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Comparison of three matched interface and
boundary (MIB) schemes for solving the nonlinear

Poisson-Boltzmann equation

Yiming Ren, Sylvia Amihere, Weihua Geng , and Shan Zhao∗,

This study addresses the challenge posed by the nonlinearity of the
Poisson-Boltzmann (PB) equation through the lens of the Matched
Interface and Boundary (MIB) method in the two-component reg-
ularization setting. The regularized Matched Interface and Bound-
ary (rMIB) scheme, which utilizes the inexact-Newton’s method
to solve the nonlinear PB equation with second order accuracy,
serves as the benchmark for our comparison. Inspired by the aug-
mented MIB (AMIB) schemes for linear elliptic problems, an aug-
mented formulation has been formed for the regularized PB equa-
tion, which leads to a nonlinear algebraic system. Two fast Pois-
son solvers have been applied to solve the augmented system. One
utilizes the fast Fourier transform (FFT) algorithm in a relax-
ation process, while the other employs the geometric multigrid
method couples with an inexact-Newton’s scheme, giving rise to
the AMIB-FFT and AMIB-Multigrid schemes. Numerical experi-
ments involving a nonlinear Kirkwood sphere and several proteins
have been conducted to assess the accuracy and efficiency of three
MIB schemes for solving the nonlinear PB equation.

1. Introduction

The Poisson-Boltzmann equation (PBE) is an elliptic equation with singular
sources and discontinuous coefficients across an interface. This equation is
widely used as the governing equation of the electrostatic interactions of
solvated biomolecules in a solvent environment with dissolved electrolytes [7,
14, 11]. In practice, the PBE is solved numerically as its analytical solution
is only available for simple shapes such as a sphere in a linearized setting.
However, there are several numerical difficulties in solving the PBE, such
as complex molecular surface, discontinuous coefficients across the surface,
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nonlinearity, singular sources, unbounded domain, etc. In this study, we
focus on fast Poisson solvers in treating the nonlinearity.

The discretized form of the nonlinear PBE can be solved by several nu-
merical methods, such as the nonlinear relaxation methods as implemented
in Delphi and PBEQ [19], the nonlinear conjugate gradient method imple-
mented in UHBD [15], the inexact-Newton method implemented in APBS
[16], and the nonlinear multigrid method [18]. The relaxation methods, as an
extension of classical linear techniques like Gauss-Seidel and successive over-
relaxation, were initially applied to solve the nonlinear PBE [17] using the
finite difference discretization. However, these methods may encounter con-
vergence difficulties. On the contrary, the inexact-Newton method has been
proven to converge reliably. Compared with traditional Newton’s method,
the inexact-Newton method offers enhanced efficiency [16]. We note that
pseudo-time methods have also been developed [9, 1], in which the non-
linear PBE can be converted into a time-dependent form by introducing a
pseudo-time derivative, and the solution is retrieved from the steady-state
solution. In this process, the nonlinearity can be perfectly handled when the
time-dependent PBE is split into linear and nonlinear subsystems with the
latter being analytically integrated [9]. In this study, our focus on employing
the relaxation scheme and the inexact-Newton method for the treatment of
the nonlinearity.

The objective of this study is to conduct a comprehensive comparison of
three finite difference methods within the framework of the Matched Inter-
face and Boundary (MIB) method [24]. The MIB PBE solver [4] is the first
known numerical algorithm in the literature that can maintain a second
order of accuracy in treating geometric singularities of molecular surfaces
[22] and charge singularities [8]. This scheme is further improved with an
two-component regularization for the treatment of charge singularities [10],
namely the rMIB scheme. The rMIB package is chosen as the benchmark
solver in the present study. Such a selection is motivated by its efficiency in
solving the discretized linear algebraic system Ax = b through the use of the
row-indexed sparse storage mode, and its ability to handle the nonlinearity
with the inexact-Newton’s method.

Recently, several augmented MIB (AMIB) schemes have been developed
for solving linear elliptic problems [5, 6, 20]. Based on similar interface and
boundary treatments as in the classical MIB schemes [24, 22, 8, 23, 4, 10],
auxiliary variables are introduced in the AMIB schemes to form an aug-
mented linear system so that the standard finite difference discretization of
the Laplacian could be preserved. Consequently, fast Poisson solvers, such as
the fast Fourier transform (FFT) and geometric multigrid, can be applied
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in the Schur complement solution of the augmented system. The AMIB
schemes thus become more efficient than the classical MIB schemes in solv-
ing linear elliptic problems [5, 6, 20]. This motivates us to introduce an
augmented MIB formulation for the nonlinear PBE with two-component
regularization so that fast Poisson solvers could be applied. To deal with
the PBE nonlinearity, a relaxation scheme or inexact-Newton scheme will
be utilized, serving as an outer iteration. Within each iteration, a linear
augmented system will be solved by using the FFT and geometric multi-
grid method, respectively, in the relaxation and inexact-Newton iterations,
giving rising to the proposed AMIB-FFT and AMIB-Multigrid methods.
Based on the same MIB interface treatment and two-component regulariza-
tion, accuracy and efficiency comparison of three MIB schemes, i.e., rMIB,
AMIB-FFT, and AMIB-Multigrid, will be conducted.

