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As a well-established implicit solvent model, the Poisson-Boltzmann equation (PBE) models the 
electrostatic interactions between a solute biomolecule and its surrounding solvent environment 
over an unbounded domain. One numerical challenge in solving the nonlinear PBE lies in the 
boundary treatment. Physically, the boundary condition of this solute solvent system is defined 
at infinity where the electrostatic potential decays to zero. Computationally, a finite domain has 
to be employed in grid-based numerical algorithms. However, the Dirichlet boundary conditions 
commonly used in protein simulations are known to produce unphysical solutions in some cases. 
This motivates the development of a few asymptotic conditions in the PBE literature, which are 
global boundary conditions and have to resort to iterative algorithms for calculating volume 
integrals from the previous step. To overcome these limitations, a modified Robin condition 
is proposed in this work as a local boundary condition for the nonlinear PBE, which can be 
implemented in any finite difference or finite element method. The derivation is based on the 
facts that away from the biomolecule, the asymptotic decaying pattern of the nonlinear PBE 
is essentially the same as that of the linearized PBE, and the monopole term will dominate 
other terms in the multipole expansion. Asymptotic analysis has been carried out to validate the 
application range and robustness of the proposed Robin condition. Moreover, a second order 
boundary implementation by means of a matched interface and boundary (MIB) scheme has been 
constructed for three-dimensional biomolecular simulations. Extensive numerical experiments 
have been conducted to examine the robustness, accuracy, and efficiency of the new boundary 
treatment for calculating electrostatic free energies of Kirkwood spheres and various protein 
systems.

1. Introduction

Electrostatic analysis of biomolecules immersed in a solvent environment with dissolved electrolytes plays an important role in 
understanding the structure, function and behavior of macromolecules such as proteins, DNAs and RNAs. One of the most widely 
used implicit solvent models for the electrostatic analysis of proteins is the Poisson-Boltzmann Equation (PBE) [2,13,20,22]. In the 
Poisson-Boltzmann (PB) model, the solute biomolecule is treated as a low-dielectric medium with atomic partial charges, surrounded 
by a high-dielectric medium of the solvent with dissolved ions. The PB model has found applications in various biological and 

* Corresponding author.
E-mail address: szhao@ua.edu (S. Zhao).

https://doi.org/10.1016/j.jcp.2025.113844
Received 5 June 2024; Received in revised form 28 November 2024; Accepted 10 February 2025 

Journal of Computational Physics 528 (2025) 113844 

Available online 13 February 2025 
0021-9991/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://orcid.org/0000-0002-3023-2107
https://www.rcsb.org
mailto:szhao@ua.edu
https://doi.org/10.1016/j.jcp.2025.113844
https://doi.org/10.1016/j.jcp.2025.113844


S. Amihere, Y. Ren, W. Geng et al. 

chemical processes such as DNA recognition [11], drug development and design, protein folding [31], and the designing of nanoscale 
semiconductor devices [39].

Mathematically, the PBE is a nonlinear elliptic partial differential equation (PDE) with singular source terms and defined over 
solute and solvent subdomains separated by a molecular surface. The analytical solution of the PBE is limited to simple geometries 
such as a sphere [1] or in one dimensional planar case [35], so that numerical simulations are indispensable for electrostatic analysis 
of protein systems containing tens of thousands to millions of atoms. However, the numerical solution of the PBE in three dimensions 
(3D) suffers many challenges such as (1) the potential is infinity at atomic centers due to point sources modeled with delta functions; 
(2) the molecular surface is a geometrically complicated solute-solvent boundary; (3) the dielectric function and electric field are 
discontinuous across the molecular surface; (4) the hyperbolic Sine term could introduce a nonlinear instability; (5) the domain is 
unbounded.

Physically, the PB model involves an unbounded solvent domain with the electrostatic potential decaying to zero at infinity, 
i.e., lim|𝐫|→∞ 𝑢(𝐫) = 0. In the PBE literature, the numerical treatments of the infinite domain fall into two classes. First, the infinite 
domain problem can be simply bypassed when solving the linearized PBE in an integral form, in which surface integral equations 
need to be evaluated over two-dimensional (2D) molecular surfaces, and can be discretized by various boundary element methods 
[7,16,28,41,45]. Moreover, the singular charges and interface jump conditions can also be treated analytically in boundary element 
methods. However, these integral equation methods work only for the linearized PBE, and cannot handle the nonlinear PBE. Second, 
in grid-based finite difference and finite element methods [4,9,10,22,29,36,42], the infinite domain has to be truncated to a finite 
computational domain Ω and an appropriate boundary condition is then required on the boundary 𝜕Ω. The formulation of the 
boundary condition is a critical issue here to guarantee that the numerical solution over the truncated domain could be a reliable 
approximation to the original infinite domain problem.

Theoretically, a Dirichlet boundary condition with potential equaling to zero could be assumed when a very large truncation 
domain is used, because the electrostatic potential decays exponentially away from the solute biomolecule. Nevertheless, for real 
protein simulations, the dimension of biomolecules is already very large, so that a small edge value, which determines the distance 
between the molecular surface and the boundary, is often preferred. In such scenarios, the most widely used boundary condition 
in the PBE literature is a Debye-Hückel Dirichlet condition [20], which is obtained from an analytical solution of the linearized 
PBE under the assumption that the solvent is fully penetrating to the entire domain and each atom is treated as one point charge. 
As explained in [20], this analytical solution is derived based on the Kirkwood sphere solution by taking the radius as zero and 
applying the superposition principle to all point charges. Alternatively, by applying the superposition principle to Kirkwood sphere 
solutions with nonzero radii, a multiple Debye-Hückel (MDH) Dirichlet boundary condition can be obtained [3], which is essentially 
an approximated solution of the linearized PBE far away from the protein. These Dirichlet boundary conditions are widely used in 
various PBE solvers in the literature [4,9,10,17–19,26,36].

However, the application of Dirichlet boundary conditions derived from the linearized PBE to the nonlinear PBE can be prob-
lematic. Recently, the electrostatic free energy governed by the nonlinear PBE for the Kirkwood sphere with a center charge has 
been studied in [1]. Using the rotational symmetry, the 3D nonlinear PBE can be reduced to a one-dimensional (1D) boundary value 
problem. By taking the length of the truncated interval to be 100 times of the sphere radius, the Dirichlet zero condition can be 
safely assumed. Based on an eighth order finite difference discretization, a high-precision nonlinear energy can be calculated as a 
reference energy, whose numerical error is shown to be around 10−12. Moreover, a benchmark study has been carried out in [1] by 
using the regularized Matched Interface and Boundary (rMIB) package [18], which is a well-established second-order accurate PBE 
solver with advanced 3D treatments to address four out of five difficulties mentioned above, i.e., singularity [17,18,24], molecular 
surface [40,43], interface jumps [43,47], and nonlinearity [9]. In the linearized case, the Kirkwood sphere problem admits an an-
alytical solution. By using this analytical solution as the Dirichlet boundary condition, the rMIB package achieved a second order 
of convergence in calculating both potential and energy [1]. Nevertheless, by using the same Dirichlet boundary condition for the 
nonlinear PBE, the rMIB result fails to converge to the reference energy [1].

To overcome the limitations of the Dirichlet boundary conditions, several other types of boundary conditions have been proposed 
for the nonlinear PBE [5,30,35]. In [30], a self-consistent boundary (SCB) condition is introduced by multiplying the linearized PBE 
in the solvent by its fundamental solution under a unit charge and then integrating over the domain Ω. This yields an expression of 
the potential 𝑢 in terms of surface integrals of the potential 𝑢, the Green’s function and their gradients, over the boundary 𝜕Ω. The 
SCB condition is implemented in an iterative procedure, in which the surface integrals are calculated based on the previous iterative 
step to produce Dirichlet boundary values for the present iteration. The SCB condition is actually a global boundary condition in the 
sense that one boundary value is related to all boundary values on 𝜕Ω and the iterative calculation of boundary integrals is quite 
expensive.

In [35], a novel asymptotic boundary analysis has been conducted based on analytical approximations of the nonlinear PBE. In 
particular, by modeling the molecular system as a spherically symmetric one and approximating the hyperbolic Sine term by the 
first two terms in the Taylor series expansion, the 3D PBE is reduced to a 1D nonlinear ordinary differential equation (ODE), whose 
asymptotic solution is shown to have the same decaying function as in the linear case. Moreover, the nonlinear constant behind 
the decaying function is proposed to be calculated as the sum of the linear constant and two perturbation terms. This asymptotic 
boundary condition has been tested for a few molecular systems in [35], but a widespread application to general problems without 
spherical symmetry remains unexplored.

In [5], Boschitsch and Fenley also found that the nonlinear PBE in a spherically symmetric setting admits the same asymptotic 
function as in the linear case. The constant behind the decaying function is proposed to be calculated by a line integral of the nonlinear 
term in the radial direction over the solvent domain. This new outer boundary formulation allows the authors to formulate energy 
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corrections to account for contributions from outside the spherical domain [5]. Moreover, this boundary treatment can be extended 
to non-symmetric cases on cubic domains, in which the asymptotic constant is calculated based on the potential in the previous 
iterative step and through a volume integral of the nonlinear term over some solvent region. The extended boundary approach has 
been successfully applied to a fast and robust PBE solver based on adaptive Cartesian grids for electrostatic analysis of a large set 
of proteins [6]. This asymptotic boundary approach is also a global boundary condition, in which boundary values on six sides of 
the cubic domain depend on all potential values in the solvent region, and the iterative calculation of volume integrals could be 
expensive.

The goal of this paper is to develop a simple local boundary condition that is valid for both the linear and nonlinear PBE. 
Based on the same asymptotic solution considered in [5,35] for the asymptotically symmetric nonlinear PBE, a modified Robin 
boundary condition involving a radial derivative is introduced. For general protein systems, the radial direction can be defined based 
on the geometrical center of the protein. Physically, as pointed out in [5], the reason why this asymptotic boundary formulation 
works for non-symmetric cases [6] is that at sufficiently large distance from the macromolecule, the monopole representation of all 
partial charges dominates higher moments, such as dipoles and quadrupoles [23,38]. Mathematically, unlike the existing asymptotic 
boundary conditions [5,30,35], the proposed Robin condition is a local boundary condition, i.e., one boundary value only relates to 
its derivatives at the same point.

A local boundary condition allows a much simpler implementation and faster computation than a global condition. The proposed 
Robin boundary condition can be applied to any finite difference and finite element PBE solvers. Without resorting to an iterative 
procedure, the modified Robin condition enforcement can be directly built in the spatial discretization matrix and only involves a few 
nearby grid nodes or sparse coefficients. In this work, a ray-casting matched interface and boundary (MIB) technique will be developed 
to implement the proposed Robin condition as a second order accurate boundary scheme in a Cartesian grid finite difference setting. 
To demonstrate its performance, this boundary scheme will be embedded in the rMIB package [18] so that the enhanced rMIB PBE 
solver can handle all five difficulties mentioned above.

The rest of the paper is organized as follows: Section 2 provides an overview of the PB model and the commonly used boundary 
conditions for electrostatic analysis of proteins. The key formulation of the rMIB PBE solver [18] will also be discussed. The spherical 
symmetric PBE will be concerned in Section 3 to derive the proposed Robin boundary condition. High order 1D finite difference 
methods will be employed to illustrate the accuracy of the new boundary condition in treating the Kirkwood sphere in both linear 
and nonlinear cases. The generalization of the modified Robin boundary condition to non-symmetric cubic domains will be presented 
in Section 4. A ray-casting MIB scheme will be constructed to discretize the modified Robin condition in the rMIB package. Various 
numerical experiments will be conducted in Section 5 to examine the accuracy, robustness, and efficiency of the proposed boundary 
scheme, and comparison with Dirichlet boundary conditions will be studied too. Finally, the paper ends with a conclusion and future 
plan in Section 6.

