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I. INTRODUCTION

Anguilliform swimming is an effective mode of locomotion
utilized by elongated fish like eels and oarfish to travel
long distances. It is characterized by the use of full-body
undulations that produce thrust and it proves highly energy
efficient [1]. The efficiency and morphological simplicity of
anguilliform fish make anguilliform swimming a promising
swimming for aquatic robots that require long-duration oper-
ation. However, the efficiency of anguilliform swimming is
a product of the coupled dynamics of the swimmer’s soft-
body and surrounding water. In order to enable this level of
efficiency on a robotic platform, the robot must implement
online control that considers these coupled dynamics in real
time. A model predictive control (MPC) framework lends itself
well to considering these coupled physics. However, the high-
fidelity soft-body simulation and fluid simulation required for
effective MPC proves too computationally expensive for real-
time control.

In this work, we leverage data-driven model reduction
techniques to enable approximate physics simulation and high-
speed MPC of a simulated, soft, anguilliform robot (Fig. 1).
We conduct a comparative study of multiple methods for linear
model reduction, allowing us to assess their efficacy in both the
state estimation and control context to allow the robot to mimic
well-studied, straight-line swimming gaits of anguilliform fish
[1].

II. METHODS
A. Robot Simulation

The simulated robot is comprised of three antagonistically-
actuated soft segments that are attached to each other by rigid
couples. The simulation was implemented in the Simulation
Open Framework Architecture (SOFA) and only considers the
solid body mechanics of the system. The full-order model
has 226,941 states and exhibits nonlinear dynamics. Through
singular value decomposition of a snapshot matrix of state
trajectories, we found that 94% of the state variance is
contained within a 12-dimensional linear subspace of the state
space. This motivates us to construct non-intrusive reduced-
order models (ROMs) that learn linear time-invariant systems.

B. ROM Synthesis

We conduct a comparative study of multiple ROM meth-
ods in the context of state estimation and full-body con-
trol of the soft anguilliform robot. The compared methods
include the Eigensystem Realization Algorithm (ERA) [2],
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Fig. 1. Design of three-segment robot for anguilliform swimming. The
soft robot (a) is comprised of multiple soft segments that each contain two
antagonistic fluid elastic actuators (b). The robot is arranged by attaching
segments with rigid couples (c).

Dynamic Mode Decomposition with control (DMDc) [3], and
Lagrangian-preserving Operator Inference (LOplnf) [4]. These
methods were selected as representative methods for various
classes of data-driven model order reduction techniques that
prove common in the modern soft-robot modelling literature.
During each simulation episode, inputs were generated from
a Brownian random process. The output of the system is
considered to be the centerline of the robot and is computed
by averaging the position of the 3D mesh points close to
the sagittal plane of the robot. The inputs, system state, and
outputs are then used to construct a data set comprised of 30
episodes, each with 200 time steps of 0.001 second. As imple-
mentations of ERA take a single impulse response as input,
the Observer Kalman Filter Identification algorithm [5] was
first used to compute the impulse response that optimally fits
the input-output response of the first episode. The remaining
ROMs were constructed from snapshot matrices of the first
five episodes in the dataset, leaving the remaining 25 episodes
for validating the ROMs.

C. Observer Synthesis

We first evaluated the capacity of each model for open-loop
prediction of the systems output response to random inputs.
We found that LOpInf demonstrates the least normalized error
over the prediction horizon of 200 timesteps (Fig. 2) across
both datasets. Each model was then used to synthesize a
closed-loop state observer with linear output injection. As
expected, each closed-loop state observer provided lower



prediction error than their open-loop counterparts (Fig. 3). We
then used the the projection mappings provided by DMDc and
LOplnf to assess if the state observers effectively track the full-
order state. In this case we found that the quality of full-order
state prediction degrades in the closed-loop observer based on
the DMDc ROM while the LOpInf observer maintains high-
quality tracking of the full-order state (Fig. 3b).
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Fig. 2. State prediction performance of each ROM. (a) Example trajectories
showing the open-loop (OL) and closed-loop (CL) observer prediction in a
training trial (left) and test trial (right). (b) RMS errors were computed over
every trial for output prediction (left) and full-order state prediction (right)
for both open-loop and closed-loop observers.

D. Control Optimization

Finally, we constructed a receding horizon controller based
on each ROM that, given a reference output trajectory,
computes the optimal control inputs via quadratic program.
Reference trajectories were constructed based on past work
on anguilliform fish [1] (Fig. 3a). To compare each of the
controllers, we computed the RMS output tracking error and
input behavior for each controller over 500 timesteps. The
controllers using ROMs from ERA and LOplnf both resulted
in low tracking error and energy usage. Both controllers also
revealed an underactuated control strategy that most heavily
actuated the first segment so as to induce body undulations
that then propagate down the rest of the robot’s body.

III. VISIONS

In comparison to modern autonomous underwater vehicles,
which are often propeller-driven, soft swimming robots pro-
vide a quieter and safer solution to underwater exploration.
This safety is due to their material compliance and actuation
mechanisms, making it more difficult for them to damage an-
imals and their environment in the case of collisions. Through
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Fig. 3. Performance of ROM-based controllers. (a) Reference trajectories and
the image of an eel are drawn from past work on anguilliform motion [1].
(b) The total input energy computed from each controller was computed as
a function of time, showing an actuation strategy that heavily actuated the
first segment. (c) Total RMS tracking error was computed for each method
(c) along with the total input energy (d) as a function of time.

this work we demonstrate a framework for full-body control
of soft swimming robots, which presents a solution to the
problem of high dimensionality that is often experienced in of
soft-robot control. Future work could construct coupled ROMs
that express the soft robot’s dynamics as well as the dynamics
of surrounding water, enabling MPC that simultaneously op-
timizes the soft robot’s gait and its fluid dynamics to mimic
those of natural swimmers. Future work could also leverage
simulation-based data to synthesize controllers that can then be
transferred to experimental system. Through continued work
on reduced order modelling and the problem of simulation-
to-reality transfer, we anticipate that aquatic soft robots will
enable transformative impacts on deep sea exploration.
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