The rest of this paper is structured as follows. The proposed numerical
approaches are discussed in Section 2. A numerical comparison of the elec-
trostatic potential and energy is reported in Section 3. Finally, this paper
ends with a conclusion.

2. Theory and algorithm

In the Poisson-Boltzmann (PB) model, Ω− and Ω+ represent the molecule
and solvent domains, respectively. These two domains are separated by the
molecular surface Γ = Ω− ∩ Ω+. Note that in the physical model, the en-
tire system is considered in an infinite domain R3. However, for grid-based
methods, a bounded computational domain, such as a box Ω = Ω− ∪Ω+, is
applied. The molecular subdomains of the PB model are illustrated in Fig.1.

The PB model governs the electrostatic potential ϕ(r) on Ω by Gauss’s
law as 

−ϵ−∆ϕ(r) = ρ(r), r ∈ Ω−

−ϵ+∆ϕ(r) + κ̄2 sinhϕ(r) = 0, r ∈ Ω+

[ϕ]Γ = 0 r ∈ Γ[
ϵ∂ϕ∂n

]
Γ
= 0 r ∈ Γ

ϕ(r) = ϕb(r), r ∈ ∂Ω,

(1)

where r = (x, y, z)T ∈ R3. Here, ϵ+ and ϵ− are the dielectric constants in
the solvent region and molecule region respectively. We choose ϵ+ = 80 and
ϵ− = 1. The ionic screening coefficient κ̄2 vanishes in Ω− and it is a constant



4 Yiming Ren et al.

Ω+

Ω−

Γ

Solvent

Molecule

Figure 1: The subdomain setting used in the PB model.

depending on the ionic strength I of the solvent in Ω+. The singular source

term ρ(r) = 4πC
Nc∑
j=1

qiδ(r − ri), where qi is the partial charge on the ith

atom center ri and C is a constant to balance the units [10].

Additionally, [ϕ]Γ = ϕ+ − ϕ− and [ϵϕn]Γ = ϵ+ ∂ϕ+

∂n − ϵ− ∂ϕ−

∂n are the

interface conditions across the molecular surface with n as the normal direc-

tion. Physically, the potential is defined over the infinite domain with the

radiation condition lim|r|→∞ ϕ(r) = 0. However, for grid-based numerical

methods, a Dirichlet boundary condition is usually assumed on the bound-

ary of the finite domain Ω. A commonly used Dirichlet condition is given

as

(2) ϕ(r) = ϕb(r) = C

Nc∑
i=1

qie
−|r−ri|

√
κ̄2

ϵ+

ϵ+|r − ri|
.

To handle the inherent charge singularities in the PBE, Geng and Zhao

[10] devised a regularization method that involves splitting the PBE solution

into two components. Notably, this decomposition occurs exclusively within

the molecule region. The potential solution is introduced with the following

decomposition:

ϕ = ϕRF + G, in Ω−.

Here, ϕRF represents the reaction field potential, and G is the Green’s func-
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tion defined as:

G(r) = C

Nc∑
i=1

qi
ϵ−|r − ri|

.

With this decomposition in place, the regularized PB equation can be for-
mulated as:

−ϵ−∆u = 0, r ∈ Ω−

−ϵ+∆u+ κ̄2 sinh(u) = 0, r ∈ Ω+

[u]Γ = ϕ(r+)− ϕRF (r
−) = G, r ∈ Γ[

ϵ∂u∂n
]
Γ
= ϵ+ ∂ϕ

∂n(r
+)− ϵ− ∂ϕRF

∂n (r−) = ϵ− ∂G
∂n , r ∈ Γ

u = ϕb, r ∈ ∂Ω,

(3)

with the regularized potential u defined as

u =

{
ϕRF in Ω−

ϕ in Ω+.
(4)

Physically, the reaction field potential ϕRF can be interpreted as electro-
static field generated by the charges induced by transferring the environment
surrounding the solute from ϵ+ to ϵ−. Numerically, one just needs to solve
one PB interface problem given in (3). With the solution u, the original
potential is recovered as ϕ = u in Ω+ and ϕ = u +G in Ω−. Note that the
Green’s function G and its gradient are analytically known in (3).

In [10], a MIB finite difference algorithm is proposed for solving lin-
ear and nonlinear PB equations based on the regularization (3). This rMIB
package involves two-layer iterations for solving the nonlinear PB equation.
The inexact-Newton iteration is applied as the outer layer, while the Bi-
conjugate Gradient (BCG) method is employed to solve the finite difference
linear system in the inner layer. The rMIB is efficient due to several factors.
First, the linear systems in the inner iteration are solved inexactly so that
the BCG iteration numbers are usually very small, such as one, for most of
Newton steps. Second, the outer Newton iteration converges quadratically,
so that the total Newton iteration number is also small. Finally, in each
BCG step, the matrix vector multiplication can be computed efficiently, be-
cause the Laplacian discretization matrix is saved in the row-indexed sparse
storage mode [10].

