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The Riemannian metric problem

I

I ω a unit vector in Rn, Uω(x , t) the solution of the IVP

(∂2
t −∆g )Uω = 0, on Rn × R,

Uω(x , t) = H(t − x · ω) on Rn × (−∞,−1).

I Here ∆g = |g |−1/2∂i
(
|g |1/2g ij∂j

)
. Here (g ij ) = (gij )

−1 and |g | = detg .

I Similar problem for ρ(x)∂2
t −∆ where 1/

√
ρ is medium velocity (a positive

smooth function) with ρ(x) = 1 outside B.

I Ω = {ei} ∪ {(ei + ej )/
√

2}i 6=j ; n(n + 1)/2 incoming wave dir.

FT : g → [Uω |∂B×(−∞,T )]ω∈Ω (forward map).

Question: Is FT injective?

I FT nonlinear. Formally determined problem. If ψ : Rn → Rn is a
diffeomorphism with ψ(x) = x outside B then F(g) = F(ψ∗(g)).
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The results

Theorem [Oksanen, R, Salo 2024]. Suppose g is a Riemannian metric on Rn with
g = gEucl outside B. If FT (g) = FT (gEucl ) and T large enough, there is a
diffeomorphism ψ : Rn → Rn with ψ(x) = x outside B such that ψ∗(g) = gEucl .

I Similar results for ρ∂2
t −∆ for positive function ρ(x) with ρ = 1 outside B.

Need only one direction ω.

I Similar result for �h where h(x , t) is a Lorentzian metric (details in later slides).
Lorentzian case requires considerable more work than the Riemannian case.

I Our result a small step towards the injectivity of F . Does not assume absence
of focal points for boundary normal flow of g (associated with Uω).

I Few results for (multi-dim) formally determined inverse problems for hyperbolic
operators with non-constant velocity.

I There is no such partial result for the anisotropic (elliptic) Impedance
Tomography problem (operator ∆g , data D-N map) if n ≥ 3, even though that
is an overdetermined problem.
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Partial history

I For ρ(z)∂2
t − ∂2

z , injectivity, stability etc. of FT . Gelfand-Levitan, Krein, · · · .

I For ρ∂2
t −∆, [Romanov, 2002] showed FT is injective if ρ close to 1.

The assumption guarantees boundary normal geodesic flow (associated with Uω)
has no focal points. Even with this simplifying assumption, result is non-trivial.

I For ρ∂2
t −∆, [Romanov, 2002] showed, with ω = ez , F is injective over a small

interval z if ρ(x , y , z) is analytic in x , y . Uses ideas from 1-dim case.

I For ρ∂2
t −∆ (and for �+ q), but with a different type of source

U(·, 0) = f (·), Ut(·, 0) = 0, on B × [0,T ]

where f always positive. [Bukhgeim and Klibanov, 1981] proved injectivity if
there is a convex function for the Riemannian metric ρI on Rn.

I For ∂2
t −∆g , for “overdetermined” problem of recovering g from hyperbolic

D-N data, Belishev and Kurylev (BC method) reconstructed (including
uniqueness) the manifold and Riemannian metric g ;
[Stefanov and Uhlmann 2005] proved stability near simple metrics.

I For formally determined problems for the constant velocity operator �+ q,
[Rakesh and Salo, 2020] showed q → [Uω ,U−ω]|∂B×R is injective and stable.

I [Merono et al, 2021] Similar result for A recovery problem for operator �+A ·∇.
[Ma et al, 2022] Similar result for q problem for operator ∂2

t −∆g + q.
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Result for Lorentzian metric

I Suppose (Rn+1, h(x , t)) time oriented Lorentzian metric with signature
(−,+, , · · · ,+), with following properties.

(a) Outside B × R, h = hMin (Minkowski metric) and dt future directed;

(b) [(Rn+1, h) globally hyperbolic] There is a smooth surjective function
τ : Rn+1 → R (temporal function) with dτ future directed, and every
inextendible timelike curve intersects τ = c exactly once (for each c ∈ R);

(c) (UCP) Let I = (r ,∞); if u smooth on B × I solves

�hu = 0 on B × I , u|∂B×I = ∂νu|∂B×I = 0,

then u = 0 on B × (r1,∞) for some r1 > r .

