
The Lebesgue Differentiation Theorem

In this short note, we discuss the Lebesgue Differentiation Theorem. Recall from elementary real analysis
that, if f ∈ C(R), then1

lim
h→0+

1

2h

∫ x+h

x−h

f(y) dy = f(x).

In other words, the average value of f on [x − h, x + h] converges to f(x) as the length of the interval
tends to zero. The Lebesgue Differentiation Theorem generalizes this result to locally integrable functions.
Since these functions are defined a.e., we of course cannot have that the above limit holds for every x ∈ R.
However, we can be sure that it holds for almost every x.

There are several ways to state the Lebesgue Differentiation Theorem. We begin with the most familiar
version:

Theorem 1 (Lebesgue Differentiaion I). If f ∈ L1
loc(Rn) and Br(x) is the n-ball of radius r centered at x,

then

lim
r→0

1

m(Br(x))

∫
Br(x)

f(y) dy = f(x) for a.e. x ∈ Rn.

The proof of the Lebesgue Differentiation is a bit more delicate than the case when f is continuous,
and relies on the Maximal Theorem, which quantifies the measure for which the Hardy-Littlewood maximal
function given by

Hf(x) := sup
r>0

1

m(Br(x))

∫
Br(x)

|f(y)| dy for f ∈ L1
loc(Rn)

is greater than some fixed number α > 0. Precisely, the theorem says:

Theorem 2 (The Maximal Theorem). There is a constant C > 0 such that for all f ∈ L1 and all α > 0 we
have

m({x : Hf(x) > α}) ≤ C

α

∫
Rn

|f(x)| dx.

With Theorem 1 in mind, it makes sense to consider the Lebesgue set Lf of f :

Lf :=
{
x : lim

r→0

1

m(Br(x))

∫
Br(x)

|f(y)− f(x)| dy = 0
}
.

With just a little bit more work, one can prove a stronger version of the Lebesgue Differentiation Theorem
which quantifies the measure of the Lebesgue set of f .

Theorem 3 (Lebesgue Differentiation II). If f ∈ L1
loc, then m((Lf )

c) = 0.

One can also consider families of sets more general than balls. We say a family {Er}r>0 of Borel subsets
of Rn shrinks nicely to x ∈ Rn if

(i) Er ⊂ Br(x) for each r and

(ii) There is a constant α > 0, independent of r, such that m(Er) > αm(Br(x)).

1If you haven’t seen the proof, it is a good exercise to prove it. The proof is rather straightforward and relies on the continuity
of f .

1



In plain language, a family {Er}r>0 of Borel sets shrinks nicely to x ∈ Rn if each set Er in the family is
contained in the ball Br(x) and the measure of each set shrinks proportionally to that of the ball Br(x) as
r → 0. We note that the sets Er do not even need to contain x. For example, if U is any Borel subset of
B1(0) such that m(U) > 0 and Er := {x + ry : y ∈ U}, then {Er} shrinks nicely to x. This leads to the
most general version of the Lebesgue Differentiation Theorem:

Theorem 4 (Lebesgue Differentiation III). Suppose f ∈ L1
loc(Rn). For every x ∈ Lf , we have

lim
r→0

1

m(Er)

∫
Er

|f(y)− f(x)| dy = 0 and lim
r→0

1

m(Er)

∫
Er

f(y) dy = f(x)

for every family {Er}r>0 that shrinks nicely to x.

At this point, one may wonder why the theorem is called the Lebesgue Differentiation Theorem since,
at first glance, it doesn’t appear to have anything to do with differentiation. This can be made clear by
considering the function

F (x) :=

∫ x

0

f(y) dy for f ∈ L1
loc(R).

We have:

lim
h→0

F (x+ h)− F (x)

h
=

1

h

∫ x+h

x

f(y) dy = f(x) for a.e. x ∈ R,

where the last equality follows from the Lebesgue Differentiation Theorem since the sets [x, x + h] shrink
nicely to x. In other words, if f ∈ L1

loc(R), then F ′(x) = f(x) for a.e. x ∈ R. In particular, we have
recovered the Fundamental Theorem of Calculus and, in the process, have justified the name of the Lebesgue
Differentiation Theorem.

Another interesting and useful application of the Lebesgue Differentiation Theorem is to study the density
of measurable subsets of Rn. Let E ∈ Ln. Applying the Lebesgue Differentiation Theorem to χE , we obtain

lim
r→0

m(E ∩Br(x))

m(Br(x))
= lim

r→0

1

m(Br(x))

∫
Br(x)

χE(y) dy = χE(x) for a.e. x ∈ Rn.

In particular, if m(E) > 0

lim
r→0

m(E ∩Br(x))

m(Br(x))
= 1 for a.e. x ∈ E

and

lim
r→0

m(E ∩Br(x))

m(Br(x))
= 0 for a.e. x ∈ Rn \ E.

That is, if x ∈ E the set E ∩ Br(x) has nearly full measure in Br(x) as r gets small. This means that for
a.e. x ∈ E the set E is “dense” in the ball Br(x).

2 Likewise, for a.e. x ∈ Ec points of E do not cluster too
much around x.

Before closing out the note, we quickly mention the Vitali Covering Lemma which is used in several of
the proofs of the above theorems. The Vitali Covering Lemma is a technical lemma that is often used to
extract a subcollection of sets from a larger collection. This is often useful in approximation arguments.
Though it doesn’t often show up on the qual, it is very useful if you are interested in continuing coursework
in analysis.

Lemma 1 (Vitali Covering Lemma). Let C be a collection of open balls in Rn and let U =
⋃

B∈C B. If

c < m(U), then there exist disjoint B1, . . . , Bk ∈ C such that
∑k

1 m(Bj) > 3−nc.

Reference: Real Analysis: Modern Techniques and Their Applications, 2nd ed., Gerald B. Folland.

2Here, we are using dense colloquially. It does not mean the set E is dense in the topological sense.
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