In this investigation, we explored the effectiveness of an augmented MIB
(AMIB) approach in handling the nonlinear PB equation through regu-
larization. Two prominent methodologies, the relaxation scheme, and the
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inexact-Newton method, are considered for tackling the challenges posed
by the nonlinearity in the PB equation. Either the relaxation scheme or
the inexact-Newton method is integrated as outer iterations within the aug-
mented framework. Thus, a nonlinear augmented system is transformed into
a new linear augmented system, which is then solved during the inner it-
eration. Computational efficiency is improved by employing either the FFT
in the inner iteration of the relaxation scheme or the geometric multigrid
algorithm in the inner iteration of the inexact-Newton scheme.

2.1. An extended domain with an immersed boundary

In finite difference PB solvers, a uniform mesh is usually employed with
the spacing h being the same in all Cartesian directions, i.e., h = ∆x =
∆y = ∆z, while the number of grid nodes in each direction, nx, ny, and nz,
are random integers for real protein systems. In order to apply the FFT or
geometric multigrid method, we have to extend the domain Ω by embedding
it in an enlarged cubic domain D with a power-of-2 grid structure for nx,
ny, and nz.

We denote the extended domain as Ωe, and define the interface as Γ1 =
Ω ∩ Ωe, which constitutes the entire domain D = Ω ∪ Ωe. Solutions within
Ωe are considered to be zero. Consequently, we can reformulate the modified
PBE introduced in (3) during each iteration step as follows:

∆u− κ̄2

ϵ+
sinh(u) = 0, r ∈ D(5)

Here, κ̄2 is re-defined as

κ̄2 =


0, r ∈ Ω−

8.430325455I, r ∈ Ω+

0, r ∈ Ωe

(6)

The new immersed boundary problem is subject to the original interface
conditions on Γ and the boundary condition on the immersed interface Γ1.
On the extended boundary ∂D, a trivial zero boundary condition can be
assumed.

To address the solution discontinuity near Γ and Γ1, specific numerical
treatments are essential. Within the MIB method, this challenge is mitigated
by incorporating crucial irregular points and fictitious values. In essence,
while the standard second-order central difference can be applied for ap-
proximation at regular points, adjustments are necessary for irregular points
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where finite difference is not well-defined due to the discontinuous solution
across Γ and Γ1.

To achieve a second-order central difference approximation at all irreg-
ular points near Γ, two layers of fictitious points are required along each
Cartesian grid line, surrounding Γ. The determination of these fictitious
values adheres rigorously to jump conditions [10]. Similarly, only one layer
of fictitious points outside Γ1 is needed along each Cartesian grid line, and
these fictitious values are determined based on boundary conditions using
the MIB boundary closure approach introduced in [23].

2.2. Second order corrected central differences

In the AMIB methods [5, 6, 20], to address those irregular points, we cor-
rect the standard second-order central difference at various interface points,
which are the intersection points between Cartesian grid lines and Γ or Γ1.
Specifically, we assume that the potential u is a piecewise smooth function
in C4[xi − h, α) ∪ C4(α, xi+1 + h], with xi ≤ α ≤ xi+1, and the deriva-
tives extend continuously up to α. Note that the C4 regularity is usually
required in the central difference approximation of second order derivatives
for guaranteeing a second order local truncation error. With a discontinuity,
the central difference needs to be corrected across the interface. Employing
second-order corrected central differences, the Laplacian approximation in
x direction can be expressed as:

uxx(xi) =
u(xi−1)− 2u(xi) + u(xi+1)

h2
− 1

h2

k∑
m=0

(h+)m

m!
[u(m)] +O(hk−1),

(7)

uxx(xi+1) =
u(xi)− 2u(xi+1) + u(xi+2)

h2
+

1

h2

k∑
m=0

(h−)m

m!
[u(m)] +O(hk−1).

(8)

where h− = xi − α, h+ = xi+1 − α, and [u(m)] are the Cartesian deriva-
tive jumps defined at α, measuring the difference in the mth derivative of u
between the right and left sides. By taking k = 2, the Laplacian approxima-
tions (7) and (8) have a local truncation error of O(h), which can guarantee
a global second order convergence. Expanding on this corrected difference in
the x-direction, we can generalize the concept to three dimensions (3D) by
combining corrected differences from different directions to approximate the
Laplacian operator dimension by dimension. Throughout all corrected finite
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differences, the standard central difference is preserved, and the correction

terms involve jump quantities at interface points. At regular points away

from interfaces, the correction terms vanish, simplifying the corrected finite

difference to the standard central difference. Consequently, the corrected fi-

nite difference approach is applicable to all grid nodes. Moreover, interested

readers are directed to Ref.[12] for the corrected central differences in the

corner situations.

2.3. Construction of derivative jumps

We next consider how to numerically approximate Cartesian derivative jumps

at α, i.e., [u(m)]α(m = 0, 1, 2) with the aid of MIB fictitious values.