2. PBE model and rMIB PB solver

In this section, we will first describe the Poisson-Boltzmann (PB) equation, followed by a discussion of the commonly used Dirichlet 
boundary conditions for the PB equation. This section also provides an overview of the 3D regularized Matched Interface and Boundary 
(rMIB) PB solver, which is the main testbed for the new development.

2.1. The Poisson-Boltzmann equation (PBE)

The Poisson-Boltzmann equation (PBE) as illustrated in Fig. 1 is the governing equation of electrostatics of a solute macromolec-
ular immersed in an aqueous solvent environment. A computational domain Ω ⊂ ℝ3 is usually assumed in grid-based numerical 
computations, which is divided into two subdomains, Ω− and Ω+, by the molecular surface Γ. The subdomain Ω− represents the 
molecular region while the subdomain Ω+ is the solvent region, i.e., Ω =Ω− ∪Ω+. The outer boundary of Ω is denoted by 𝜕Ω. The 
partial charges on the solute molecule are assigned to each atom by a force field while the mobile ions in Ω+ are charges described 
by the Boltzmann distribution.

The electrostatic interaction of the solute-solvent system is modeled by the nonlinear PBE

⎧⎪⎨⎪⎩
−∇ ⋅ (𝜖(𝐫)∇𝑢(𝐫)) + �̄�2(𝐫) sinh (𝑢(𝐫)) = 𝜌(𝐫), 𝐫 ∈Ω
[𝑢]Γ = 0, 𝐫 ∈ Γ

[𝜖 𝜕𝑢 
𝜕𝑛
]Γ = 0, 𝐫 ∈ Γ,

(1)

subject to an appropriate boundary condition at 𝜕Ω. Here 𝑢(𝐫) is the dimensionless electrostatic potential [46], vanishing at infinity, 
namely

𝑢(𝐫) = 0, as |𝐫|→∞. (2)

The singular source term 𝜌(𝐫) is defined as

𝜌(𝐫) = 4𝜋
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑖=1 

𝑞𝑖𝛿(𝐫 − 𝐫𝑖),
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Fig. 1. A 2D illustration of the 3D PB domain. 

where 𝑁𝑚 is the number of atoms in the solute molecule with each atom carrying a dimensionless partial charge 𝑞𝑖 , located at 𝐫𝑖. 
Here, 𝛿 is the Dirac delta function, 𝑒𝑐 is the fundamental charge, 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature.

In Eq. (1), the dielectric constant, 𝜖(𝐫), is a dimensionless piecewise constant which is represented as 𝜖− in Ω− and 𝜖+ in Ω+. The 
modified Debye-Hückel parameter, �̄�(𝐫), is a piecewise constant measuring the concentration of ions in the solution. It is defined as 
�̄� = 0 in Ω− and as �̄�2 = 8.430325455 Å

−2
𝐼 , for 𝑇 = 300𝐾 , in Ω+. The dimensionless constant 𝐼 is the ionic strength of the solution 

and the unit of �̄�2 is Å−2
, where Å is the angstrom.

The nonlinear PBE Eq. (1) is subject to the jump conditions [𝑢]Γ and [𝜖 𝜕𝑢 
𝜕𝑛
]Γ across the interface, Γ. Here, 𝐧 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) is the 

outer normal direction of the interface and 𝑢𝑛 =
𝜕𝑢 
𝜕𝑛

is the directional derivative. The difference between the functional values across 
the interface Γ, is denoted by [𝑓 ]Γ = 𝑓+ − 𝑓−. Details of the units of the PBE are described in [20].

When the dimensionless potential 𝑢 is weak, the nonlinear term sinh(𝑢) in Eq. (1) can be linearized as 𝑢, giving rise to the linearized 
PBE

−∇ ⋅ (𝜖(𝐫)∇𝑢(𝐫)) + �̄�2(𝐫)𝑢(𝐫) = 𝜌(𝐫), 𝐫 ∈Ω (3)

subject to the same interface jump conditions on Γ as in Eq. (1) and an appropriate boundary condition on 𝜕Ω.

2.2. Commonly used boundary conditions for PBE

The PBE over an infinite domain satisfies the asymptotic condition Eq. (2). However, for grid-based methods, a finite computational 
domain Ω has to be used, and a boundary condition on 𝜕Ω is required. To define Ω in a finite difference computation, a tight cuboid 
box that exactly encloses the solute region or molecular surface is usually first determined. Then an edge value is used to enlarge 
this box in both positive and negative directions along 𝑥, 𝑦, and 𝑧 coordinates, which defines the computational domain Ω [18]. In 
other words, the edge value measures the distance between the molecular surface and the boundary along the Cartesian directions. 
In protein simulations, since the dimension of the macromolecular is already very large, a small edge value is preferred to save the 
computational cost. This demands an accurate and robust boundary condition for the PB model.

When the domain size is very large, a Dirichlet zero boundary condition could be assumed

𝑢(𝐫) = 0, 𝐫 ∈ 𝜕Ω. (4)

For example, in studying the Kirkwood sphere with a central charge [1], a very large domain size can be used, because the 3D PBE 
has been reduced to a 1D problem using the spherical symmetry. By taking the domain length as 100 times of the sphere radius, the 
energies computed in [1] for both linear and nonlinear PBE cases could reach a precision on the order of 10−12 . However, the energy 
error grows rapidly as the domain length becomes smaller for the Dirichlet zero condition.

The most commonly used boundary condition for the PB model is the Debye-Hückel condition [20]

𝑢(𝐫) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑖=1 

𝑞𝑖𝑒
−𝜆|𝐫−𝐫𝑖|

𝜖+|𝐫 − 𝐫𝑖| , 𝐫 ∈ 𝜕Ω, (5)
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where 𝜆 =
√

�̄�2

𝜖+
. This condition is obtained from an analytical solution of the linearized PBE Eq. (3) under the fully penetrating 

assumption that the solvent medium occupies the entire ℝ3 space and each atom is treated as a point charge 𝑞𝑖 at 𝐫𝑖. This Dirichlet 
boundary condition has been widely used in many PBE solvers, such as [9,10,17–19,26,36], and will be further studied in this work.

A multiple Debye-Hückel (MDH) Dirichlet boundary condition used in the APBS package [3] can be regarded as a modified form 
of Eq. (5)

𝑢(𝐫) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑖=1 

𝑞𝑖𝑒
𝜆(𝑎𝑖−|𝐫−𝐫𝑖|)

𝜖+(𝜆𝑎𝑖 + 1)|𝐫 − 𝐫𝑖| , 𝐫 ∈ 𝜕Ω, (6)

where 𝑎𝑖 stands for the radius of 𝑖𝑡ℎ atom. In fact, when each atom shrinks to a point charge, i.e., 𝑎𝑖 = 0, Eq. (6) becomes Eq. (5). 
When only one atom is concerned, Eq. (6) yields

𝑢(𝐫) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑞𝑒𝜆(𝑎−|𝐫−𝐫𝑐 |)
𝜖+(𝜆𝑎+ 1)|𝐫 − 𝐫𝑐 | , for |𝐫 − 𝐫𝑐 | ≥ 𝑎, (7)

which is the analytical solution of the linearized PBE for the Kirkwood sphere [1] with the radius being 𝑎 and center located at 
𝐫𝑐 . Thus, the MDH Dirichlet boundary condition Eq. (6) is essentially an approximate solution to the linearized PBE based on the 
superposition of 𝑁𝑚 Kirkwood spheres, while neglecting their mutual interactions.

It is known in the literature [1] that the application of Dirichlet boundary conditions derived from the linearized PBE to the 
nonlinear PBE can be problematic. This work aims to address the limitations of the existing Dirichlet conditions by proposing a new 
boundary condition that is accurate and efficient for 3D PBE simulations.

2.3. 3D regularized Matched Interface and Boundary (rMIB) PB solver

Before we discuss the derivation of the new boundary condition and its implementation, we first review the three-dimensional 
(3D) regularized Matched Interface and Boundary (rMIB) PB solver [18], which is the primary 3D PB solver used in this work. As 
mentioned previously, the numerical solution of the PBE in 3D suffers five particular challenges. The rMIB package is a second order 
accurate finite difference solver that is equipped with advanced numerical treatments to address four difficulties out of the five, i.e., 
singularity, dielectric interface, molecular surface, and nonlinearity. The following overview will focus on these four items.

(1) Singularity. It is well known that the electrostatic potential 𝑢 of the PBE will blow up at each atom center, i.e., 𝑢→∞ as 
𝐫 → 𝐫𝑖, due to singularities in the source term 𝜌(𝐫). To treat the singularities, a two-component regularization method is proposed in 
[18], which decomposes the electrostatic potential in Ω− into two components, namely, the reaction field component 𝑢𝑅𝐹 and the 
Coulomb component 𝑢𝐶 , with 𝑢− = 𝑢𝐶 + 𝑢𝑅𝐹 . The Coulomb component satisfies the Poisson equation with the same singular source 
𝜌(𝐫), {

−𝜖−Δ𝑢𝐶 (𝐫) = 𝜌(𝐫), 𝐫 ∈ℝ3

𝑢𝐶 (𝐫) = 0, as |𝐫|→∞,
(8)

where 𝑢𝐶 is analytically given as the Green’s function Eq. (9)

𝐺(𝐫) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑁𝑚∑
𝑖=1 

𝑞𝑖

𝜖−|𝐫 − 𝐫𝑖| . (9)

By substituting Eq. (8) into Eq. (1), a regularized PBE can be derived [18]

⎧⎪⎨⎪⎩
−∇ ⋅ (𝜖∇�̃�) + �̄�2 sinh (�̃�) = 0, in Ω

[�̃�]Γ =𝐺, on Γ

[𝜖 𝜕�̃�
𝜕𝑛
]Γ = −𝜖− 𝜕𝐺

𝜕𝑛 , on Γ,

(10)

where the regularized potential �̃� is defined as

�̃� =

{
𝑢𝑅𝐹 , in Ω−

𝑢, in Ω+.
(11)

In other words, the potential 𝑢 is not split in the solvent domain Ω+. After solving �̃� from Eq. (10), the original potential in the solute 
region is recovered by adding the Green’s function to the reaction field potential, that is, 𝑢 = �̃� +𝐺 = 𝑢𝑅𝐹 +𝐺, while the potential 
in the solvent region is recovered as 𝑢 = �̃�. Recently, a comparison of the two-component regularization of the rMIB algorithm [18] 
with three other popular PBE regularization methods involving two or three components has been conducted [24], and it is found 
that the rMIB regularization is both the most accurate and the most efficient approach.

In this work, the numerical results will be benchmarked by computing the electrostatic free energy. In terms of the dimensionless 
potential 𝑢, the calculation of the electrostatic free energy has been discussed in details in [46] without any unit conversion. In the 
present work, without considering the electrostatic stress and excess osmotic pressure of the mobile ions, the electrostatic free energy 
for both linear and nonlinear PB models will be computed as
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𝐸 = 1
2
𝑘𝐵𝑇

𝑁𝑚∑
𝑖=1 

𝑞𝑖𝑢𝑅𝐹 (𝐫𝑖). (12)

As discussed in the two-component regularization method [18], the electrostatic potential in the vacuum phase is simply given by 
the Green’s function Eq. (9). Thus, the difference between the potentials in water and vacuum phases is actually the reaction field 
potential 𝑢𝑅𝐹 . Moreover, the surface integrals can usually be dropped in energy computation of protein systems [46]. Then, the 
energy expression can be given as Eq. (12).

(2) Dielectric interface. Across the dielectric interface Γ with discontinuous coefficients, the regularized potential �̃� is discontin-
uous according to the jump conditions given in Eq. (10). Without proper treatments, the standard finite difference (FD) method will 
lose its accuracy at the interface. In fact, the regularization PBE Eq. (10) and the original PBE Eq. (1) are typical examples of elliptic 
interface problems [12,47] – a well-known challenge in scientific computing. By using a Cartesian grid finite difference discretization, 
the key issue in solving elliptic interface problems is on how to restore the accuracy near the interface.

