
Fermat’s Little Theorem and Related Results
UCI Math Circle

1 Introduction

Tonight we will be learning about a theorem known as Fermat’s Little Theorem which can help us
answer questions like “What is the remainder of 8103 when divided by 13?” without even needing to
use a calculator, or help us prove statements like “15 divides n33−n for any integer n.” While these
problems may seem intimidating at first, Fermat’s Little Theorem gives us techniques that allow us
to quickly find solutions using little more than modular arithmetic. We will begin by going over the
basics of modular addition and multiplication, and then explore a number of example problems that
will lead up to the statement of the theorem and the solutions of the examples above.

1.1 Acknowledgment

The two main examples in the lesson as well as the challenge problem are taken from Section 20 in
Fraleigh’s A First Course in Abstract Algebra.

2 Directions for the Instructor

Work through the background information portion of the student worksheet together as a class. If
the class has little experience with modular arithmetic, it may be helpful to solve some additional
examples together or write out addition and multiplication tables for small fields like Z3 and Z5. It
may be helpful to work only in Zp for p prime since all examples in this lesson are done modulo p.
The challenge problem in particular requires the existence of a multiplicative inverse for a non-zero
element, and introducing rings with zero divisors may cause confusion/ need explanations that are
outside the scope of this lesson.

Some problems on the worksheet involve writing an element modulo n as the “negative” of its
additive inverse (e.g. 4 is equivalent to -1 modulo 5.) This has the potential to cause confusion
for the students, and using addition and multiplication tables to explain additive and multiplicative
inverses could prove to be useful, if more explanation is needed than what is provided in the lesson.
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3 Worksheet for Students

3.1 Background Information

Suppose you were asked to show that for any integer n it is true that n33 − n is divisible by 15. Or
suppose instead you were asked to calculate the remainder of 8103 when divided by 13. Without
knowing the right tools to use, both of the questions look extremely difficult. The first question in
particular appears to be a very powerful statement; how could that be possibly true for every single
integer n? Perhaps you could use computation software like Mathematica or Wolfram Alpha to help
you figure out the answer to the second question, but it still cannot help us answer the first. What if
there was an easier way to approach these problems, a method where we could easily find the answer
without even needing to use a calculator? As we will see today, there is a very powerful theorem
known as Fermat’s Little Theorem that can help us answer these questions much more easily than
we may initially think.

Before we introduce the theorem, let’s go over some basics of modular addition and multiplica-
tion. Modular addition and multiplication is very similar to the addition and multiplication we are
already familiar with. The main difference is that we record the remainder as our answer. This will
make more sense with an example. If you were asked to compute 5 + 2 modulo 6 this means that
we add 5 and 2 how we normally would and get 7, then we take the remainder of 7 divided by 6,
which is 1. In symbols we would write 5 + 2 ≡ 1 (mod 6). The “≡” symbol is very similar to the
“=” symbol. It tells us that our solution is not one single number, but a family of them. Notice
that 1, 7, 13, and 19 all have a remainder of 1 when we divide them by 6. 5 + 2 ≡ 1 (mod 6) just
means that 7 is a part of the family of integers that have remainder 1 when divided by 6.

Multiplication modulo n, where n is an integer, is very similar to addition modulo n. We will
look at an example. To compute 5× 2 modulo 7 we first multiply 5 and 2 how we normally would
and get 10. Then, we divide 10 by 7 and record the remainder, which is 3. In symbols, this is
5× 2 ≡ 3 (mod 7). We are now ready to start working on the problem set. The first few questions
are meant to help us prepare for the theorem.

3.2 Problem Set

1. What is a prime number? [Hint: Some examples of prime numbers include 7 and 11. An
integer is prime if its only divisors are 1 and ...]

2. Circle the prime numbers in the following list.

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20
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3. What is the prime factorization of 15? [Recall that the prime factorization of an integer is
how we may write it as a product of powers of prime numbers. For example, 8 = 2×2×2 = 23.]

4. We know that 15 divides 30. Using your answer to the previous question, what else must
divide 30? [Hint: We can write 15 as a product of prime numbers. These numbers must also
divide 30. What are they?]