Instead of a numerical approximation, the zeroth derivative jump is ex-

plicitly obtained by the analytical jump condition. In order to reconstruct

other jump values for m up to 2 in the corrected difference, two Lagrange

polynomials of degree two can be built to give limiting derivatives, resulting

in the approximated jumps up to second order derivative. We can combine

two real function values together with one fictitious value on the other side

of the interface to obtain the Lagrange polynomial for one-sided subdomain.

By taking derivatives on these one-sided polynomials, the jump values

at an intersection point α with regard to the x direction will take a general

form in 3D as below

[
∂mu

∂xm
] ≈ (w+

m,1fi,j,k + w+
m,2ui+1,j,k + w+

m,3ui+2,j,k)(9)

− (w−
m,1ui−1,j,k + w−

m,2ui,j,k + w−
m,3fi+1,j,k)

where m = 1, 2. Fictitious values fi,j,k and fi+1,j,k are generated by either

the MIB scheme [10] or the MIB boundary closure approach [6], and w−
m,n

and w+
m,n denote the weights on each function value after taking a certain

derivative of the Lagrange polynomial at α. The subscripts signify the order

of the function value from the left. Furthermore, the detail of the recon-

struction of Cartesian derivative jumps in the corner situations is referred

to [20].

2.4. Augmented system

Introducing derivative jumps as auxiliary variables, the MIB fictitious value

representation is integrated into Eq. (9), yielding a generic linear equation:
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∑
(xI ,yJ ,zK)∈Si,j,k

CI,J,KuI,J,K + [
∂mu

∂xm
] = C0.(10)

Here, CI,J,K are weights corresponding to the function value uI,J,K approx-
imating the jump quantity [∂

mu
∂xm ], and C0 is the known jump data. Similar

formulas to Eq. (10) are derived for all interface points in x-, y-, and z-
directions.

Furthermore, let us denote the 1D column vector Q of dimension 3N2×1
as a vector of introduced auxiliary variables [∂

mu
∂xm ] at a total of N2 intersec-

tion points between grid lines and interfaces. Unknown function values at
N1 interior grids within the domain D are organized in a 1D column vector
U of dimension N1 × 1. Generalizing Eq.(10) from one interface point to all
interface points, the matrix form of Eq.(10) is then expressed as:

CU + IQ = Φ,(11)

where C is a sparse matrix of dimension 3N2 ×N1, I is the identity matrix
of dimension 3N2 × 3N2, and Φ is a column vector of dimension 3N2 × 1
composed of known interface quantities.

Now, denoting ui,j,k as the discrete solution at (xi, yj , zk), utilizing cor-
rected differences at all interior mesh grids and taking correction terms as
auxiliary variables, the PBE (5) can be discretized as:

Lhui,j,k + Ci,j,k −N(ui,j,k) = 0,(12)

where the nonlinear term N(ui,j,k) is diagonal and N(ui,j,k) =
κ̄2

ϵ+ sinh(ui,j,k)
for each grid point in Ω+. The resulting equation (12) in matrix form is
given by:

AU +BQ−N(U) = 0,(13)

where B is a sparse matrix of dimension N1 by 3N2 consisting of coefficients
from correction terms, and the symmetric and diagonally dominant matrix
A consists of coefficients from discretizing the 3D differential Laplacian op-
erator obtained via the second-order central difference.

By combining Eq.(13) with Eq.(11), a nonlinear augmented system is
constructed. We note that N2 is much smaller than N1. Thus, for computa-
tional efficiency, one usually first solves for Q in a Schur complement form
of the augmented system. In this study, a nonlinear relaxation scheme or
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inexact-Newton method is considered to address the nonlinearities inherent

in the system, with detailed information provided in the next two subsec-

tions.

2.5. The AMIB-FFT algorithm

In a nonlinear relaxation scheme, the nonlinearity term of the PBE is eval-

uated by using function values of the previous step in an iterative loop. For

example, the PBE (5) can be relaxed at the iterative step n as:

∆un =
κ̄2

ϵ+
sinh(un−1), r ∈ D(14)

For the augmented system (13), the relaxation scheme is given by

AUn +BQn = N(Un−1),(15)

in which matrix A can be inverted by the FFT algorithm.

The AMIB-FFT method is implemented as a two-layer iterative algo-

rithm within this augmented formulation. The process commences with the

initialization of potentials, denoted as U0, utilizing the solution to the Lin-

ear Poisson-Boltzmann equation (LPB) as an initial guess vector within the

domain D. Additionally, Q0 is set as Φ − CU0. The iteration steps involve

two layers. In the initial layer, through the nonlinear relaxation scheme, the

solution is updated in the outer iteration and is subsequently used in the

next iteration. The outer iteration steps continue until the convergence con-

dition ||Un − Un−1||2 < outer tol is met. In each outer iteration, combining

Eq. (15) with Eq. (11) at the nth step forms a new augmented system to be

solved. A Schur complement system for Qn is solved using the Biconjugate

Gradient (BCG) method, with the known Qn−1 as the initial value:

(I − CA−1B)Qn = Φ− CA−1N(Un−1).(16)

The FFT inversion is performed on BQn and N(Un−1) in (16). Notably,

the linear system (16) for Qn has a much smaller degree of freedom than U ,

specifically N2. While Qn cannot be precisely obtained within a few itera-

tions in (16), it is unnecessary to do so initially. Inspired by the concept of

the Inexact-Newton method, the system is solved inexactly and Qn will be

updated to start a new iteration until reaching tol = 10−2||Un−1 − Un−2||2
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without requiring numerous iteration steps in the early iterations. Subse-
quently, the solution is updated through the FFT inversion for

AUn = N(Un−1)−BQn.