To overcome this challenge and to ensure accurate electrostatic calculations, the rMIB PB solver uses the Matched Interface and 
Boundary (MIB) scheme [47], a robust high order numerical scheme for interface equations with discontinuous coefficients. The main 
idea of the MIB scheme is that when the finite difference stencil refers to a point from the other side of the interface, a fictitious value 
instead of the original function value will be used. The fictitious values can be regarded as a smooth extension of potential solutions 
from one side of the interface to the other side. Numerically, they are generated rigorously by enforcing the jump conditions. A 
Cartesian MIB scheme is employed in the rMIB package, i.e., the jump conditions in the normal direction will be decomposed into 𝑥, 
𝑦 and 𝑧 directions, and the Cartesian jump conditions will be discretized by finite difference involving fictitious values and original 
potentials. Then, the fictitious points can be solved as a linear combination of the grid values and jump data, allowing them to be 
substituted into the Laplacian FD discretization. The MIB scheme is able to treat 3D complicated interfaces including sharp edge 
corners [43,44], and has been successfully applied as a second order accurate PB solver for protein simulations [9,17,18,43].

(3) Molecular surface. In the PBE literature, the solute-solvent boundary Γ is usually taken as the solvent excluded surface (SES) 
[25,34], which is defined with a solvent molecule probe that rolls around the Van der Waals spheres representing all atoms. The 
MSMS program [37] is a popular software for generating the SES efficiently based on a reduced surface, which provides a Lagrangian 
representation of the SES by means of a triangulated surface mesh. In order to generate the necessary interface and jump data for 
the MIB treatments, a Lagrangian-to-Eulerian conversion is required to convert the MSMS triangulation into Cartesian grids. This 
is numerically challenging because the SES molecular surface is known to have geometrical singularities. Fortunately, advanced 
Lagrangian-to-Eulerian development has been developed in [9,43] so that the rMIB package works well for the MSMS surface [18]. 
Recently, an Eulerian Solvent Excluded Surface (ESES) algorithm [27] has been constructed to directly calculate the analytical SES 
patches based on Cartesian grids, which provides an easy generation of interface data for the MIB scheme. More recently, the rMIB 
package has been extended to include the ESES surface [40]. In the present study, the new boundary condition will be tested with 
the rMIB-MSMS version [18], while it should work equally well for the rMIB-ESES version [40].

(4) Nonlinearity. The rMIB PB solver [18] employs the inexact-Newton method [9,21] for treating the PBE nonlinearity, and the 
sparse linear systems inside each Newton iteration are solved by the Bi-conjugate gradient (BCG) algorithm. Here, the inexactness 
means that a large tolerance value, e.g. 10−2 , can be used in the BCG solution, because the overall accuracy of the nonlinear solution 
is mainly controlled by the outside Newton’s iteration. Recently, a comparison of the inexact-Newton method and a relaxation scheme 
based on the same MIB spatial discretization has been conducted in [33]. By calculating the nonlinear term from the previous iteration 
in the relaxation approach, the discretization of the Laplacian operator can take advantage of the fast Fourier-transform (FFT) fast 
Poisson solver and the augmented MIB (AMIB) algorithm [12] for potential acceleration. Consequently, the FFT-AMIB algorithm 
could be faster than the inexact-Newton method in Kirkwood sphere tests. However, for real proteins, an extended domain with extra 
unknowns is required in the FFT-AMIB procedure, because the mesh size in each Cartesian direction has to be increased to be powers 
of 2. Therefore, the inexact-Newton method has been found to be more efficient than the FFT relaxation method in protein studies 
[33].

3. Kirkwood sphere and modified Robin boundary condition

In this section, we will propose a modified Robin boundary condition for the nonlinear PBE in a spherically symmetric setting. 
To this end, a Kirkwood sphere with a centered charge 𝑞 at the origin (0,0,0) and radius being 𝑎 will be studied for both linear 
and nonlinear cases [1]. Numerical simulations for the 1D PB model will be carried out to validate the proposed Robin boundary 
condition.

3.1. Modified Robin boundary condition

Using the spherical symmetry, the 3D nonlinear PBE Eq. (1) for the Kirkwood sphere can be reduced to a 1D ordinary differential 
equation (ODE) in the radial direction 𝑟 = |𝐫|. In particular, the potential 𝑢(𝑟) in the solvent domain Ω+ outside the radius 𝑟 = 𝑎

satisfies the following boundary value problem (BVP) [1],

⎧⎪⎨⎪⎩
𝑢′′ + 2

𝑟 𝑢
′ − 𝜆2 sinh(𝑢) = 0, 𝑟 ∈ [𝑎,∞)

𝑢′(𝑟) = − 𝑒2𝑐
𝑘𝐵𝑇

𝑞

𝜖+𝑟2
, 𝑟 = 𝑎

𝑢 = 0, 𝑟→∞,

(13)
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where 𝑢′(𝑟) = 𝑑𝑢

𝑑𝑟 and 𝜆 =
√

�̄�2

𝜖+
. The Neumann boundary condition at the left boundary is derived based on the analytical solution 

in the solute domain Ω− and two jump conditions at the interface 𝑟 = 𝑎 [1]. Computationally, the infinity domain [𝑎,∞) has to be 
truncated to a finite domain [𝑎, 𝑏]. When a large enough 𝑏 is chosen, a Dirichlet zero boundary condition (DBC0), Eq. (4), may be 
assumed at 𝑟 = 𝑏 with a negligibly small truncation error [1].

Similarly, the 3D linearized PBE for the Kirkwood sphere gives rise to a 1D BVP [1]

⎧⎪⎨⎪⎩
𝑢′′ + 2

𝑟 𝑢
′ − 𝜆2𝑢 = 0, 𝑟 ∈ [𝑎,∞)

𝑢′(𝑟) = − 𝑒2𝑐
𝑘𝐵𝑇

𝑞

𝜖+𝑟2
, 𝑟 = 𝑎

𝑢 = 0, 𝑟→∞,

(14)

which admits an analytical solution

𝑢(𝑟) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑞𝑒𝜆(𝑎−𝑟)

𝜖+(𝜆𝑎+ 1)𝑟
, for 𝑟 ≥ 𝑎. (15)

For a general Kirkwood sphere with radius 𝑎 and center 𝐫𝑐 , the analytical solution in 3D is given by Eq. (7) with 𝑟 = |𝐫 − 𝐫𝑐|.
Consider a modest 𝑏 value for the nonlinear 1D PBE Eq. (13), for which the Dirichlet zero boundary condition, Eq. (4), is not 

applicable. Without the loss of the generality, one can assume 𝑢(𝑟) ≪ 1 near the right boundary 𝑟 = 𝑏. Consequently, sinh(𝑢) in 
Eq. (13) can be approximated by the first term in the Taylor series expansion, i.e., sinh(𝑢) ≈ 𝑢. Therefore, the asymptotic solution of 
the nonlinear PBE near 𝑟 = 𝑏 can be approximated by the Kirkwood solution 𝑢(𝑟) given in Eq. (15). This suggests that the following 
analytical boundary condition (ABC) could be used as an approximate boundary condition for the nonlinear PBE Eq. (13)

𝑢(𝑟) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑞𝑒𝜆(𝑎−𝑟)

𝜖+(𝜆𝑎+ 1)𝑟
∶= 𝐶𝐿

𝑒−𝜆𝑟

𝑟 
, at 𝑟 = 𝑏, (16)

where the linear constant 𝐶𝐿 = 𝑒2𝑐
𝑘𝐵𝑇

𝑞𝑒𝜆𝑎

𝜖+(𝜆𝑎+1) . Moreover, as pointed out in both Ref. [35] and Ref. [5], it could be assumed that the 
potential of the nonlinear PBE has the same asymptotic decaying rate as in the linearized case near 𝑟 = 𝑏, which yields the following 
asymptotic boundary condition

𝑢(𝑟) = 𝐶𝑁𝐿

𝑒−𝜆𝑟

𝑟 
, at 𝑟 = 𝑏. (17)

Such a Dirichlet condition could provide a better approximation than Eq. (16), if the nonlinear constant 𝐶𝑁𝐿 can be accurately 
estimated. In [35], the nonlinear constant is proposed to be calculated as the sum of the linear constant 𝐶𝐿 and two perturbation 
terms, while in [5], 𝐶𝑁𝐿 is calculated by a volume integral of the nonlinear term in the radial direction over the solvent domain. 
Numerically, the volume integrals are computed by using potential values in the previous iterative step [5].

In the present study, a novel Robin boundary condition is proposed, in which the difficulty in estimating 𝐶𝑁𝐿 in Eq. (17) is simply 
bypassed. In particular, by taking derivative of Eq. (17), we have

𝑑𝑢

𝑑𝑟 
= −𝐶𝑁𝐿

𝑒−𝜆𝑟

𝑟 

(
𝜆+ 1

𝑟 

)
= −𝑢(𝑟)

(
𝜆+ 1

𝑟 

)
, for 𝑟 near 𝑏. (18)

This gives rise to a modified Robin boundary condition,

𝑑𝑢

𝑑𝑟 
+
(1
𝑟 
+ 𝜆

)
𝑢(𝑟) = 0, at 𝑟 = 𝑏, (19)

which is valid for both LPB and NPB models. The proposed Robin boundary condition (RBC) Eq. (19) does not involve any unknown 
parameters. Moreover, it is a local boundary condition, i.e., one boundary value only relates to its derivatives at the same point.

3.2. Asymptotic validation of the RBC

The derivation of the RBC, Eq. (19), is based on an assumption that at the right boundary 𝑟 = 𝑏, we have 𝑢 ≪ 1. This may raise 
a concern that 𝑏 has to be quite large. In this subsection, we use 1D numerical solutions for both LPB and NPB cases to show that 
the proposed RBC is actually very robust so that 𝑏 does not need to be much larger than 𝑎, i.e., we just need 𝑏 > 𝑎, without requiring 
𝑏≫ 𝑎. To this end, we will first verify that the potentials for both linear and nonlinear cases have the same asymptotic decaying form

𝑢(𝑟) = 𝐶 𝑒
−𝜆𝑟

𝑟 
, for 𝑟 > 𝑎, (20)

while the constant 𝐶 could be slightly different for linear and nonlinear cases. Note that as long as Eq. (20) is valid at a point 𝑟 > 𝑎, 
the RBC Eq. (19) is valid at the same point.

We consider the numerical solution of the 1D BVPs for nonlinear PBE Eq. (13) and linearized PBE Eq. (14) over a finite domain 
[𝑎,𝐵] with a DBC0 condition 𝑢(𝐵) = 0. An eighth order accurate MIB scheme [1] is employed to discretize two BVPs. The parameters 
of the Kirkwood sphere are chosen as 𝑎 = 2 Å, 𝑞 = 1, 𝜖− = 1, 𝜖+ = 80, and 𝐼 = 0.15. By using a sufficient large 𝐵 and a small enough 
mesh spacing ℎ (both in a unit of Å), the MIB scheme can produce accurate approximations to potential and electrostatic energy 
with errors on the order of 10−12 [1]. By fixing the dimension as 𝑁 = 6401, we test several 𝐵 values. For each tested domain [𝑎,𝐵], 
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Fig. 2. Plot of 1D LPB and NPB potentials of the Kirkwood sphere in the log scale. The computational domain is [2,220] with a DBC0 boundary condition at 𝐵 = 220. 
To avoid the boundary pollution, a suitable data interval is chosen in each case, which is marked with red stars.

Table 1
Asymptotic analysis for 1D LPB and NPB potentials of the Kirkwood sphere with 𝑁 = 6401 and 
different 𝐵 values.