5. Suppose we want to show that an integer is divisible by 15. One way to do it is to show that
the remainder of the integer when divided by 15 is 0. What is another way we could show the
integer is divisible by 15 using the prime factorization of 15?

6. If a is divisible by b, what is the remainder of a divided by b? [Hint: It might help to think of an
easier example at first. We know that 6 is divisible by 3, so the remainder of 6 divided by 3 is...]

7. If a is not divisible by b, then what are the possible remainders of a divided by b? [Hint:
Think of an easier example first. What integers between 0 and 7 (inclusive) are not divisible
by 7? If we try to divide these integers by 7, what are the remainders?]
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8. One of the very nice properties the integers have is that given any integer a and any integer b
not equal to zero, we may write a = bq + r where q is an integer and r is the remainder of a
divided by b. Possible values of r are given by 0, 1, 2 . . . , |b− 1|. The two vertical bars around
b − 1 mean absolute value, or the distance from 0 to b − 1. For example, if we let a = 9 and
b = 5 then 9 = 5× 1 + 4. Notice that in this example q = 1 and r = 4.

(a) Let a = 10 and b = 2. What are q and r? Verify that 10 = 2q + r.

(b) Let a = 10 and b = 3. What are q and r? Verify that 10 = 3q + r.

(c) Explain why if a is divisible by b that there exists some integer q such that we can write
a = bq. [Hint: Using the fact that we can always write a = bq + r and your answer to
Problem 6, what must r be in this case?]

(d) Using your answer to part (b), what is 10 modulo 3? That is, what is the remainder of 10
divided by 3. [Hint: Your answer to part (b) already contains the answer. You shouldn’t
have to do any more work!]

We are now ready for the statement of Fermat’s Little Theorem! Don’t worry if this seems
confusing at first, we will do an example with it shortly.

Theorem 1 (Fermat’s Little Theorem). Let a be an integer and let p be a prime number that
does not divide a. Then the remainder of ap−1 divided by p is equal to 1. In symbols, we write
ap−1 ≡ 1 (mod p).

4



Let’s go back to the question that asked us to compute the remainder of 8103 when divided by
13.

9. (Fraleigh 20.3) We will compute the remainder of 8103 when divided by 13 using the following
steps.

(a) Is 13 a prime number? 13 is a small enough number that you can check this by hand if
you are unsure. Pick integers between 2 and 12 inclusive and test each one to see if it
divides 13.

(b) Does 13 divide 8? Have we satisfied the conditions of the theorem?

(c) Find q and r such that 103 = 12q + r.

(d) Write 8103 = (812)q8r using your values for q and r found above. [Remember the rule
that xab+c = (xa)bxc. ]

(e) What can we conclude about the remainder of 812 when divided by 13? Using this, what
is the remainder of (812)q when divided by 13 for the value of q you found above?
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(f) You should have found above that (812)8 ≡ 1 (mod 13). We have left to determine what
87 is equivalent to modulo 13 since 1 × 87 = 87. Notice that 8 + 5 = 13 ≡ 0 (mod 13),
so 5 is the additive inverse of 8. That means we can write 8 ≡ −5 (mod 13). Then,
(−5)7 = (−5)6(−5)1 = (25)3(−5). The remainder of 25 modulo 13 is -1, so substituting
-1 for 25 above shows us that (25)3(−5) ≡ (−1)3× (−5) (mod 13) ≡ (−1)(−5) (mod 13).
Using this, what is the remainder of 87 when divided by 13?

(g) Putting everything together, what is the remainder of 8103 when divided by 13? [Hint:
Look at your answer to the previous question. Why are we done at this step?]

10. (Fraleigh 20.5) We will now show that n33 − n is divisible by 15 for any integer n using the
following steps.

(a) 15 is not a prime number. Its prime factorization is 15 = 3× 5. To show that n33 − n is
divisible by 15 it suffices to show that 5 divides n33−n and 3 divides n33−n. Let’s start
with 3. Remember that if we want to use the theorem we have to make sure that 3 does
not divide n. Let’s see what happens if 3 does divide n. Factor n33 − n by dividing out
one power of n. Why does it follow that 3 divides n33 − n for every n?

(b) Suppose now that 3 does not divide n. Then since n33 − n = n(n32 − 1), if we want to
show that n33 − n is divisible by 3, it must divide n32 − 1 since it doesn’t divide n. Find
q and r such that 32 = 2q + r.