I If ω unit vector in Rn, s ∈ R (time delay), let Uω,s(x , t) be solution of IVP

�hUω,s = 0 on Rn × R, Uω,s |τ�0 = H(t − s − x · ω).

I Choose incoming wave directions: Ω = {±ei}ni=1 ∪ {(ei + ej )/
√

2}i 6=j ; i,j=1···n.
Define F : h→ [Uω,s |∂B×R]ω∈Ω,s∈R.

I Theorem [Oksanen, R, Salo (2024)] If F(h) = F(hMin) then ψ∗(h) = hMin for
some diffeomorphism ψ : Rn+1 → Rn+1 with ψ(x , t) = (x , t) outside B × R.

I Formally determined problem. Also, h has UCP if h = −dt2 + g for t ≥ T , for
some Riemannian metric g(x) on Rn.
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Proof of Riemannian result: recall the result

ω a unit vector in Rn, Uω(x , t) the solution of the IVP

(∂2
t −∆g )Uω = 0, on Rn × R,

Uω(x , t) = H(t − x · ω) on Rn × (−∞,−1).

Incoming wave directions: Ω = {ei}ni=1 ∪ {(ei + ej )/
√

2}i 6=j ; i,j=1,···n.

FT : g → [Uω |∂B×(−∞,T )]ω∈Ω (forward map).

Theorem If FT (g) = FT (gEucl ) and T large enough, there is a diffeomorphism
ψ : Rn → Rn with ψ(x) = x outside B such that ψ∗(g) = gEucl .
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Proof: The Lagrangian distribution Uω
I For Riemannian manifold (Rn, g), T∗(Rn) identified with T (Rn).
I Null bicharacteristics of ∂2

t −∆g identified with the time parametrized unit
speed geodesics (and their velocities).

I For function α(x) on Rn, 1-form dα identified with vector field ∇gα. In
coordinates ∇gα = g−1∇α.

I Define Σ− = {x ∈ Rn : x · ω = −1}. Uω is Lagrangian distribution with
Lagrangian manifold generated by boundary normal flow Φω : Σ− × R→ Rn

Φ(a, t) = γa(t), a ∈ Σ−, t ∈ R,

where t → γa(t) is the geodesic with γa(0) = a, γ̇(0) = ω.

Sketch	2
Wednesday,	October	16,	2024 2:31 PM

I If Φω is a diffeomorphism, then there is a global solution αω : Rn → R of the
eikonal equation ‖∇gαω‖ = 1 with αω(x) = x · ω outside B.
Then Uω has the nice form

Uω(x , t) = uω(x , t)H(t − αω(x)), (x , t) ∈ Rn × R,

for some smooth function uω(x , t) on Rn × R.
I We do not assume that the Φω , associated to (Rn, g) and ω, is a

diffeomorphism.
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Main steps of the proof

An elementary argument shows that F(g) = F(gEucl ) implies that for each ω ∈ Ω,

Uω(x , t) = H(t − x · ω), for all (x , t) outside B × R. (exterior property)

Proof consists of two parts.

I A geometrical and topological argument which shows that the exterior property
implies that Φω is a diffeomorphism for each of the directions ω ∈ Ω.

Hence there is the global solution αω of the eikonal equation ‖∇gα‖ = 1, with
αω(x) = x · ω outside B, and Uω has the nice form
Uω(x , t) = uω(x , t)H(t − αω(x)).

I Define the map ψ : Rn → Rn with

ψ(x) = [αe1 (x), · · · , αen (x)], x ∈ Rn.

Note that ψ(x) = x outside B. Then, using a PDE argument for the nice form
of Uω , one shows that the exterior property implies ψ is a diffeomorphism with
ψ′ an orthogonal matrix in the (Rn, g) sense. Hence g = ψ∗(gEucl ).

Data for the directions (ei + ej )/
√

2 is needed to prove the orthogonality of ψ′.

I The first part is true (Φg,ω is a diffeomorphism) if F(g) = F(g1) where g1 is
any metric (not necessarily Euclidean) for which Φg1,ω is a diffeomorphism.