LPB NPB 
𝐵 (Å) ln𝐾 𝛼 𝛽 ln𝐾 𝛼 𝛽

160 1.708481 0.129379 -0.875493 1.671415 0.129269 -0.880617 
180 1.796767 0.127825 -0.921089 1.757976 0.127745 -0.925331 
200 1.947021 0.125959 -0.990668 1.948454 0.125944 -0.991310 
220 1.966224 0.125742 -0.999330 1.924385 0.125700 -1.002151 

we select a range of potential solution values 𝑢𝑖 ∶= 𝑢(𝑟𝑖) for 𝑖 = 1,2,… , 𝑛, and conduct a least squares (LS) data fitting to detect the 
asymptotic decaying pattern, which is assumed to be

𝑢(𝑟) =𝐾𝑒−𝛼𝑟𝑟𝛽 . (21)

Asymptotically, it is expected that 𝛼 → 𝜆 = 0.12572533646057585 Å−1, 𝛽 → −1 and 𝐾 → 𝐶 Å, when 𝐵 →∞ and ℎ→ 0. Note that 
the potential 𝑢 is dimensionless in the present study [46]. Taking the natural logarithm of Eq. (21), we arrive at a multilinear least 
squares problem⎡⎢⎢⎣1 −𝑟 ln 𝑟

⎤⎥⎥⎦
⎡⎢⎢⎣
ln𝐾
𝛼

𝛽

⎤⎥⎥⎦ =
[
ln𝑢

]
. (22)

For a data set with (𝑟𝑖, 𝑢𝑖) for 𝑖 = 1,2,…𝑛, Eq. (22) can be rewritten into a matrix form 𝐴𝑥 = 𝑓 , where 𝐴 ∈ ℝ𝑛×3 consists of three 
columns with ones, −𝑟𝑖 and ln 𝑟𝑖, 𝑥 = [ln𝐾,𝛼, 𝛽]𝑇 , and 𝑓 ∈ℝ𝑛 with entries ln 𝑢𝑖.

Note that the data range for (𝑟𝑖, 𝑢𝑖) starts from 𝑖 = 1 or 𝑟1 = 𝑎. For each tested domain [𝑎,𝐵], a suitable 𝑛 value has to be chosen. 
As shown in Fig. 2, near the boundary 𝑟 = 𝐵, the potential 𝑢 deviates from the asymptotic decaying pattern, because of the boundary 
condition 𝑢(𝐵) = 0. Thus, 𝑛 has to be carefully chosen so that the boundary pollution could be avoided.

By considering four large 𝐵 values, the LS fitted asymptotic parameters are reported in Table 1. It is obvious that as 𝐵 increases, 
we have 𝛼 → 𝜆 and 𝛽 → −1 for both linear and nonlinear cases. A few remarks are in order. First, the convergence patterns of 𝛼
towards 𝜆 for both linear and nonlinear cases are quite similar. This demonstrates that the NPB potential has the same asymptotic 
decaying as the linear case. Second, it should be emphasized that the data range in the present analysis starts from 𝑟1 = 𝑎. In other 
words, the asymptotic solution Eq. (20) holds for any 𝑟 > 𝑎. Computationally, this means that proposed RBC Eq. (19) will be valid for 
any 𝑏 value with 𝑏 > 𝑎, without requiring 𝑏 ≫ 𝑎. Third, the constant 𝐾 approaches slightly different limits for linear and nonlinear 
cases in Table 1. This indicates that 𝐶𝑁𝐿 is indeed different from 𝐶𝐿 in Eq. (17) and Eq. (16), respectively. This justifies the efforts 
in [5,35] for estimating 𝐶𝑁𝐿 numerically. Nevertheless, the need to calculate the asymptotic constant is simply eliminated in the 
proposed RBC.

3.3. Numerical validation of the RBC in 1D

In this subsection, we examine the performance of the RBC Eq. (19) by solving the following 1D BVP of the nonlinear PBE⎧⎪⎪⎨⎪⎪⎩

𝑢′′ + 2
𝑟 𝑢

′ − 𝜆2 sinh(𝑢) = 0, 𝑟 ∈ [𝑎, 𝑏]

𝑢′(𝑟) = − 𝑒2𝑐
𝑘𝐵𝑇

𝑞

𝜖+𝑟2
, 𝑟 = 𝑎

𝑢′(𝑟) +
(
1
𝑟 + 𝜆

)
𝑢(𝑟) = 0, 𝑟 = 𝑏.

(23)
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Fig. 3. Energy errors of the Kirkwood sphere for three boundary conditions with a fixed mesh size 𝑁 = 6401 and different domain size 𝑏. (a) LPB; (b) NPB. 

Fig. 4. Energy errors of the Kirkwood sphere for the RBC with a fixed domain size 𝑏= 200 Å and different spacing ℎ. (a) LPB; (b) NPB. 

Similarly, the corresponding BVP of the linearized PBE, obtained by replacing sinh(𝑢) with 𝑢 in Eq. (23), will also be studied. For 
comparison, we will also solve other four BVPs for linearized and nonlinear PBEs. Two of them use the DBC0 condition, Eq. (4), at 
𝑟 = 𝑏, while the other two employs the ABC condition, Eq. (16), at 𝑟 = 𝑏. Note that the ABC condition is exact for the linear Kirkwood 
sphere, but is just an approximate condition for the nonlinear case. The eighth order MIB scheme [1] will be employed to discretize 
all BVPs.

In the present study, the parameters of the Kirkwood sphere are chosen as 𝑎 = 2 Å, 𝑞 = 1, 𝜖− = 1, 𝜖+ = 80, and 𝐼 = 0.15. For the 
linearized case, the electrostatic free energy has an analytical value for the Kirkwood sphere, i.e., 𝐸 = −82.188683337726175 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙. 
For the nonlinear Kirkwood sphere, a benchmark procedure has been developed in [1], and the reference energy can be calculated 
as 𝐸 = −82.212210265417710 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙, whose precision is about 10−12.

We first test the energy error by considering different domain size 𝑏 with a fixed dimension 𝑁 = 6401. It can be seen from Fig. 3a 
that in the LPB case, the RBC condition produces negligible energy errors for all 𝑏 values, which are as good as the ABC condition. 
The DBC0 invokes large errors when 𝑏 is small, and a large 𝑏 value such as 𝑏 = 100 has to be used for producing similar errors as 
other conditions. For the NPB case in Fig. 3b, the RBC condition obviously dominates the other two, and delivers the best accuracy 
for all 𝑏 values. The ABC condition becomes an approximate one, so that it is just slightly better than the DBC0.

We next examine the convergence of the RBC for successive mesh refinements. By using a fixed domain size 𝑏 = 200 Å, we compute 
energy errors at different ℎ values for both linear and nonlinear cases. It can be seen from Fig. 4 that such errors become vanishing 
as ℎ goes to zero. In the LPB case, the precision limit of the iterative solver has been reached so that the error stops decreasing in the 
end. A least squares (LS) fitting has been conducted in the log scale for detecting the numerical convergence orders, which are found 
to be 5.83 and 5.30, respectively, for linear and nonlinear Kirkwood spheres. This indicates that the MIB spatial discretization is of 
high order convergence.

It is known in [5] that the usual Dirichlet boundary condition could produce unphysical solutions for a highly charged biomolecule. 
For the present Kirkwood sphere problem, we also consider a highly charged system with the centered charge 𝑞 = 50 and radius 
𝑎 = 10 Å, while other parameters are kept the same. Here, we only show the results for the nonlinear PB model, whose reference 
energy 𝐸 = −41413.479350115194 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙, is generated by using the 1D solver developed in [1].

For the highly charged Kirkwood sphere, we first examine the energy errors against the domain size 𝑏 with a fixed dimension 
𝑁 = 4336. It can be seen from Fig. 5a that the energy errors of the ABC and DBC0 conditions are large for small 𝑏 values. The RBC 
condition is obviously the best among the three, and produces accurate energies regardless of the value of 𝑏.

To see why the ABC condition fails in the nonlinear case for the highly charged Kirkwood sphere, the plot of electrostatic potential 
𝑢 against 𝑟 ∈ [10,20] is depicted in Fig. 5b. Here, the domain size is chosen as 𝑏 = 20 Å with 𝑁 = 4336. For the DBC0 condition, the 
potential 𝑢 equals zero at the right boundary, which in some sense pulls the potential curve down so that the DBC0 potential disagrees 
with the other two throughout. The ABC on the other hand produces some unphysical pattern, i.e., the potential is a non-decaying 
function that attains a minimum within the finite interval. Only the RBC delivers a reasonable asymptotic pattern – the potential is 
decaying while it does not equal zero at a finite 𝑟 value.
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Fig. 5. Numerical results of three boundary conditions for a highly charged Kirkwood sphere (𝑎= 10 Å, 𝑞 = 50) by using a fixed mesh size 𝑁 = 4336. (a) Energy errors 
with different domain sizes 𝑏. (b) Electrostatic potential 𝑢 with a fixed domain size 𝑏 = 20 Å and the plot is over the interval 𝑟∈ [10,20].

The 1D numerical results presented in this section demonstrate that the proposed Robin boundary condition Eq. (19) outperforms 
the analytical Dirichlet condition and Dirichlet zero condition for both linearized and nonlinear PB models, irrespective of domain 
sizes, radii, or charge values. Since the 1D modeling is limited to the PBE with spherical symmetry, we will investigate the performance 
of the proposed RBC for 3D protein simulations over non-symmetric Cartesian domains in the next section.

4. Robin boundary condition for proteins and its implementation in 3D

The proposed Robin boundary condition (RBC) Eq. (19) can be generalized for truncating the nonlinear PB model over non-
symmetric cubic domains. Theoretical and asymptotic analysis will be conducted in this section to justify the RBC for biomolecular 
simulations. A second order finite difference scheme will be proposed for implementing the RBC on Cartesian grids in 3D.

4.1. The RBC for 3D non-symmetric systems

Consider a biomolecule with 𝑁𝑚 atoms. For each atom, its radius is 𝑎𝑖 with the unit Å, and a partial charge 𝑞𝑖 is located at its center 
𝐫𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). The electrostatic potential is governed by the nonlinear PBE Eq. (1) over the infinity domain, while the solute-solvent 
interface Γ is assumed to be the solvent excluded surface (SES) [25,34].

The proposed RBC Eq. (19) can be reformulated to provide a new boundary condition for the nonlinear PBE Eq. (1) so that a 
truncated computational domain Ω can be used. The theoretical justification of the RBC for non-symmetric cubic domains consists 
of two physical considerations.

First, away from the biomolecular, it is assumed that sinh(𝑢) could be approximated by 𝑢 so that the asymptotic solution near the 
boundary 𝜕Ω can be modeled by the linearized PBE. It is noted that the edge value defining the domain Ω does not need to be large 
enough such that 𝑢 ≪ 1. The RBC is very robust so that the usual edge value used in the rMIB package [18] will be sufficient.

Second, it is assumed that near 𝜕Ω, the monopole term dominates the asymptotic solution – the same argument has been considered 
in [5,35] for deriving boundary conditions for the nonlinear PBE. Physically, away from the biomolecule, the electrostatic potential 
induced by the arbitrary charge distribution contained in the biomolecule could be represented by a multipole expansion, which 
consists of the superposition of a monopole, dipole, quadrupole, octupole, and so on [23,38]. Mathematically, this means the potential 
solution of the linearized PBE could be expanded in terms of spherical harmonics. The leading term in the multipole expansion or 
spherical harmonics expansion is the monopole term. Denote the geometric center of the biomolecule as 𝐫𝑐 = (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐), which can 
be calculated as

𝐫𝑐 =
1 
𝑁𝑚

𝑁𝑚∑
𝑖=1 

𝐫𝑖. (24)

The monopole term is actually corresponding to a Kirkwood sphere solution with the total charges of the biomolecule assumed at 𝐫𝑐
and an appropriate radius 𝑎 [23]

𝑢(𝐫) =
𝑒2
𝑐

𝑘𝐵𝑇

𝑞𝑒𝜆(𝑎−|𝐫−𝐫𝑐 |)
𝜖+(𝜆𝑎+ 1)|𝐫 − 𝐫𝑐 | , for |𝐫 − 𝐫𝑐 | ≥ 𝑎, (25)

where 𝑞 =
∑𝑁𝑚

𝑖=1 𝑞𝑖. For a boundary node 𝐫 ∈ 𝜕Ω, define the radial distance from the center of the biomolecule as 𝑟 = |𝐫 − 𝐫𝑐 |. As 
pointed out in [5], the dipole and quadrupole terms in the multipole expansion will have a decaying factor 𝑟−2 and 𝑟−3, respectively. 
Thus, when 𝑟 is sufficiently large, which is the case for a large protein system, the monopole term will dominate other terms, so that 
Eq. (25) provides a good approximation to the PBE potential at the boundary point 𝐫 ∈ 𝜕Ω.