The effectiveness of the second-order AMIB-FFT method relies on both
the iteration count for the outer nonlinear relaxation and the inner biconju-
gate gradient iterations. It is worth noting that each inner iteration includes
one FFT inversion with a complexity of O(N1 logN1). The iteration count
for the biconjugate gradient method exhibits a weak dependence on the mesh
size. However, the iteration count for the outer nonlinear relaxation is not
guaranteed to be small.

2.6. The AMIB-Multigrid algorithm

The application of the inexact-Newton method to solve the AMIB discretiza-
tion of the regularized nonlinear PBE involves a systematic three-layer it-
erative algorithm. To begin, the nonlinear algebraic system based on the
AMIB discretization is represented as:

F (U,Q) =

{
AU +BQ−N(U)

CU + IQ− Φ
= 0(17)

The inexact-Newton method for the nonlinear system (17) can be formulated
as:

F ′(Un, Qn)(δUn, δQn) =− F (Un, Qn),(18)

[
Un+1

Qn+1

]
=

[
Un

Qn

]
+

[
δUn

δQn

]
(19)

The first layer iteration, denoted in (19), updates the solution using the
correction terms δUn and δQn. F ′(Un, Qn) represents the Jacobian matrix,
and by denoting Ãn = A − N ′(Un) in which N ′(U) = κ̄2

ϵ+ cosh(U), a new
augmented system is formed:

ÃnδUn +BδQn = Fn
1(20)

CδUn + IδQn = Fn
2(21)
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Here, Fn
1 and Fn

2 are defined as −(AUn + BQn − N(Un)) and −(CUn +
IQn − Φ), respectively.

We compute δQn using the Schur complement, effectively eliminating
δUn from Eq. (20) and Eq. (21) to create a linear system for δQn:

(I − CÃn−1
B)δQn = Fn

2 − CÃn−1
Fn
1(22)

To solve for Qn in equation system (22), the GMRES could be utilized.
Within each iteration, the geometric multigrid iteration is applied to solve

Ãn−1
Fn
1 and Ãn−1

B. The GMRES iteration process continues until the rel-
ative error tolerance equaling 10−2 is reached. To obtain the solution δUn,
the Multigrid algorithm is utilized to solve:

ÃnδUn = Fn
1 −BδQn(23)

After determining δQn, we shift all known quantities to the right-hand side.
This AMIB-Multigrid method manifests as a three-layer iterative algo-

rithm in this augmented formulation, where the correction term in the first
layer is considered a rough solution for the subsequent second and third-
layer iterations involving the GMRES method and the Multigrid algorithm,
respectively.

3. Numerical comparison

In this section, we numerically compare three MIB schemes, i.e., rMIB,
AMIB-FFT, and AMIB-Multigrid, for solving the nonlinear PB equation.
Based on the same MIB interface treatments, these finite difference schemes
are expected to be second order accurate. However, different iterative algo-
rithms are employed in these three methods. The rMIB involves two-layer
iterations, i.e., outer Newton iteration and inner BCG iteration for the po-
tential U . The AMIB-FFT also involves two-layer iterations, i.e., outer relax-
ation process and inner iteration for solving the auxiliary variable Q. Note
that the FFT inversion is not an iterative process. Because the dimension
of Q is much smaller than that of U , the inner iteration of the AMIB-FFT
could be faster than that of the rMIB. However, the convergence rate of the
outer Newton scheme could be much faster than that of the relaxation. Thus,
it is unclear whether rMIB or AMB-FFT will be faster, without numerically
testing them. For the AMIB-Multigrid method, three-layer iterations are
needed, because the multigrid inversion is an iterative process. With the in-
ner multigrid iteration, the GMRES is chosen for the middle iteration for Q,
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since the transpose operation is not easy to compute here. Even though the
outer inexact-Newton iteration is fast, the AMIB-Multigrid scheme could
be slower than the other two methods, due to the use of three layers. The
summary comparing three MIB schemes is displayed in Table 1.

Table 1: Based on the same MIB interface treatment, the three MIB schemes
employ different iterative algorithms for solving the nonlinear PB equation.

