Professor David L. Van Vranken

Chemistry 201: Organic Reaction Mechanisms I

Topic 7: Neighboring Groups in Ionization Reactions

Neighboring Group Participation by Vicinal Heteroatoms

■ Vicinal oxygen doesn't accelerate ionization; it slows it

Handlon, A.L.; Oppenheimer, N.J. *JOC* **1991**, 5009–5010

■ Basic, nucleophilic amines can form strained aziridinium ions that are readily attacked.

■ Intramolecular displacement reactions follow same kinetics as S_N1 : rate = k[R-X] Don't call them S_N2 reactions.

Contrast: X NO YES ?

Neighboring Group Participation by 3rd Row Atoms

■ British mustard gas casualties in WWI

Fatal: 4,086 Non-Fatal: 16,526

■ Attack at the more substituted position of 3-membered ring "onium" ions.

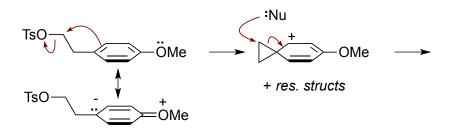
Ars
$$\xrightarrow{NH_3}$$
 Ars $\xrightarrow{NH_2}$ $\xrightarrow{H_2N}$ \xrightarrow{SAr} $\xrightarrow{H_3N}$ $\xrightarrow{episulfonium}$ \xrightarrow{ion}

Nair, D. J.; David, J.; Nagarajan, K. *Indian J. Chem. B* **1985**, *24*, 940.

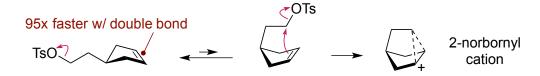
Neighboring Group Participation by Nearby Carbonyls

- "Intramolecular $S_N 2$ " reactions follow same kinetics as $S_N 1$: rate = k[R-X]
- Five and six-membered ring transition states are particularly favorable. Thus carbonyl oxgyen atoms can sometimes push out leaving groups five atoms away.

Neighboring Group Participation by Pi Systems

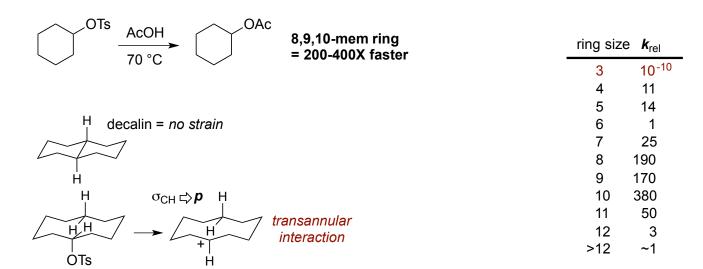

- Pi systems separated from leaving groups by more than one carbon can not form delocalized pi carbocations.
- Homoallylic leaving groups can form cyclopropylcarbinyl cations.

Winstein, S.; Shatavsky, M.; Norton, C.; Woodward, R. B. *J. Am. Chem. Soc.* **1955**, *77*, 4183-4.


■ Phenonium ions

TSO
$$X = NO_{2}$$

Fujio, M.; Funatsu, M.; Goto, M.; Seki, Y.; Mishima, M.; Tsuno, Y. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 1091.


■ Longer range participation by pi bonds.

Lawton, R.G. *J. Am. Chem. Soc.* **1961**, *83*, 2399.

Through-Space Hyperconjugation

■ Well aimed C-H bonds can also accelerate carbocation formation.

Brown, H. C.; Ham, G.

"The Effect of Ring Size on the Rate of Acetolysis of the Cycloalkyl p-Toluene and p-Bromobenzenesulfonates." *J. Am. Chem. Soc.* **1956**, *78*, 2735.

■ It' very crowded in the middle of medium-sized rings (8,9,10); that makes them difficult to generate through cyclization reactions.

Lecture 8: Solvent Effects on Carbocation Formation

Read: C&S 4.2

Polar Solvents Speed Up S_N1

■ Most ionization reactions are faster in polar solvents. Polar solvents favor charge separation.

■ Not all dissociation processes are favored by polar solvents. Some do not involve creation of charge.

$$O_{BF_3}$$
 \longrightarrow O + BF₃

■ The bulk dielectric constants range from 1-78. Coulomb's law doesn't explain everything.

Solvent	3	_
gas phase	1	_
hexane	1] non noter
Et ₂ O	4	non-polar
THF	8	_
CH ₂ Cl ₂	9	
MeOH	33	٦
DMF	37	polar
MeCN	38	Polai
Me ₂ SO	47	
$H_2\bar{O}$	78	_

Explicit Effects of Solvent

■ Even though THF has lower ε than CH_2CI_2 , it can accelerate ionization through donation

■ An example of explicit solvent participation. Contrast the results of S_N2 in neat SOCl₂ versus dioxane

Lewis, E. S.; Boozer, C. E.

"The Kinetics and Stereochemistry of the Decomposition of Secondary Alkyl Chlorosulfites." J. Am. Chem. Soc. 1952, 74, 308-311.

■ Electronic structure calculations are good for comparing ground states, reactive intermediates, and transition states; but, they can't anticipate solvent effects.