With 𝑟 = |𝐫 − 𝐫𝑐 |, the monopole term (25) obviously takes the asymptotic solution form Eq. (20) underlying the RBC derivation. 
Thus, by taking a directional derivative along the direction 𝐫 − 𝐫𝑐 and denoting such a derivative as 𝜕𝑢

𝜕𝑟 , we propose a ray-casting 
Robin boundary condition (RBC) for the PB model in 3D
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Fig. 6. A 2D illustration of the 3D ray-casting directions involved in the proposed Robin boundary condition Eq. (26). 

Fig. 7. The 3D LPB and NPB potentials are converted to 1D arrays along the 𝑥-direction. The plots are for the domain [−44,44] ∗ [−45,45] ∗ [−42,43] with a mesh 
size of ℎ= 0.25 Å. The red region represents the interval where the asymptotic analysis will be conducted in the 𝑥 direction.

𝜕𝑢

𝜕𝑟 
+
(1
𝑟 
+ 𝜆

)
𝑢(𝐫) = 0, for 𝐫 ∈ 𝜕Ω. (26)

The geometric center and the ray-casting direction 𝐫 − 𝐫𝑐 are illustrated in Fig. 6. Note that the actual radius of the monopole term, 
i.e., 𝑎 in (25), is not required in our boundary treatment. Basically, 𝑎 has been absorbed into the asymptotic constant in Eq. (20), and 
thus can be eliminated. Nevertheless, for the global asymptotic boundary conditions in [5,35], a good estimate of 𝑎 or the asymptotic 
constant is indispensable.

4.2. Asymptotic validation of the RBC in 3D

Similar to the 1D studies, we next conduct an asymptotic analysis for the RBC Eq. (26) in 3D. To this end, we numerically solve the 
3D PBE Eq. (1) with a Dirichlet zero boundary condition over a finite domain Ω, by using the rMIB package [18]. A small compound 
nnd with 26 atoms is examined, and its geometric center has been translated to the origin, i.e., 𝐫𝑐 = (0,0,0). Because the molecule has 
a small size, we can test several medium size edge values for generating the domain Ω. For both linear and nonlinear PB models, we 
take 𝜖− = 1, 𝜖+ = 80, and 𝐼 = 0.15. By using ℎ= 0.25 Å, a numerical potential 𝑢(𝐫) is obtained for each case, from which a 1D array 
will be extracted along the 𝑥 axis. Like in 1D, we have to choose an appropriate interval for the asymptotic analysis, which should be 
outside the solute with decaying solution and should not be affected by the boundary pollution. An illustration of a selected interval 
in 𝑥 direction is shown in Fig. 7. Similar studies have been conducted for 𝑦 and 𝑧 directions as well, and the numerical results are 
similar and will be omitted here.
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Table 2
Asymptotic analysis for 3D LPB and NPB potentials for the small compound nnd with ℎ = 0.25 Å and different domains. 
For each case, a 1D potential array is extracted along the 𝑥 axis for the LS fitting.

LPB NPB 
Domain ln𝐾 𝛼 𝛽 ln𝐾 𝛼 𝛽

[−29,29] × [−30,30] × [−27,28] 1.297846 0.176826 -0.932305 1.294958 0.176855 -0.931088 
[−34,34] × [−35,35] × [−32,33] 0.954683 0.151805 -0.957865 0.951547 0.151834 -0.956552 
[−44,44] × [−45,45] × [−42,43] 0.862828 0.140146 -1.002597 0.860062 0.140163 -1.001480 
[−52,52] × [−53,53] × [−50,51] 0.680985 0.134753 -0.988875 0.678189 0.134768 -0.987775 

With the 1D potential array along the 𝑥 direction, we conduct the LS fitting to the asymptotic solution given in Eq. (21) for 
estimating ln𝐾 , 𝛼 and 𝛽. The numerical results are reported in Table 2 for both linear and nonlinear potentials over different 3D 
domains. Asymptotically, it is expected that 𝛼→ 𝜆 = 0.12572533646057585 Å−1 and 𝛽→ −1 when the edge value goes to infinity and 
ℎ approaches zero. It can be observed from Table 2 that 𝛼 indeed converges to 𝜆 as the domain becomes larger, while 𝛽 becomes 
close to −1. The convergence pattern is not as evident as in Table 1, because very large domain sizes can be used in the 1D analysis, 
while the domain size is limited to be small to medium for 3D simulations. Given this limitation, the convergence pattern in Table 2
is already very good for the present non-symmetric Cartesian domains. Moreover, one can see that the asymptotic values of LPB 
and NPB are very similar in Table 2 - suggesting that the NPB potential satisfies the same asymptotic solution as the LPB near the 
boundary. Finally, we note that the asymptotic analysis is conducted over an interval quite close to the solute region, see Fig. 7. 
Theoretically, the proposed RBC condition can be applied at any point in this interval. This means that the RBC condition will be 
valid for a small edge value, which implies a large saving in 3D computations.

4.3. Numerical implementation of the RBC in 3D

A second order finite difference discretization of the modified Robin boundary condition Eq. (26) will be constructed by using the 
matched interface and boundary (MIB) scheme [12,47], and will be implemented in the rMIB package [18]. In the rMIB PB solver, a 
uniform mesh is employed with the spacing ℎ being the same in all Cartesian directions, i.e., ℎ = Δ𝑥 = Δ𝑦 = Δ𝑧, while the number 
of grid nodes is 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧, respectively, in 𝑥, 𝑦, and 𝑧 directions. For a grid node (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), let us denote 𝑢𝑖,𝑗,𝑘 = 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘).

A second order central difference is employed to discretize the derivatives in the PBE Eq. (1). For example, away from the interface 
and boundary, the 𝑥 derivative at a node (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) can be approximated as[

𝜕2𝑢 
𝜕𝑥2

]
𝑖,𝑗,𝑘

=
𝑢𝑖−1,𝑗,𝑘 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖+1,𝑗,𝑘

ℎ2
+𝑂(ℎ2). (27)

To avoid order reduction, the central difference approximation has to be corrected near the interface Γ and boundary 𝜕Ω [47]. For 
the dielectric interface, a second order accurate MIB scheme [9,17,18,43] has been developed to enforce jump conditions and to 
accommodate geometrically complex molecular surface in solving the PBE.

The MIB boundary treatment developed in [12] will be reformulated to impose the modified Robin condition Eq. (26) on 𝜕Ω. 
In particular, consider a boundary node, such as (𝑥𝑛, 𝑦𝑗 , 𝑧𝑘), where we have denoted 𝑛 = 𝑛𝑥 for simplicity. At this point, the central 
difference Eq. (27) will be modified as[

𝜕2𝑢 
𝜕𝑥2

]
𝑛,𝑗,𝑘

=
𝑢𝑛−1,𝑗,𝑘 − 2𝑢𝑛,𝑗,𝑘 + �̂�𝑛+1,𝑗,𝑘

ℎ2
+𝑂(ℎ2), (28)

where �̂�𝑛+1,𝑗,𝑘 = �̂�(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘) is a fictitious value outside the domain. If this fictitious value can be estimated accurately, finite 
difference approximation Eq. (28) maintains a second order of accuracy.

A second order ray-casting MIB scheme is developed to represent �̂�𝑛+1,𝑗,𝑘 . To this end, we first define the geometric center 
𝐫𝑐 = (𝑥𝑐, 𝑦𝑐 , 𝑧𝑐 ) according to Eq. (24). Then a radial direction can be defined by drawing a line from 𝐫𝑐 to the fictitious point (FP) 
(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘). See Fig. 6 for an illustration of several ray-casting directions for multiple FPs. The ray-casting line for the FP (𝑥𝑛+1 , 𝑦𝑗 , 𝑧𝑘)
will intersect two 𝑦𝑧-planes 𝑥 = 𝑥𝑛 and 𝑥 = 𝑥𝑛−1, respectively, at two auxiliary points (APs) 𝛾1 = (𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ) and 𝛾2 = (𝑥𝑛−1, 𝑦𝛾2 , 𝑧𝛾2 ), 
as illustrated in Fig. 8a. A second order finite difference discretization of the Robin condition Eq. (26) will be enforced at the AP 
𝛾1 ∈ 𝜕Ω along the radial direction. This gives rise to

�̂�(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘) − 𝑢(𝑥𝑛−1, 𝑦𝛾2 , 𝑧𝛾2 )
𝑟𝑛+1 − 𝑟𝑛−1

+
(

1 
𝑟𝑛

+ 𝜆
)
𝑢(𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ) = 0, (29)

where 𝑟𝑛+1 =
√

(𝑥𝑛+1 − 𝑥𝑐)2 + (𝑦𝑗 − 𝑦𝑐)2 + (𝑧𝑘 − 𝑧𝑐)2, 𝑟𝑛 =
√

(𝑥𝑛 − 𝑥𝑐)2 + (𝑦𝛾1 − 𝑦𝑐)
2 + (𝑧𝛾1 − 𝑧𝑐)

2, and 

𝑟𝑛−1 =
√

(𝑥𝑛−1 − 𝑥𝑐)2 + (𝑦𝛾2 − 𝑦𝑐)
2 + (𝑧𝛾2 − 𝑧𝑐)

2. From Eq. (29), the fictitious value �̂� can be solved in terms of two 𝑢 values

�̂�(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘) = 𝑢(𝑥𝑛−1, 𝑦𝛾2 , 𝑧𝛾2 ) − (𝑟𝑛+1 − 𝑟𝑛−1)
(

1 
𝑟𝑛

+ 𝜆
)
𝑢(𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ). (30)
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Fig. 8. (a) A 3D illustration of the ray-casting MIB scheme (radial direction) for a fictitious point (FP) (𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘). A radial line is drawn from the center of the 
solute molecule (𝐫𝑐 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 )) to this FP. This radial line intersects the 𝑦𝑧-planes 𝑥= 𝑥𝑛 and 𝑥 = 𝑥𝑛−1 at 𝛾1 = (𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ) and 𝛾2 = (𝑥𝑛−1, 𝑦𝛾2 , 𝑧𝛾2 ), respectively. The 
modified Robin boundary condition is discretized at 𝛾1 , which involves points: 𝛾1 , 𝛾2 and the FP. (b) Since 𝛾1 and 𝛾2 are not grid nodes, they will be interpolated in 
the 𝑦𝑧-plane. For example, 𝛾1 = (𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ) will be first interpolated in 𝑦 direction using three nearest points (brown squares). Then each of the three points will be 
interpolated in 𝑧 direction by using three nearest nodes (black circles). Thus, each of 𝛾1 and 𝛾2 is interpolated by 9 grid nodes.