Scheme Iterations Molecular Surface
First Layer Second Layer Third Layer

rMIB Newton BCG for U None MSMS/ESES
AMIB-FFT Relaxation BCG for Q None MSMS/ESES
AMIB-Multigrid Newton GMRES for Q Multigrid MSMS/ESES

3.1. A spherical cavity with analytical potential

We first consider a benchmark example with analytical potentials. The test
involves a spherical cavity containing a single centered charge over the do-
main Ω = [−4, 4]3. The analytical potential and the artificial source term of
the nonlinear PB equation are given as in [9].

ϕ(r) =

{
1
ϵR − 1

R + 1
|r| , |r| < R

1
ϵ|r| , |r| > R

(24)

ρ(r) =

{
4πδ(r), |r| < R

κ̄2 sinh( 1
ϵ|r|), |r| > R

(25)

where ϵ = ϵ+/ϵ− and R is the radius of the sphere. In this test, we take
ϵ+ = 80, ϵ− = 1, and R = 2π/3. On ∂Ω, a Dirichlet boundary condition
obtained from the analytical potential (24) is imposed. Comparative results
for the rMIB, AMIB-FFT, and AMIB-Multigrid methods are presented in
Table 2. Here, the L∞ and L2 errors of the potential near the interface are
reported for different mesh sizes n = nx = ny = nz. It can be seen from
Table 2 that all three methods demonstrate the second order convergence
pattern and the calculated potentials are very close. The efficiency of these
methods is also reported in Table 2 through CPU time in seconds. With
a tight domain Ω = [−4, 4]3, the AMIB-FFT scheme exhibits the highest
efficiency among the three methods, while the AMIB-Multigrid method is
comparatively slower due to its three layers of iteration.
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Table 2: Numerical error in the potential solution and computational effi-
ciency for the spherical cavity test.

Scheme n h L∞ L2 CPU (s)
Error Order Error Order

rMIB 17 0.5 1.33E-4 3.46E-5 4.44E-2
33 0.25 3.21E-5 2.05 6.74E-6 2.36 5.12E-1
65 0.125 5.36E-6 2.58 9.18E-7 2.88 7.56E+0
129 0.0625 1.48E-6 1.86 2.12E-7 2.11 1.16E+2
257 0.03125 2.90E-7 2.35 4.42E-8 2.26 1.64E+3

AMIB-FFT 17 0.5 1.33E-4 3.46E-5 6.83E-2
33 0.25 3.21E-5 2.05 6.74E-6 2.36 5.55E-1
65 0.125 5.38E-6 2.58 9.65E-7 2.80 4.81E+0
129 0.0625 1.48E-6 1.86 2.17E-7 2.15 7.05E+1
257 0.03125 3.07E-7 2.27 4.67E-8 2.22 9.59E+2

AMIB-Multigrid 17 0.5 1.33E-4 3.46E-5 9.87E-1
33 0.25 3.21E-5 2.05 6.14E-6 2.49 5.00E+0
65 0.125 5.36E-6 2.58 9.18E-7 2.74 3.69E+1
129 0.0625 1.48E-6 1.86 2.12E-7 2.11 5.90E+2
257 0.03125 2.90E-7 2.35 4.42E-8 2.26 8.15E+3

3.2. Electrostatic free energy of the nonlinear Kirkwood sphere

We next consider a nonlinear Kirkwood sphere with radius R = 2π/3 in a
finite computational domain [−b, b]3 [3]. The only source is a point charge
q = 1 at the center of sphere [0, 0, 0], without using the artificial source in
the solvent as in (25). Such a Kirkwood sphere does not admit an analytical
potential, while we know physically that the potential ϕ will decay to zero
exponentially as |r| → ∞. In Ref. [3], the 3D nonlinear Kirkwood sphere
problem is recasted into 1D boundary value problem (BVP) with a very
large b = 200 and a Dirichlet zero boundary condition. The solvation free
energy Esol can then be estimated by using an eighth order MIB (MIB8)
scheme. For the present test, the reference energy is estimated to be Er1 =
−78.512760423667700, with a numerical error around 10−12.

We first consider b = 16 for the 3D domain Ω = [−b, b]3 with a Dirichlet
zero boundary condition on ∂Ω. By using different h values, the solvation
free energies Esol calculated by three methods are listed in Table 3 and
errors against the reference energy Er1 are also reported. It can be seen that
the calculated Esol values converge to the same place for the three schemes.
However, at h = 0.125, the energy errors become larger and the numerical
orders are negative. This is due to the physical setting. With b = 16, the
Dirichlet zero boundary condition is a crude approximation, so that the
solvation free energy Esol does not converge to the true energy defined over
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Table 3: The nonlinear Kirkwood energy is calculated by the three schemes
with a fixed b = 16 and different h values. Here, the error is calculated
against the reference energy Er1 = −78.512760423667700 generated by the
MIB8 scheme [3].

