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» Fr nonlinear. Formally determined problem. If ¢ : R” — R" is a
diffeomorphism with )(x) = x outside B then F(g) = F(¥*(g)).
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Similar results for p@f — A for positive function p(x) with p =1 outside B.
Need only one direction w.

Similar result for Oy where h(x, t) is a Lorentzian metric (details in later slides).

Lorentzian case requires considerable more work than the Riemannian case.
Our result a small step towards the injectivity of 7. Does not assume absence
of focal points for boundary normal flow of g (associated with U.,).

Few results for (multi-dim) formally determined inverse problems for hyperbolic
operators with non-constant velocity.

There is no such partial result for the anisotropic (elliptic) Impedance
Tomography problem (operator Ag, data D-N map) if n > 3, even though that
is an overdetermined problem.
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some Riemannian metric g(x) on R".
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Proof of Riemannian result: recall the result

Amvsohopic mmedium,

% - L %Q lx\)
W Riemannian Mear
% I owrside B

w a unit vector in R", U, (x, t) the solution of the IVP

(02 —Ag)Uy, =0,  onR" xR,
Us(x,t) = H(t — x - w) on R" X (—o0, —1).

Incoming wave directions: Q = {&;}7_; U {(e; + &))/V2}iji i j=1, -n-

F1 : & = [Uslopx(~co,T)lwen (forward map).

Theorem If F1(g) = Fr(geucs) and T large enough, there is a diffeomorphism
¥ : R" — R" with ¢(x) = x outside B such that ¥*(g) = gEucl-
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Z__L\/wua:»\
If &, is a diffeomorphism, then there is a global solution o, : R” — R of the
eikonal equation [|[Vgaw|| = 1 with o (x) = x - w outside B.

Then U, has the nice form
U (x, t) = uw(x, t)H(t — aw(x)), (x,t) € R" xR,

for some smooth function uy(x, t) on R" X R.
We do not assume that the &, associated to (R", g) and w, is a
diffeomorphism.
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Main steps of the proof

An elementary argument shows that F(g) = F(gguc) implies that for each w € Q,
Uu(x,t) = H(t — x - w), for all (x, t) outside B x R. (exterior property)

Proof consists of two parts.
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» Define the map ¢ : R” — R" with
P(x) = [ag (x), -+, e, (X)), x € R".
Note that 9)(x) = x outside B. Then, using a PDE argument for the nice form
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¥/ an orthogonal matrix in the (R", g) sense. Hence g = ¥*(geuc/)-
Data for the directions (e; + €;)/v/2 is needed to prove the orthogonality of 4.

> The first part is true (®g . is a diffeomorphism) if F(g) = F(g1) where gy is
any metric (not necessarily Euclidean) for which &g, ., is a diffeomorphism.

» The second part works only for F(g) = F(geuci) because for the Euclidean
metric Uy, gg,, = 1H(t — x - w) and we use the fact that Ag1 =0 for any g.
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Proof: The geometrical and topological part
DefineYy _ ={aecR":a -w=-1}.
Define ® : ¥_ x R — R" with ®(a, t) = ~a(t).
Here t — 7a(t) is the geodesic with v,(0) = a, 4,(0) = w.
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> Define backward map f : ¥4 — ¥ _ with f(x) = a if v, goes through x € X .

» Implicit function theorem and transversality imply that f is smooth,
M = range(f) is open in £_, and f~! is smooth.

» So M is diffeomorphic to ¥ . Note M includes ¥ _ N {]a| > 1}.
So homology implies M = X _. Hence no ~, trapped in B.

v

P> Hence every ~y, crosses X at exactly one point, and is shortest path from ¥ _
to that point on X
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We proved every -y, from ¥ _ crosses ¥, at exactly one point, and is the

shortest path from X _ to that point.

> We also know that through every point of ¥ there is a v, (the bdry normal
geodesic) for a unique a € X _.

» From this one shows there is a bdry normal geodesic from X _ through every
point in B! Hence &, is surjective.

» One also shows that two bdry normal geodesics from X _ cannot cross each
other! Hence ®,, is injective.

> One can show that ¢, : X_ x R — R" with ®(a, t) = v4(t), is a local

diffeomorphism!

Hence @ is a diffeomorphism! Completes proof of geometry/topology part for

Riemannian case.

The Lorentzian [J, proof more difficult. No shortest distance so more subtle

geometric arguments. h inhomogeneous on B X R (unbounded) so homology

and some geometrical arguments replaced by Hadamard’s theorem: If

f:R™ — R™ is a proper local diffeomorphism then f'is a diffeomorphism.
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