We note that two APs 𝛾1 = (𝑥𝑛, 𝑦𝛾1 , 𝑧𝛾1 ) and 𝛾2 = (𝑥𝑛−1, 𝑦𝛾2 , 𝑧𝛾2 ) usually are not grid nodes. Thus, the 𝑢 values at two APs need to 
be interpolated in the 𝑦𝑧-planes. As shown in Fig. 8b, the AP 𝛾1 will be interpolated along 𝑦 and 𝑧 directions, respectively, by using 
three nearest grid nodes. This involves nine grid nodes in the 𝑦𝑧-plane 𝑥 = 𝑥𝑛 to interpolate 𝛾1, and 𝛾2 will be treated similarly. The 
1D interpolation weights involved in this process are generated by the subroutine given in [14]. By interpolating each AP by nine 
grid nodes, the fictitious value �̂�(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘) can be expressed as a linear combination of 18 nearby function values

�̂�(𝑥𝑛+1, 𝑦𝑗 , 𝑧𝑘) =
∑

(𝑥𝐼 ,𝑦𝐽 ,𝑧𝐾 )∈𝕊
𝑊𝐼,𝐽,𝐾𝑢(𝑥𝐼 , 𝑦𝐽 , 𝑧𝐾 ), (31)

where the set 𝕊 contains the aforementioned 18 grid nodes in Ω and the linear combination weights 𝑊𝐼,𝐽,𝐾 can be computed based 
on interpolation weights and Eq. (30). Finally, Eq. (31) can be substituted into Eq. (28) to discretize the 𝑥 derivative in the PBE at 
this boundary point. The PBE discretization and enforcement of Robin boundary conditions in 𝑦 and 𝑧 can be formulated similarly.

5. Numerical validation

In this section, we will examine the accuracy, robustness, and efficiency of the proposed Robin boundary condition (RBC) Eq. (26) 
and the ray-casting MIB scheme for 3D PB computations. The calculated potential and electrostatic free energy will be benchmarked 
with the analytical or reference values, and compared with those generated by commonly used boundary conditions, including the 
Dirichlet zero boundary condition (DBC0) Eq. (4), the Debye-Hückel Dirichlet boundary condition (DBC) Eq. (5), and analytical 
boundary condition for the Kirkwood sphere (ABC) Eq. (7). All boundary conditions are implemented in the same 3D rMIB PB solver 
[18]. In all computations, the electrostatic free energy has unit 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙, the ionic strength is 0.15, 𝜖− = 1 and 𝜖+ = 80. Unless 
specified otherwise, the unit of the length of spacing ℎ, domain size and edge value is Å.

5.1. 3D Kirkwood sphere with a centered charge

We first consider a Kirkwood sphere with a central charge 𝑞 = 1 located at the origin 𝐫𝑐 = (0,0,0) and radius 𝑎= 2 Å. A cubic domain 
[−𝑏, 𝑏]3 is employed. For the linearized PB (LPB) model, the analytical potential is available [18], and the analytical electrostatic free 
energy is 𝐸 = −82.188683337726175 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙.

We first explore the impact of the domain size 𝑏 on the energy calculation in the LPB model. By considering different 𝑏 values, the 
energy errors are plotted in Fig. 9a for three boundary conditions. It can be seen that the energies for ABC and RBC produced lower 
numerical errors regardless of the domain size while the DBC0 required domains larger than [−20,20]3 .

We next examine the potential approximation error of the LPB model, for which the potential 𝑢 is analytically known for the 
Kirkwood sphere. By using a domain of [−6,6]3, numerical errors in 𝐿2 and 𝐿∞ norms are depicted in Fig. 9b and 9c. With a small 
domain size 𝑏 = 6, the DBC0 condition fails to converge and its error remains as a constant for different ℎ values. The errors of 
ABC and RBC conditions become smaller as ℎ goes to zero, while the ABC convergence is better because it is derived based on the 
analytical solution. The LS fitted numerical orders in 𝐿2 and 𝐿∞ norms are found to be: ABC: 2.09 and 2.03, RBC: 1.27 and 1.96 and 
DBC0: −0.01 and 0.00. In the previous Kirkwood sphere test [18], the ABC is used and the rMIB package has been shown to provide 
second order accurate potential value for the LPB model [18]. In this work, we found the RBC can also provide second order accurate 
potential in terms of 𝐿∞ error. The 𝐿2 order of the RBC is slightly less than two, but this does not affect its energy accuracy which 
is second order accurate.
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Fig. 9. Numerical approximation of the 3D LPB energy for the Kirkwood sphere (𝑎 = 2 Å, 𝑞 = 1). (a) Energy error for different domain size 𝑏 with a fixed ℎ = 0.25. 
(b) 𝐿2 error and (c) 𝐿∞ error in approximating the electrostatic potential by using different ℎ and a fixed domain [−6,6]3.

Fig. 10. Numerical error in approximating the 3D NPB energy for the Kirkwood sphere (𝑎 = 2 Å, 𝑞 = 1). Left: Different domain size 𝑏 with a fixed ℎ = 0.25; Right: 
Different spacing ℎ with a fixed domain size 𝑏 = 6.

Fig. 11. Energy error and potential of the highly charged Kirkwood sphere with 𝑞 = 50 and 𝑎 = 10 Å. (a) NPB energy error with a fixed domain 𝑏 = 25; (b) The line 
plot of the NPB potential 𝑢 along the 𝑥-axis with 𝑏 = 25 and ℎ = 0.25 in the log scale.

We next study the same Kirkwood sphere with the nonlinear PB (NPB) model, whose reference energy 𝐸 = −82.212210265417710
𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙 is calculated by using the program developed in [1]. In Fig. 10, the dependencies of the NPB energy error on the domain size 
𝑏 and spacing ℎ are plotted for three boundary conditions. It is obvious that the ABC is the worst boundary condition now, because 
the ABC condition is derived based on the LPB analytical solution. Compared with the LPB case, the DBC0 condition performs the 
same. It needs a large domain size, and fails to converge with respect to ℎ when 𝑏 = 6. The RBC condition performs as good as in 
the linear case by producing a small error for all domain sizes. In Fig. 10 right chart, the LS fitted line of the RBC condition is also 
plotted, which shows that the energy convergence order is 1.74. This indicates that the proposed RBC together with the ray-casting 
scheme achieves a second order of convergence in estimating the electrostatic free energy.

Similar to the 1D studies, we also consider a highly charged Kirkwood sphere with a centered charge 𝑞 = 50 and radius 𝑎 = 10 Å. 
For the nonlinear case, a reference energy 𝐸 = −41413.479350115194 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙 is generated by using the 1D solver developed in [1].

We test the energy convergence in Fig. 11a for the NPB model, by using a fixed domain [−25,25]3 or 𝑏 = 25. The ABC invokes a 
larger error than the RBC and DBC0. The DBC0 energy converges in the highly charged Kirkwood sphere case, perhaps because the 
domain size 𝑏 = 25 is large enough. In Fig. 11b, the logarithm of the potential is plotted along the 𝑥-axis with 𝑦 = 𝑧 = 0 for the NPB 
model. The DBC0 potential obviously attains the boundary value 𝑢 = 0 at 𝑥 = 25. Also, it is clear that the RBC potential still yields 
a reasonable decaying potential while the ABC potential generates an unphysical solution for the highly charged Kirkwood sphere, 
where the potential 𝑢 grows near the boundary.
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Fig. 12. Numerical accuracy in approximating electrostatic potential of the 3D LPB equation for the Kirkwood sphere of radius 𝑎= 2 Å with six off-centered charges. 
A fixed domain [−6,6]3 is employed. Left: 𝐿2 error; Right: 𝐿∞ error.

Table 3
Numerical errors and orders in approximating the LPB energy for the 3D Kirkwood 
sphere of radius 𝑎= 2 Å with six off-centered charges using four boundary conditions. 
A fixed domain [−6,6]3 is used.

ABC RBC 
ℎ 𝐸 error order 𝐸 error order 
1 -4105.6616 1.02E+1 -4105.5788 1.02E+1 
1∕2 -4098.5704 3.14E+0 1.70 -4098.6164 3.19E+0 1.67 
1∕4 -4096.3317 9.05E-1 1.80 -4096.3749 9.49E-1 1.75 
1∕8 -4095.6669 2.41E-1 1.91 -4095.6891 2.63E-1 1.85 
1∕16 -4095.4886 6.24E-2 1.95 -4095.4979 7.16E-2 1.88 

DBC DBC0 
ℎ 𝐸 error order 𝐸 error order 
1 -4105.8199 1.04E+1 -4111.5583 1.61E+1 
1∕2 -4098.7280 3.30E+0 1.65 -4104.4433 9.02E+0 0.84 
1∕4 -4096.4890 1.06E+0 1.64 -4102.1984 6.77E+0 0.41 
1∕8 -4095.8242 3.98E-1 1.42 -4101.5321 6.11E+0 0.15 
1∕16 -4095.6459 2.20E-1 0.86 -4101.3530 5.93E+0 0.04 

5.2. 3D Kirkwood sphere with off-centered charges

In this subsection, we consider Kirkwood spheres with off-centered charges. In our first test, six charges ( 12 ,1,2,
1
2 ,1,2) are consid-

ered, which are located at (1,0,0), (− 1
2 ,0,0), (0,−

1
2 ,0), (0,1,0), (0,0,−

1
2 ) and (0,0,1), respectively, in a spherical cavity with radius 

𝑎 = 2 Å. Note that the center of charges 𝐫𝑐 = ( 1 
12 ,

1 
12 ,

1 
12 ) is not located at the origin. Moreover, the charge distribution breaks the 

spherical symmetry. Thus, such a Kirkwood sphere is a good example for testing the performance of the proposed RBC condition (26) 
for treating the non-symmetric problem.

In the case of the LPB model, the analytical potential of the Kirkwood sphere with off-centered charges can be calculated by 
using spherical harmonic expansions [15,17]. Based on that, the analytical energy can be calculated as 𝐸 = −4095.4262228752582
kcal/mol for the present test case. In this subsection, the ABC condition will refer to the Dirichlet boundary condition derived from 
the analytical potential. Moreover, the commonly used Dirichlet boundary condition (DBC) given in Eq. (5) will also be considered, 
together with the Dirichlet zero boundary condition (DBC0) Eq. (4). 

With the analytical potential in the LPB model, we first test the 𝐿2 and 𝐿∞ convergence in approximating the potential 𝑢 with 
successive mesh refinements. By using a fixed domain [−6,6]3, the numerical results of four boundary conditions are shown in Fig. 12. 
By using the LS fitting, the rates of convergence in the 𝐿2 and 𝐿∞ norms for four boundary conditions are in order: ABC: 1.72 and 
1.85, RBC: 1.43 and 1.83, DBC: 0.94 and 1.75 and, DBC0: −0.00 and 0.64. As before, the DBC0 condition is invalid for a small domain 
size 𝑏 = 6. The ABC condition exhibits a constant convergence rate, which actually shows the second order of accuracy of the rMIB 
algorithm [18] for the Kirkwood sphere with multiple charges. Both the RBC and DBC conditions attain converged results, while the 
convergence rate of the RBC is better and closer to two.

The numerical energies calculated by four boundary conditions are listed in Table 3. By using the analytical energy, the numerical 
errors are also reported for successive mesh refinements, which allow us to calculate the numerical orders for energy approximation. 
It can be seen that the DBC0 energy does not converge. The DBC energy is converging, but is very slow. Both ABC and RBC energies 
attain the second order of convergence.

Next, we extend our analysis to the NPB model for the Kirkwood sphere with multiple charges. We note that no analytical solution 
exists for the NPB model. Moreover, the 1D NPB energy benchmark program developed in [1] is not applicable, because the present 
Kirkwood sphere with off-centered charges cannot be reduced to 1D. To compare four boundary conditions, we will mainly examine 
the electrostatic free energy.
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Fig. 13. Numerical solution of the 3D NPB equation for the Kirkwood sphere of radius 𝑎 = 2 Å with six off-centered charges. Left: electrostatic free energies produced 
by four boundary conditions for different 𝑏 with ℎ = 0.25; Right: the line plot of the potential along 𝑥-axis by using a fixed domain [−6,6]3 and ℎ = 0.25.

Table 4
Numerical errors and orders in approximating the NPB energy for the 3D Kirkwood 
sphere of radius 𝑎= 2 Å with six off-centered charges using four boundary conditions. 
A fixed domain [−6,6]3 is used.