Scheme n h Esol Error Order CPU (s)
rMIB 33 1.0 -78.45918823 5.36E-2 – 8.09E-1

65 0.5 -78.49758073 1.52E-2 1.82 1.18E+1
129 0.25 -78.51320211 4.42E-4 5.10 1.60E+2
257 0.125 -78.51683465 4.07E-3 -3.21 2.48E+3

AMIB-FFT 33 1.0 -78.45540886 5.74E-2 – 1.34E+0
65 0.5 -78.49707161 1.57E-2 1.87 1.46E+1
129 0.25 -78.51320212 4.42E-4 5.15 2.91E+2
257 0.125 -78.51683466 4.07E-3 -3.20 2.00E+3

AMIB-Multigrid 33 1.0 -79.30609914 7.93E-1 – 2.36E+0
65 0.5 -78.43701396 7.57E-2 3.39 3.57E+1
129 0.25 -78.51320211 4.42E-4 7.42 4.19E+2
257 0.125 -78.51683465 4.07E-3 -3.20 3.33E+3

the infinite domain or Er1 calculated based on b = 200. The CPU time of

these three schemes are also shown in Table 3. The rMIB scheme is the

fastest for coarse meshes, while the AMIB-FFT becomes faster than the

rMIB when a dense mesh with h = 0.125 is used.

Table 4: The nonlinear Kirkwood energy is calculated by the three schemes
with a fixed h = 0.125 and different b values. Here, the error is calculated
against the reference energy Er1 = −78.512760423667700 generated by the
MIB8 scheme [3].

Scheme b n Esol Error Order CPU (s)
rMIB 4 65 -78.74814918 2.35E-1 – 1.36E+1

8 129 -78.56525601 5.25E-2 2.16 1.79E+2
16 257 -78.51683465 4.07E-3 3.69 2.48E+3
32 513 -78.51216799 5.92E-4 2.78 5.55E+4

AMIB-FFT 4 65 -78.74814920 2.35E-1 – 2.38E+1
8 129 -78.56525605 5.25E-2 2.16 1.62E+2
16 257 -78.51683466 4.07E-3 3.69 2.00E+3
32 513 – – – –

AMIB-Multigrid 4 65 -78.74814918 2.35E-1 – 4.89E+1
8 129 -78.56525601 5.25E-2 2.16 4.71E+2
16 257 -78.51683465 4.07E-3 3.69 3.33E+3
32 513 – – – –
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The three schemes will produce a better energy if a larger b value is
used. To illustrate this point, we investigated the influence of the parameter
b on the energy error by fixing h = 0.125. The calculated energies and the
corresponding errors against Er1 are detailed in Table 4. Indeed, the energy
error becomes smaller as b becomes larger, and a quadratic convergence
rate could be observed. However, when b = 32, both AMIB schemes fail to
converge. The AMIB-Multigrid method fails due to an excessive runtime.
For the AMIB-FFT scheme, its CPU time is the fastest for n = 129 and
257. The failure of the AMIB-FFT scheme at n = 513 or b = 32 is believed
to be due to the instability of the relaxation scheme (15). Basically, with a
fixed radius R = 2π/3, a larger b means that more unknown values of U are
in the solvent domain Ω+, where the nonlinear term is evaluated. Thus, the
nonlinear effect becomes more significant to the point that the relaxation
scheme becomes unstable at b = 32. The rMIB scheme performs robustly in
this tough nonlinear test.

Table 5: The nonlinear Kirkwood energy is calculated by the three schemes
with fixed b = 16 and different h values. Here, the error is calculated against
the reference energy Er2 = −78.5173353411318 generated by the 3D rMIB
scheme.

Scheme n h Esol Error Order CPU (s)
rMIB 33 1.0 -78.45918823 5.81E-2 – 8.09E-1

65 0.5 -78.49758073 1.96E-2 1.56 1.18E+1
129 0.25 -78.51320211 4.13E-3 2.26 1.60E+2
257 0.125 -78.51683465 5.01E-4 3.04 2.48E+3

AMIB-FFT 33 1.0 -78.45540886 6.19E-2 – 1.33E+0
65 0.5 -78.49707161 2.03E-2 1.61 1.46E+1
129 0.25 -78.51320212 4.13E-3 2.29 2.91E+2
257 0.125 -78.51683466 5.01E-4 3.04 2.00E+3

AMIB-Multigrid 33 1.0 -79.30609914 7.89E-1 – 2.36E+0
65 0.5 -78.43701396 8.03E-2 3.29 3.57E+1
129 0.25 -78.51320211 4.13E-3 4.28 4.19E+2
257 0.125 -78.51683465 5.01E-4 3.04 3.33E+3

The non-convergence issue underlying Table 3 is due to an insufficiently
large value of b, so all three schemes cannot converge to the true energy.
To further examine the numerical convergence, we restricted again to the
domain size b = 16 with the Dirichlet zero boundary condition. Instead of
using the 1D MIB8 code [3], a different reference energy is generated by
the 3D rMIB scheme with h = 0.0625 or n = 513, which is denoted as
Er2 = −78.5173353411318. By benchmarking with Er2, the energy errors of
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three schemes are reported in Table 5. It can be observed that the energies for
all three methods converge to Er2, and the numerical orders are essentially
two.