I The second part works only for F(g) = F(gEucl ) because for the Euclidean
metric Uω,gEucl = 1H(t − x · ω) and we use the fact that ∆g1 = 0 for any g .
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Uω(x , t) = uω(x , t)H(t − αω(x)).

I Define the map ψ : Rn → Rn with

ψ(x) = [αe1 (x), · · · , αen (x)], x ∈ Rn.

Note that ψ(x) = x outside B. Then, using a PDE argument for the nice form
of Uω , one shows that the exterior property implies ψ is a diffeomorphism with
ψ′ an orthogonal matrix in the (Rn, g) sense. Hence g = ψ∗(gEucl ).

Data for the directions (ei + ej )/
√

2 is needed to prove the orthogonality of ψ′.

I The first part is true (Φg,ω is a diffeomorphism) if F(g) = F(g1) where g1 is
any metric (not necessarily Euclidean) for which Φg1,ω is a diffeomorphism.

I The second part works only for F(g) = F(gEucl ) because for the Euclidean
metric Uω,gEucl = 1H(t − x · ω) and we use the fact that ∆g1 = 0 for any g .
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Proof: The geometrical and topological part
Define Σ− = {a ∈ Rn : a · ω = −1}.
Define Φ : Σ− × R→ Rn with Φ(a, t) = γa(t).
Here t → γa(t) is the geodesic with γa(0) = a, γ̇a(0) = ω.

Sketch	2
Wednesday,	October	16,	2024 2:31 PM

The exterior property holds so WF(Uω(x , t)) = WF(H(t − x · ω)) outside B × R.
So, when γa(t) is outside B, we have γ̇a(t) = ω and every point outside B lies on
exactly one γa.

This geometric behavior in the exterior is enough to prove that Φω is a
diffeomorphism.

Do	the	boundary	normal	geodesics
		- cross	each	other
		- get	trapped	in	B
		- go	through	every	point
		- have	a	“caustic”?

Sketch	3
Wednesday,	October	16,	2024 6:35 PM
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Proof: Details of geometrical and topological part

Do	the	boundary	normal	geodesics
		- cross	each	other
		- get	trapped	in	B
		- go	through	every	point
		- have	a	“caustic”?

Through	every	point	on							there	is	
a	unique	bdry	normal	geodesic	
from	

Sketch	4
Wednesday,	October	16,	2024 6:35 PM

I Define backward map f : Σ+ → Σ− with f (x) = a if γa goes through x ∈ Σ+.

I Implicit function theorem and transversality imply that f is smooth,
M = range(f ) is open in Σ−, and f −1 is smooth.

I So M is diffeomorphic to Σ+. Note M includes Σ− ∩ {|a| ≥ 1}.
I So homology implies M = Σ−. Hence no γa trapped in B.

I Hence every γa crosses Σ+ at exactly one point, and is shortest path from Σ−
to that point on Σ+
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Proof: Details of geometrical and topological part contd.

Do	the	boundary	normal	geodesics
		- cross	each	other
		- get	trapped	in	B
		- go	through	every	point
		- have	a	“caustic”?

Through	every	point	on							there	is	
a	unique	bdry	normal	geodesic	
from	

Sketch	4
Wednesday,	October	16,	2024 6:35 PM

I We proved every γa from Σ− crosses Σ+ at exactly one point, and is the
shortest path from Σ− to that point.

I We also know that through every point of Σ+ there is a γa (the bdry normal
geodesic) for a unique a ∈ Σ−.

I From this one shows there is a bdry normal geodesic from Σ− through every
point in B! Hence Φω is surjective.

I One also shows that two bdry normal geodesics from Σ− cannot cross each
other! Hence Φω is injective.

I One can show that Φω : Σ− × R→ Rn with Φ(a, t) = γa(t), is a local
diffeomorphism!

I Hence Φ is a diffeomorphism! Completes proof of geometry/topology part for
Riemannian case.

I The Lorentzian �h proof more difficult. No shortest distance so more subtle
geometric arguments. h inhomogeneous on B × R (unbounded) so homology
and some geometrical arguments replaced by Hadamard’s theorem: If
f : Rm → Rm is a proper local diffeomorphism then f is a diffeomorphism.
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