(c) Write n32 as (n2)qnr using the values for q and r you found above. Using the theorem,
what is this equivalent to modulo 3?
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(d) Explain why it follows from the previous question that n32 − 1 is divisible by 3. [Hint:
Remember that if it is divisible by 3 it must have remainder zero. Why does n32−1 have
remainder 0?]

(e) Repeat the steps we used above to show that 3 always divides n33 − n to show that 5
always divides n33 − n.
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4 Challenge/Take-Home Problem

The challenge problem will make use of another theorem that can be used to prove all kinds of
interesting results. It is called Wilson’s Theorem and it is stated below.

Theorem 2 (Wilson’s Theorem). Let p be a prime number. Then the remainder of (p − 1)! when
divided by p is p − 1. Notice that since p − 1 + 1 ≡ 0 (mod p), this is the same as saying that the
remainder of (p− 1)! when divided by p is −1. In symbols, if p is prime then (p− 1)! ≡ −1 (mod p).

Note that the notation “n!” is read as “n-factorial” and it means to multiply all positive integers
less than or equal to n together. For example, 6! = 6× 5× 4× 3× 2× 1. Here is your question.

(Fraleigh Ex.20.19) Let p be a prime number greater than or equal to 3. Find the remainder of
(p− 2)! when divided by p.
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5 Solutions to Worksheet

1. A prime number is an integer greater than 1 whose only divisors are one and itself. For
example, 4 is not a prime number since we may write it as the product 2× 2, but 5 is a prime
number since it can only be written as the product 1× 5.

2. Here are all the prime numbers between 1 and 20: 2,3,5,7,11,13,17,19.

3. The prime factorization of 15 is 3 × 5. Notice that 15 = 3 × 5 where both 3 and 5 are prime
numbers.

4. Since 15 = 3× 5 we know that both 3 and 5 must divide 30. This follows from a more general
statement that if a and b are integers such that the greatest common divisor (gcd) of a and b
is 1 and a divides c and b divides c, then ab divides c. For those who are interested, here is a
proof of the general statement. Since a divides c there exists some integer d such that c = ad.
Similarly, since b divides c there exists some integer e such that c = be. Since the gcd of a
and b is 1, there exists f and g such that af + bg = 1. Multiplying both sides by c, we have
that caf + cbg = c. Substituting c = ad and c = be, we see that beaf + adbg = c and since ab
divides the left hand side of this equation, it must divide c.

5. If we want to show that an integer is divisible by 15, it is enough to show that it is divisible
by 3 and 5, since the gcd of 3 and 5 is 1, the previous answer shows that if 3 divides n and 5
divides n, then 3× 5 = 15 divides n.

6. If a is divisible by b, then the remainder of a divided by b must be zero, since a
b is an integer.

7. If a is not divisible by b then the possible remainders of a divided by b are 1, 2, 3, . . . |b − 1|,
where |b − 1| means the absolute value of b − 1, or the distance from b − 1 to 0. Notice that
these are all the integers less than |b|. Since they are smaller than |b| and not equal to 0, they
cannot be divisible by b.

8. (a) Notice that 10 = 2× 5 + 0. We see that q = 5 and r = 0.

(b) Notice that 10 = 3× 3 + 1, so q = 3 and r = 1.

(c) For any integers a and b 6= 0 we can write a = bq + r for some integer q and some
remainder r. If b divides a, then b must divide bq + r, which means r = 0, since the
remainder is strictly less than |b|. If r 6= 0, then a would not be divisible by b since b
would not divide r. Hence, we can write a = bq for some integer q.

(d) All we need to do for this question is look at the remainder in part (b). We see that
10 = 3× 3 + 1, which means that when we try to divide 10 by 3 we get a remainder of 1.

9. (a) 13 is a prime number.

(b) 13 does not divide 8. We have satisfied all conditions of the theorem since we want to
look at the remainder of 8103 and have acknowledged that 13 is a prime number that does
not divided 8.

(c) We know that 12 × 8 = 96 and 12 × 9 = 108, so 8 is the maximum possible value for q.
The difference between 103 and 96 is 7, so we see that 103 = 12 × 8 + 7. That is, q = 8
and r = 7.

