What elements in Z6 don’t have multiplicative inverses?)

6. (MC4-HReiter) We now move to solving quadratic equations. When we think of solving
quadratic equations over the real numbers, we have two main techniques at our disposal:
factoring and the quadratic formula. The following problems are meant to highlight why these
techniques work in R and help us figure out when they might work in finite systems. Tonight
we will be focusing on factoring.

(a) How would you try to solve x2 − 4x + 3 = 0 over the real numbers using the factoring
technique?

(b) Try multiplying (x − 3)(x − 1) together in Z7. Z7 is a commutative ring, which means
multiplication has the commutative property (a × b = b × a for any a, b in Z7) and you
may expand the product using normal techniques. Remember that multiplication and
addition are done modulo 7 and that −3 means the additive inverse of 3, which is 4.
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(c) In the previous question you should have found that (x−3)(x−1) is equal to x2−4x+3.
Look at the multiplication table for Z7. Do you see any non-zero elements that do not
have a multiplicative inverse? Remember that if a non-zero number does not have a
multiplicative inverse it is called a zero divisor. If Z7 has no zero divisors, then a× b = 0
if and only if a or b is 0. Using this, how many solutions does (x− 3)(x− 1) = 0 have in
Z7? What are they?

7. How many solutions does x2 − x = 0 have in the real numbers? What are the solutions? How
would you factor x2 − x?

8. Fill out the table below to find the solutions to x2− x = 0 in Z6. Remember that all multipli-
cation and addition is done modulo 6.

x x2 − x

0

1

2

3

4

5

9. Using the table above, how many solutions to x2 − x = 0 are there in Z6? Is this more or less
than the number of solutions over the real numbers?

10. If we try to solve x(x − 1) by setting x = 0 and x − 1 = 0 in Z6 do we get all the solutions?
Why or why not?
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4 Challenge Problem/Take-Home Problem

(Fraleigh-19,12) For this problem, we will be looking at Z3 = {0, 1, 2}. Z3 is said to have character-
istic 3. This means that if we take any element of Z3 and multiply by 3, it will be equal to 0 modulo
3. To see that this is true, try it out for yourself in the table below. Remember that multiplication
is done modulo 3.

x 3x

0

1

2

Show that because Z3 has characteristic 3 for any a, b in Z3 it is true that (a + b)9 = a9 + b9.
Hint: write (a + b)9 = ((a + b)3)3. First figure out what (a + b)3 is in Z3 and figure out what the
cube of that is in Z3.
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5 Solutions to Worksheet

1. Here are the addition and multiplication tables for Z6. Remember that when working in Z6 we
divide by 6 and record the remainder when doing addition and multiplication. For example,
5 +6 1 ≡6 0 since the remainder of 6 divided by 6 is 0.

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

×6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

2. Here are the addition and multiplication tables for Z7. We fill them out similarly to how we
did for Z6, but now record the remainder after division by 7.

10



+7 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

×7 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

3. Using your tables for addition and multiplication in Z7, answer the following questions.

(a) What is the additive inverse of 2 in Z7 ? (what number added to 2 is 0?)

We look at the row for 2 in our addition table and see that 2 + 5 ≡7 0. We see that
5 is the additive inverse of 2 in Z7.

(b) What is the multiplicative inverse of 2 in Z7 ? (what number multiplied with 2 is 1?)

We look in our multiplication table for Z7 and look for something that multiplies with 2
to make 1. We see that 2× 4 ≡7 1, so 4 is the multiplicative inverse of 2 in Z7.

(c) Using parts (a) and (b), solve 2x + 2 = 4 in Z7.
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We can solve the equation as follows.

2x + 2 + 5 ≡7 4 + 5

2x ≡7 2

(4)2x ≡7 (4)2

x ≡7 1

We see that x ≡7 1, so any integer of that form 7n+ 1 will be a solution to this equation
since the remainder of 7n + 1 is always 1 if n is an interger.

(d) We will now show that we can find the solution to the equation by simply trying every
value of x and seeing if we get that 2x + 2 = 4.

x 2x + 2

0 2

1 4

2 6

3 1

4 3

5 5

6 0

(e) What is the range of f(x) = 2x+ 2 in Z7? Do you notice anything special about it? How
does it compare to the range of f(x) = 2x + 2 in the real numbers?

To find the range of f(x) we look at the right-most column of our table. We see that
{0, 1, 2, 3, 4, 5, 6} are the elements of the range. Notice that they are the same as the
elements in Z7. When a function has this property we say that it is surjective (or onto);
the equation f(x) = 2x + 2 in the real numbers is also surjective. This means that for
any number y we pick, we can always solve y = 2x + 2.

4. We now try to solve 3x + 2 = 4 in Z6. Fill out the table below (remember that all addition
and multiplication should be done modulo 6.) Do you see any solutions?

x 3x + 2

0 2

1 5

2 2

3 5

4 2

5 5
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Looking in the right column, we never see the number 4 appear. We see that there are no
solutions to this equation in Z6.