ABC RBC 
ℎ 𝐸 error order 𝐸 error order 
1 -4124.7380 5.72E+0 -4125.1536 6.14E+0 
1∕2 -4120.2414 1.23E+0 2.22 -4120.5320 1.52E+0 2.02 
1∕4 -4118.9770 3.65E-2 5.07 -4119.2399 2.26E-1 2.75 
1∕8 -4118.7475 2.66E-1 -2.86 -4119.0075 6.02E-3 5.23 
1∕16 -4118.7523 2.61E-1 0.03 -4119.0125 1.02E-3 2.56 

DBC DBC0 
ℎ 𝐸 error order 𝐸 error order 
1 -4124.9299 5.92E+0 -4125.3831 6.37E+0 
1∕2 -4120.3687 1.36E+0 2.13 -4120.6777 1.66E+0 1.94 
1∕4 -4119.0905 7.70E-2 4.14 -4119.3657 3.52E-1 2.24 
1∕8 -4118.8591 1.54E-1 -1.00 -4119.1294 1.16E-1 1.60 
1∕16 -4118.8637 1.50E-1 0.04 -4119.1335 1.20E-1 -0.05 

By using ℎ = 0.25, the electrostatic free energies calculated by four boundary conditions are plotted against the domain size 𝑏
in Fig. 13 Left. It is obvious that the RBC energy attains the fastest convergence rate - it looks like a constant for all domain sizes. 
All other energies converge to that of the RBC, but a larger domain size is required. The ABC condition performs the worst, while 
the convergence rates of the DBC and DBC0 look similar. On the right chart of Fig. 13, the potential 𝑢 is plotted along the 𝑥-axis for 
four boundary conditions, by using 𝑏 = 6 and ℎ = 0.25. We note that the RBC potential is the only correct one. The DBC0 potential 
artificially equals zero at 𝑥 = 6 as forced by the boundary condition. Both the ABC and DBC potentials are unphysical. They are growing 
as approaching the boundary and assume local minimals in the solvent domain. Based on Fig. 13 Left Chart, such artifacts could be 
avoided only when a very large domain size 𝑏 is used for the ABC and DBC conditions, which, unfortunately, are computationally 
more expensive.

To quantitatively verify the convergence, a reference energy is needed for the NPB model. Based on the best performance 
of the RBC condition in Fig. 13, we use the RBC condition with 𝑏 = 10 and ℎ = 0.0625 to calculate a reference energy 𝐸 =
−4119.0135004213835 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙. Based on it, the energy errors of the four boundary conditions are reported in Table 4. The RBC 
condition produces the smallest errors and the numerical convergence rates are consistently second order or even higher. For the 
other three conditions, second orders are displayed for large ℎ values, but eventually, the order is down to zero at ℎ = 1∕16. In fact, 
comparing the energies at ℎ = 1∕8 and ℎ = 1∕16, all conditions yield self-converged results, namely the difference between these two 
energies is usually less than 5.0E-3. However, with 𝑏 = 6, as shown in Fig. 13 Right, only the RBC condition produces physically 
correct potentials. The potentials of the other three conditions are actually incorrect. Due to such boundary errors, the energies of 
these three conditions converge to something different from that of the RBC. This is essentially why the convergence orders of the 
three conditions become zero at ℎ = 1∕16, when they are benchmarked with the RBC reference energy.

A Kirkwood sphere with six off-centered high charges is also considered. By taking the radius as 𝑎 = 10 Å, the six off-centered 
charges are 40, 45, 50, 40, 45 and 50 at positions (4.5,0,0), (−5,0,0), (0,−5.0,0), (0,4.5,0), (0,0,−5) and (0,0,4.5), respectively. Note 
that the center of charges 𝐫𝑐 = (− 1 

12 ,−
1 
12 ,−

1 
12 ) is also not at the origin.

For simplicity, we only consider the NPB model for the present case. By using ℎ = 0.25, the electrostatic free energies calculated 
by four boundary conditions are plotted against the domain size 𝑏 in Fig. 14 Left. The RBC energy looks like a constant for all 𝑏
values, showing the best convergence among the four conditions. For the highly charged case, the ABC condition is the worst and still 
does not converge with 𝑏 = 50. It is also noted that the commonly used DBC condition is actually worse than the DBC0, because it 
requires a larger 𝑏 for energy convergence. By using 𝑏 = 25 and ℎ= 0.25, the potentials of four conditions are plotted along the 𝑥-axis 
in Fig. 14 Right. Similar to the previous case, the RBC potential is the only physical one. With a semilogy plot, the RBC potential 
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Fig. 14. Numerical solution of the 3D NPB equation for the Kirkwood sphere of radius 𝑎 = 10 Å with six off-centered high charges. Left: electrostatic free energies 
produced by four boundary conditions for different 𝑏 with ℎ = 0.25; Right: the line plot of the potential along 𝑥-axis by using a fixed domain [−25,25]3 and ℎ = 0.25.

Fig. 15. Numerical solution of the 3D NPB equation for the protein 1bbl. Left: electrostatic free energies produced by three boundary conditions for different edge 
values with ℎ = 0.25; Right: the line plot of the potential along 𝑥-axis using edge value 2 (E2) and edge value 6 (E6) with ℎ= 0.25.

clearly displays the desired asymptotic pattern. The DBC0 potential was dragged to zero at 𝑏 = 25, so that the decaying pattern was 
distorted. For the ABC and DBC conditions, the potential is nonphysically increasing as approaching the boundary.

5.3. Electrostatic analysis of a protein

In this subsection, electrostatic analysis will be carried out for a protein with protein databank (PDB) ID: 1bbl, which has been 
studied in Ref. [18] by using the rMIB algorithm with the DBC Eq. (5). By using the same package, we will examine two more 
boundary conditions, i.e., the RBC Eq. (26) and DBC0 Eq. (4). The protein 1bbl has a relatively small size, containing 576 atoms. This 
allows us to test large edge values and/or dense meshes. For simplicity, we shall focus only on the NPB model for protein studies.

We first explore the impact of the edge value to the electrostatic free energy. By using three boundary conditions, such results 
are shown in Fig. 15 Left. It is clear the RBC is the best among three conditions. The RBC energy looks like a constant for all edge 
values and the DBC energy also converges quite fast, while DBC0 requires a large edge value for convergence. An in-depth analysis 
is conducted in Fig. 15 Right. For each boundary condition, two potential solutions are generated by using edge = 2 (E2) and edge 
= 6 (E6) with ℎ = 0.25. Then both potential solutions are plotted in the same figure along the 𝑥-axis for the solvent domain. It can 
be observed that when the edge is large enough, such as E6, the potentials of the RBC and DBC are almost identical throughout the 
solvent domain including at the boundary. Nevertheless, with edge = 2 (E2), the potential is slightly different from that of E6 for 
both RBC and DBC conditions. In particular, the RBC has a little undershooting near the boundary cutoff point, while the DBC has 
a little overshooting. However, such deviations are very minor so that the potential of E2 still agrees with that of E6 for a majority 
part of the solvent domain, implying potentials for E2 and E6 are also in good agreement inside the solute domain. Consequently, the 
energies produced with E2 and E6 should be close to each other. In other words, the energy converges fast with respect to the edge 
value for both RBC and DBC conditions, which confirms what is observed in Fig. 15 Left. On the other hand, the DBC0 potential has 
a large deviation from that of RBC and DBC. Moreover, it is significantly different with E2 and E6. As suggested by Fig. 15 Left, only 
when a very large edge value is used, the DBC0 potential and energy could be close to those of the RBC.

We next study the energy convergence with mesh refinements. A reference energy is generated by the RBC using an edge value of 
10 and a grid spacing of 0.125 (dimension of mesh: = 393 × 401 × 385), which gives 𝐸 = −990.65456746840368 𝑘𝑐𝑎𝑙∕𝑚𝑜𝑙. By using 
a small edge value of 3 (domain = [−22,13] × [−16,20] × [−18,16]), numerical results of three boundary conditions are presented in 
Table 5. The RBC condition clearly achieves a second order of accuracy in energy calculation, while the DBC0 energy diverges with 
a small edge value. It is interesting to note that with edge=3, the DBC energy converges to the RBC reference energy, and a second 
order of convergence is also attained.

Fairly speaking, the DBC condition Eq. (5) performs pretty well in solving the NPB equation for protein simulations. Unlike the 
previous cases involving the Kirkwood spheres, the DBC condition provides accurate energy estimates and converges in second order 
even for a small edge value. The physical reasons why the DBC condition works well for protein systems can be justified from two 
aspects. First, the charges involved in proteins are considered to be low. For example, the total charge of the 1bbl is just 1. The partial 
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Table 5
Numerical errors and orders in approximating the NPB energy for the protein 1bbl. A fixed edge of 3 or domain =
[−22,13] × [−16,20] × [−18,16] is used.

RBC DBC DBC0 
ℎ 𝐸 error order 𝐸 error order 𝐸 error order 
1 -997.3526 6.70E+0 -997.4115 6.76E+0 -997.7634 7.11E+0 
1∕2 -989.6556 9.99E-1 2.75 -989.6903 9.64E-1 2.81 -990.0606 5.94E-1 3.58 
1∕4 -990.5144 1.40E-1 2.84 -990.5436 1.11E-1 3.12 -990.9117 2.57E-1 1.21 
1∕8 -990.6640 9.41E-3 3.90 -990.6884 3.39E-2 1.71 -991.0567 4.02E-1 -0.65 

Fig. 16. Numerical solution of the 3D NPB equation for the “highly charged” protein 1bbl. Left: electrostatic free energies produced by three boundary conditions for 
different edge values with ℎ = 0.25; Right: the line plot of the potential along 𝑥-axis using edge value 2 (E2) and edge value 6 (E6) with ℎ= 0.25.

charge assigned by the force field to each atom center usually has a small magnitude, with a value ranging from [−0.8,0.64] in case of 
1bbl. In other words, 𝑞𝑖 in Eq. (5) are all small in magnitude. Second, the domains of protein studies are usually large. For example, 
with edge=3, the domain of the 1bbl is [−22,13]× [−16,20]× [−18,16]. At a boundary point 𝐫, most atom centers are far away from 
it, i.e., |𝐫 − 𝐫𝑖| is large in Eq. (5). Consequently, the potential value at the boundary will be small and the Debye-Hückel condition 
calculated by Eq. (5) provides a good approximation to it.

To demonstrate that the DBC condition Eq. (5) could fail for protein studies, we have to artificially create a highly charged test 
case. To this end, we have chosen three atoms which are close to the right boundary in the 𝑥 direction, which are atoms HB1, CG

and HG1 of the Proline amino acid. Their partial charges have been changed from 0.090, -0.180, 0.090 to 3.090, -3.180, 3.090, 
respectively, for HB1, CG, HG1. The other charges, atom centers and radii are kept the same. The resulting structure will be called as 
a “highly charged” 1bbl protein.

The above electrostatic analysis is repeated for the “highly charged” 1bbl. The performance of the proposed RBC condition is not 
affected by the changes. With different edge values, the RBC energy still looks like a constant in Fig. 16 Left. In the right chart, the 
RBC potentials based on edge = 2 (E2) and edge = 6 (E6) agree pretty well. The DBC0 also behaves similarly as above. It requires 
a large edge value for energy convergence, and the DBC0 potentials with E2 and E6 are significantly different. The DBC condition is 
greatly impacted by three high charges artificially created in the 1bbl. Its energy convergence obviously becomes worse in Fig. 16
Left. In potential plots, the DBC potential with edge = 2 becomes unphysical, i.e., it is growing near the boundary. With edge = 
6, the DBC potential decays initially, but approaches a constant near the boundary. Moreover, the DBC potentials with E2 and E6 
are entirely different throughout the solvent domain. In short, with a few charges changed, the DBC condition exhibits unphysical 
behaviors near the boundary. Only the RBC condition can correctly capture the asymptotic decaying pattern.

5.4. Electrostatics on a set of proteins

Finally, we conduct the electrostatic analysis for a set of proteins. This set contains 25 proteins, which are randomly chosen from 
the proteins being studied in [18,46]. The rMIB PB solver [18] will be used to solve the NPB equation with three boundary conditions, 
DBC Eq. (5), RBC Eq. (26) and DBC0 Eq. (4). By using the default edge value of 3, the electrostatic free energies calculated by using 
ℎ = 1, ℎ= 0.5 and ℎ = 0.25 are reported in Table 6 for three boundary conditions.