(d) We notice that 8103 = 812×8+7 = 812×8 × 87 =
(
812
)8

87.

(e) Remember that by Fermat’s Little Theorem we have that if p is a prime that does not
divide a, then ap−1 has remainder 1 when divided by p. In this case, p = 13 and
a = 8. Notice that 12 = 13 − 1, so 812 has remainder 1 when divided by 13. Now,
(812)8 ≡ (1)8 ≡ 1 (mod 13). Hence, we see that (812)8 ≡ 1 (mod 13).
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(f) All we have left to do is compute what the remainder of (−1)(−5) is modulo 13. We
know that (−1)(−5) = 5, which is still 5 modulo 13. We see that 87 has remainder 5
when divided by 13.

(g) Let’s put everything together. We showed that 8103 = (812)887. Now, when we divide
this by 13 we know that (812)8 has remainder 1, so (812)887 ≡ 1× 87 (mod 13). But we
also know that 87 has remainder 5 when divided by 13. Hence, 8103 ≡ 5 (mod 13).

10. (a) We can factor n33 − n as n33 − n = n(n32 − 1). Since 3 divides n, we know that n = 3q
for some integer q. Then n33 − n = 3q(n32 − 1) and we see that n33 − n is a multiple of
3 for any n, so it must be divisible by 3.

(b) Observe that 32 = 2× 16 + 0, so q = 16 and r = 0.

(c) We write n32 as n2×16 = (n2)16. Because 3 is a prime number, and because we assumed
that 3 does not divided n, we know that n2 ≡ 1 (mod 3), so n32 ≡ 116 ≡ 1 (mod 3).

(d) Notice that since n32 ≡ 1 (mod 3), we have that n32 − 1 ≡ 1 − 1 ≡ 0 (mod 3). This
means that when we divide n32 − 1 by 3 we get a remainder of zero. This means that
n32 − 1 is divisible by 3. Notice that when we try to divide n(n32 − 1) by 3 we get that
n(n32 − 1) ≡ n× 0 (mod 3) ≡ 0 (mod 3), so n33 − n has zero remainder when we divide
by 3 for any n.

(e) suppose that 5 divides n. Then n = 5q for some integer q and we may write n33 − n =
5q(n32 − 1), so it is a multiple of 5 and thus divisible by 5. If 5 does not divide n, then
since 5 is a prime number which does not divide n, we know that n4 ≡ 1 (mod 5). Since
32 = 8× 4, we know that n32 = (n4)8 ≡ 18 ≡ 1 (mod 5). Hence, n(n32 − 1) ≡ n(1− 1) ≡
0 (mod 5). Because n33 − n is divisible by 5 and 3, and since the gcd of 5 and 3 is 1, we
know that 5× 3 = 15 must divide n33 − n as well.

6 Solution to Challenge/Take-Home Problem

We know from Wilson’s Theorem that (p− 1)! ≡ −1 (mod p). Writing out the terms of (p− 1)! we
see that (p− 1)! = 1× 2× · · · × (p− 3)× (p− 2)× (p− 1). Notice that if we remove the (p− 1) term
in the above product then we have (p− 2)! Putting this together, we see that following.

(p− 1)! = 1× 2× · · · × (p− 3)× (p− 2)︸ ︷︷ ︸
=(p−2)!

×(p− 1) ≡ −1 (mod p)

1× 2× · · · × (p− 3)× (p− 2)(p− 1)(p− 1)−1 ≡ −1× (p− 1)−1 (mod p) (multiply by inverse of p− 1)

(p− 2)! ≡ −1× (p− 1)−1 (mod p).

Notice that (p−1)(p−1) = p2−2p+1 has remainder 1 when divided by p. This means that (p−1) is
its own multiplicative inverse when we’re working modulo p. In symbols, (p− 1)−1 ≡ p− 1 (mod p).
We substitute this in the equations above.

(p− 2)! ≡ −1× (p− 1)−1 (mod p)

≡ −1× (p− 1) (mod p)

≡ p + 1 ≡ 1 (mod p).

Hence, we see that for a prime number p greater than or equal to 3 that (p− 2)! ≡ 1 (mod p).
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