5. Why doesn’t 3x + 2 = 4 have a solution in Z6? (Hint: think about multiplicative inverses.
What elements in Z6 don’t have multiplicative inverses?)

Let’s try to solve 3x + 2 = 4 in Z6. Looking at our addition table we see that the inverse of 2
is 4, but what happens when we try to find a multiplicative inverse for 3? We see that there
is no element in Z6 that multiplies with 3 to make 1.The reason for this is that 3 is a zero
divisor. Notice that 2 times 3 is 0 in Z6. Just like how we can’t divide by zero, we can’t divide
by 3 in Z6. For those who are interested, the “deeper” reason that there is no solution to this
equation is that the greater common divisor of 3 and 6 does not divide 2; to learn more, try
searching for “solving linear equations in a ring.”

? From this point on we will drop the “≡” notation when solving equations, but please keep
in mind that when we get solutions in our finite systems, they are not single solutions but a
family of solutions that all have the same remainder.

6. (MC4-HReiter)

(a) How would you try to solve x2 − 4x + 3 = 0 over the real numbers using the factoring
technique?

We factor this equation as x2 − 4x + 3 = (x − 3)(x − 1) and set it equal to zero. Since
every non-zero real number has a multiplicative inverse, we know that there are no zero
divisors in the real numbers. Because of this, (x− 3)(x− 1) = 0 means the only solutions
are given by x− 3 = 0 and x− 1 = 0, so x = 3 and x = 1 are our solutions.

(b) Try multiplying (x − 3)(x − 1) together in Z7. Z7 is a commutative ring, which means
multiplication has the commutative property (a × b = b × a for any a, b in Z7) and you
may expand the product using normal techniques. Remember that multiplication and
addition are done modulo 7 and that −3 means the additive inverse of 3, which is 4.

Because Z7 has many nice properties (it is a field!) we can just FOIL this as (x−3)(x−1) =
x2 − x − 3x + 3 = x2 − 4x + 3. What if we didn’t know Z7 had these nice properties?
Any ring must satisfy the distributive law, so we could alternatively solve the problem
like this,

(x− 3)(x− 1) = (x− 3)(x) + (x− 3)(−1)

= x2 − 3x− x + 3

= x2 − 4x + 3.

(c) In the previous question you should have found that (x−3)(x−1) is equal to x2−4x+3.
Look at the multiplication table for Z7. Do you see any non-zero elements that do not
have a multiplicative inverse? Remember that if a non-zero number does not have a
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multiplicative inverse it is called a zero divisor. If Z7 has no zero divisors, then a× b = 0
if and only if a or b is 0. Using this, how many solutions does (x− 3)(x− 1) = 0 have in
Z7? What are they?

We see that Z7 has no zero divisors. Because of this, (x − 3)(x − 1) is equal to 0 if
and only if (x − 3) = 0 or (x − 1) = 0. This shows that there are only two solutions:
x = 3 and x = 1.

7. How many solutions does x2 − x = 0 have in the real numbers? What are the solutions? How
would you factor x2 − x?

We can factor x2 − x = 0 into x(x − 1) = 0. Because R has no zero divisors, we know
that x(x − 1) = 0 if and only if x = 0 or x = 1. We see that there are exactly 2 solutions:
x = 0 and x = 1.

8. Here is the table for x2 − x = 0 in Z6. Remember that all multiplication and addition is done
modulo 6.

x x2 − x

0 0

1 0

2 2

3 0

4 0

5 2

9. Using the table above, how many solutions to x2 − x = 0 are there in Z6? Is this more or less
than the number of solutions over the real numbers?

We see from the table about that there are 4 solutions: x = 0, x = 1, x = 3, and x = 4.
Recall that there were only 2 solutions over the real numbers.

10. If we try to solve x(x − 1) by setting x = 0 and x − 1 = 0 in Z6 do we get all the solutions?
Why or why not?

Notice that we get some of the solutions, but not all of them. This is again because Z6

has zero divisors, and it is possible for two non-zero numbers to still multiply to zero.

6 Solution to Challenge/Take-Home Problem

We first expand (a+b)3. We can do this using normal techniques because Z3 is a field and has many
of the nice properties we associate with the real numbers. Recall that 3 times anything in Z3 is 0
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(the table you filled out should have all zeros in the right column.)

(a + b)3 = a3 + 3a2b + 3ab2 + b3

= a3 + b3

((a + b)3)3 = (a3 + b3)3

= a9 + 3a6b3 + 3a3b6 + b9

= a9 + b9.

You may be wondering if a6b3 and other powers of a and b are contained in Z3. The answer is
yes because Z3 is closed under both addition and multiplication. This means that no matter what
we add and multiply in Z3, the sum or product will stay in Z3. For those who are interested, you
may look up the definitions of groups and rings to learn more about the properties of Z3 and other
similar structures.
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