As shown in the above experiments that the proposed RBC condition and the corresponding MIB scheme provide a second order 
boundary treatment for the NPB model. The RBC energies listed in Table 6 confirm again the second order of convergence. On the 
other hand, because the partial charges are small and because the protein domain is large, the DBC condition Eq. (5) also provides a 
good boundary approximation for protein systems. Thus, it can be seen from Table 6 that the DBC and RBC energies converge to the 
same limit. Moreover, because of the two physical reasons, the DBC0 condition provides a not-bad boundary treatment for protein 
studies. In Table 6, the DBC0 energy is quite close to those of RBC and DBC.

To visualize the energy convergence, we will treat the RBC energy at ℎ = 0.25 as the benchmark for each protein. Then, the 
difference between the benchmark and the energy calculated by using other conditions and/or different ℎ values is depicted in 
Fig. 17. From the graph, it can be seen that for ℎ = 1 and ℎ = 0.5, all boundary conditions have almost the same convergence pattern. 
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Table 6
Nonlinear PB electrostatic free energies generated by DBC, RBC and DBC0 for a set of 25 proteins for various mesh sizes, using 
the rMIB PB solver [18].

PDB DBC RBC DBC0 
ℎ 1 0.5 0.25 1 0.5 0.25 1 0.5 0.25

1r69 -1109.95 -1089.98 -1091.78 -1109.87 -1089.95 -1091.76 -1110.25 -1090.29 -1092.09 
1sh1 -754.23 -755.79 -756.29 -754.09 -755.69 -756.20 -754.43 -756.03 -756.54 
1bbl -997.41 -989.69 -990.54 -997.35 -989.66 -990.51 -997.76 -990.06 -990.91 
1a63 -2414.79 -2379.04 -2382.40 -2414.63 -2378.93 -2382.30 -2415.26 -2379.53 -2382.89 
1ajj -1143.72 -1142.53 -1143.50 -1143.61 -1142.50 -1143.48 -1144.04 -1142.93 -1143.90 
2fma -1061.98 -1043.49 -1044.32 -1061.91 -1043.48 -1044.32 -1062.06 -1043.58 -1044.41 
1iua -958.20 -920.98 -922.58 -958.17 -920.97 -922.59 -958.32 -921.11 -922.71 
1vii -914.22 -904.30 -905.49 -914.13 -904.26 -905.47 -914.53 -904.64 -905.83 
1bor -856.98 -854.63 -856.09 -856.96 -854.63 -856.11 -857.26 -854.92 -856.38 
1vb0 -939.00 -896.50 -898.49 -938.99 -896.50 -898.50 -939.02 -896.54 -898.53 
1zuu -1280.52 -1251.96 -1253.37 -1280.64 -1252.11 -1253.57 -1280.86 -1252.30 -1253.72 
2erl -967.32 -953.33 -954.05 -966.98 -953.43 -954.19 -967.87 -953.89 -954.60 
1neq -1765.16 -1734.85 -1737.89 -1765.10 -1734.86 -1737.92 -1765.65 -1735.40 -1738.44 
1a2s -1932.07 -1923.44 -1925.00 -1932.04 -1923.46 -1925.06 -1932.72 -1924.11 -1925.68 
1x8q -2527.01 -2459.51 -2463.80 -2527.01 -2459.51 -2463.81 -2527.11 -2459.64 -2463.93 
2h5c -1920.57 -1827.75 -1831.55 -1920.40 -1827.83 -1831.66 -1920.70 -1827.92 -1831.73 
1g6x -1359.84 -1320.87 -1323.06 -1359.51 -1320.95 -1323.17 -1360.04 -1321.10 -1323.29 
1hpt -825.93 -812.35 -815.11 -825.95 -812.36 -815.16 -826.08 -812.49 -815.25 
1bpi -1324.94 -1305.63 -1307.59 -1324.96 -1305.69 -1307.68 -1325.43 -1306.14 -1308.11 
1fxd -3332.38 -3324.43 -3325.43 -3332.39 -3324.69 -3325.73 -3333.86 -3326.02 -3327.03 
1cbn -308.12 -303.53 -304.16 -308.08 -303.54 -304.18 -308.18 -303.60 -304.22 
1c75 -1448.86 -1430.19 -1431.59 -1448.87 -1430.38 -1431.82 -1449.13 -1430.53 -1431.94 
1nwz -2066.33 -2024.46 -2027.42 -2066.40 -2024.53 -2027.51 -2066.49 -2024.62 -2027.58 
1zzk -1345.93 -1313.66 -1317.13 -1345.93 -1313.72 -1317.21 -1346.20 -1313.95 -1317.42 
2fwh -1820.22 -1767.70 -1770.79 -1820.24 -1767.78 -1770.89 -1820.34 -1767.87 -1770.96 

Fig. 17. Energy difference for each boundary condition at different mesh sizes, using the RBC energy at ℎ= 0.25 as the benchmark energy: (a) DBC; (b) RBC; (c) DBC0.

At ℎ = 0.25, the energy difference of the DBC looks like a constant line with vanishing values, while that of the DBC0 is also quite 
flat. This indicates that both DBC and DBC0 energies converge to that of the RBC.

We further analyze the computational cost incurred by the DBC and RBC in generating the energies reported in Table 6. Note that a 
fixed edge of value 3 is employed in all cases. For each protein and each ℎ value, the total spatial degree of freedom 𝑁 = 𝑛𝑥×𝑛𝑦×𝑛𝑧 is 
the same for the DBC and RBC. In the rMIB package [18], the linear system 𝐴𝑢 = 𝑏 is solved by an iterative solver, i.e., the biconjugate 
gradient algorithm. The discretization matrix 𝐴 is the same for interior nodes. At a boundary node, the DBC condition just needs 
to set a diagonal value one for 𝐴, while the RBC condition involves more sparse coefficients in 𝐴. For example, as discussed in the 
ray-casting MIB scheme, each fictitious value will involve 18 coefficients in 𝐴. Furthermore, without a fixed boundary value, it is 
found in our computations that the RBC condition typically requires more iteration numbers than the DBC.

The CPU time of the DBC and RBC for different 𝑁 is plotted in the log-log scale in Fig. 18a. It can be seen that both conditions 
have similar computational complexity, while the RBC condition is usually more expensive. By using the LS fitting, the complexity 
of the DBC and RBC is found to be 𝑂(𝑁1.23) and 𝑂(𝑁1.19), respectively. This demonstrates the efficiency of the rMIB inexact Newton 
algorithm for solving the nonlinear PB equation. In Fig. 18b, the relative CPU difference between the RBC and DBC is plotted against 
the number of unknowns 𝑁 . For most simulations, the RBC requires 10% to 90% more CPU time than the DBC. Despite the marginal 
increase in CPU time, the RBC’s overall accuracy and robustness, as demonstrated in the previous experiments, suggest that it remains 
a highly suitable choice of boundary condition for PB simulations.
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Fig. 18. (a) CPU time (in seconds) for DBC and RBC across all mesh sizes. (b) Relative time difference illustrating the additional time required by RBC across all mesh 
sizes.

Fig. 19. Electrostatic potential mapped onto the molecular surface for a non-spherical protein (PDB ID: 2nls). (a) DBC; (b) RBC. 

5.5. An extreme case

The proposed Robin condition is derived based on the assumption that the monopole term in the multipole expansion dominates 
the asymptotic solution near the boundary. Because the monopole term is essentially a Kirkwood sphere solution, concerns could be 
raised that the accuracy of the RBC may be impaired for proteins with non-spherical shapes. To test this, an extreme case is considered 
in this subsection.

To validate a new approach for reproducing the ensemble average polar solvation energy, a set of 74 representative proteins has 
been selected in [8]. The proteins retrieved were required to have at most 30% sequence similarity. A shape analysis of this set of 
proteins has been conducted in [32] by calculating the ratio of the distance between the two farthest atoms to the radius of gyration. 
Their findings revealed that protein 2nls attains the largest ratio. In other words, 2nls deviates the most from the spherical shape in 
this set of 74 proteins, making it an ideal candidate for the present study.

By using the NPB model with ℎ = 0.5, the electrostatic free energies generated by DBC and RBC are found to be, respectively, 
−537.6172 and −537.5667. Fig. 19 compares the surface potentials generated by RBC and DBC for the protein 2nls. First, it is clear 
that the shape of 2nls is significantly different from a sphere. Second, there is no visible difference between the colored patterns of 
the two boundary conditions. This indicates that two boundary conditions not only yield very similar free energies but also produce 
nearly identical potential distributions. The present study further underscores the robustness and accuracy of the RBC for proteins of 
any shape.

6. Conclusion

In this paper, we introduced a modified Robin boundary condition (RBC) for the electrostatic analysis of biomolecules in the 
Poisson-Boltzmann (PB) model. Physically, the boundary condition of the PB model is defined at infinity where the electrostatic 
potential decays to zero. For grid-based finite difference and finite element methods, a finite domain has to be employed and the 
corresponding boundary treatment is a known challenge in the numerical solution of the nonlinear PB equation (PBE). Dirichlet 
boundary conditions [3,20] are usually employed in biomolecular simulations. However, as shown in this work and in [5], Dirichlet 
conditions could lead to unphysical solutions in many cases. To resolve this issue, some asymptotic boundary conditions have been 
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developed in the literature [5,30,35]. Nevertheless, these conditions are usually global in nature and have to resort to iterative 
algorithms for calculating volume integrals from the previous step. Moreover, their complex formulation limits their application in 
popular PB solvers.

To overcome the aforementioned limitations, a modified Robin condition is derived in this work as a local boundary condition 
for the nonlinear PBE. The derivation is based on the facts that away from the biomolecule, the asymptotic decaying pattern of the 
nonlinear PBE is essentially the same as that of the linearized PBE, and the monopole term will dominate other terms in the multipole 
expansion. Asymptotic analysis has been carried out to validate the application range and robustness of the proposed Robin condition. 
Moreover, a second order boundary implementation of the proposed RBC by means of a matched interface and boundary (MIB) scheme 
has been constructed for three-dimensional biomolecular simulations.

By studying Kirkwood spheres with centered charges or off-centered charges and various proteins, the performance of the RBC 
condition has been extensively validated and compared with the analytical boundary conditions and existing Dirichlet boundary 
conditions. In all cases, the RBC condition is found to be among the most accurate methods for approximating the electrostatic 
potential and free energy. Moreover, the RBC condition delivers a second order of convergence in calculating the potential and 
energy for both linear and nonlinear PBEs, regardless of symmetrical Kirkwood spheres or non-symmetrical biomolecules. Compared 
with other boundary conditions, the RBC is very robust in two aspects. First, it can produce the correct energy for very small domain 
sizes or edge values in protein simulations, while the Dirichlet conditions usually require a larger domain. Second, it always produces 
physically correct solutions in the case of highly charged Kirkwood spheres and proteins, whereas the Dirichlet conditions lead to 
non-decaying or distorted patterns near the boundary.

For highly charged cases, the Dirichlet boundary condition (DBC) Eq. (5) requires a larger domain to avoid unphysical solutions, 
while the RBC works for a small domain. Thus, the RBC simulation could be more efficient than the DBC, due to the use of a smaller 
degree of freedom 𝑁 . However, for protein simulations, because the partial charges are small and because the domain is large, the DBC 
Eq. (5) provides a good boundary approximation even with a small edge value. In such a situation, the RBC and DBC computations 
have a similar complexity, roughly on the order of 𝑂(𝑁1.2). Nevertheless, the iterative solution in the RBC involves more steps of 
iterations, so that the RBC is more expensive than the DBC for protein studies. In future studies, we will improve the boundary 
implementation and explore different iterative algorithms or preconditioning techniques so that the computational efficiency of the 
RBC could be enhanced.
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