3.3. Electrostatics on Proteins

We proceeded by solving the nonlinear PB equation for several proteins
to assess the accuracy and efficiency of the three methods in handling com-
plex geometries and charge distributions. For protein simulations, the MSMS
molecular surface [21] was assumed in the original rMIB [10], while the ESES
molecular surface has recently been incorporated in the rMIB package [2].
The solvation energies of selected proteins, computed by the three methods
at different mesh sizes, are reported in Table 6 and Table 7, employing
MSMS and ESES, respectively. The Dirichlet boundary condition (2) is as-
sumed in all protein cases. With a glimpse, we could see that the solvation
energies from the three methods are almost consistent. However, a reduc-
tion in efficiency is observed for both AMIB methods, attributable to three
factors.

Firstly, the rMIB computation can be carried out over a tight domain Ω,
while a larger immerse domain D = Ω∪Ωe has to be employed in the AMIB
methods, so that the grid numbers for D are powers of 2. In both tables,
grid numbers (nx, ny, nz) of the rMIB domain Ω are reported. Some special
h values are selected for these proteins such that nx, ny, and nz are smaller
but quite close to some powers of 2. In these cases, the extra grid nodes
introduced in Ωe are not too many. However, when a common mesh size h =
0.5 is employed, a significant portion of the CPU time could be wasted for
the artificial domain Ωe. Secondly, the augmented formulation involves more
auxiliary variables in Q as the geometric interface becomes more intricate.
Finally, the AMIB-FFT method is faster than the AMIB-Multigrid scheme
in most cases, because the AMIB-Multigrid scheme requires three layers of
iteration.

4. Conclusion

In summary, our investigation involved a comprehensive comparison of three
MIB schemes – rMIB, AMIB-FFT, and AMIB-Multigrid – within the regu-
larization framework for solving the nonlinear PBE. Based on the same MIB
interface treatment and central difference approximation, all three schemes
produce almost the same accuracy in all tested cases and exhibit the second
order of convergence. The AMIB-Multigrid scheme is less efficient than the
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Table 6: Solving the nonlinear PB equation for proteins with the MSMS
molecular surface.

PDB h [nx, ny, nz] rMIB AMIB-FFT AMIB-Multigrid
Esol CPU (s) Esol CPU (s) Esol CPU (s)

2erl 0.7 [45, 43, 57] -957.58 3.47E+0 -957.41 1.08E+1 -957.40 6.61E+1
0.5 [63, 61, 79] -952.54 1.45E+1 -952.43 2.03E+1 -952.46 1.79E+2
0.35 [89, 87, 113] -953.02 4.20E+1 -952.86 8.69E+1 -952.89 6.67E+2

1cnb 1 [37, 33, 39] -307.77 1.26E+0 -307.61 9.81E+0 -307.59 2.76E+1
0.7 [53, 47, 53] -306.80 4.11E+0 -306.74 1.96E+1 -306.74 6.56E+1
0.5 [73, 65, 75] -303.38 1.68E+1 -303.37 8.26E+1 -303.36 2.79E+2
0.3 [121, 107, 125] -303.94 7.60E+1 -303.92 1.44E+2 -303.96 6.66E+2

1ajj 0.7 [45, 49, 55] -1214.38 4.18E+0 -1213.79 1.01E+1 -1213.56 7.09E+1
0.5 [63, 67, 77] -1201.72 1.53E+1 -1201.64 9.13E+1 -1201.60 4.07E+2
0.35 [89, 95, 109] -1203.80 4.70E+1 -1203.55 3.18E+2 -1203.43 1.13E+3

1a63 0.8 [87, 55, 57] -2420.45 1.10E+1 -2420.27 2.49E+2 -2420.20 1.82E+2
0.5 [137, 87, 89] -2382.25 6.86E+1 -2381.92 1.42E+3 -2381.87 1.49E+3

Table 7: Solving the nonlinear PB equation for proteins with the ESES
molecular surface.

PDB h [nx, ny, nz] rMIB AMIB-FFT AMIB-Multigrid
Esol CPU (s) Esol CPU (s) Esol CPU (s)

1ajj 0.7 [42, 45, 49] -1531.44 2.90E+0 -1531.19 1.13E+1 -1530.44 7.43E+1
0.3 [97, 105, 115] -2122.51 6.51E+1 -2120.36 1.04E+2 -2120.53 7.21E+2

1a63 1.1 [61, 39, 39] -2415.10 4.13E+0 -2418.03 7.24E+1 -2416.24 1.61E+2

other two schemes because it involves three layers of iterations in solving
the nonlinear augmented system. The AMIB-FFT scheme could be faster
than the rMIB method for spherical cavity and Kirkwood sphere studies.
However, due to the use of an extended domain with extra unknowns, the
AMIB-FFT scheme can not compete with the rMIB scheme in terms of
efficiency for all protein studies. Moreover, the nonlinear relaxation of the
AMIB-FFT could experience instability issues, when there are a lot of un-
knowns in the solvent domain, for which the nonlinear term needs to be
evaluated at the previous iterative step. In conclusion, the present compar-
ison indicates that the rMIB scheme is the best method among the three
MIB schemes for solving the nonlinear PB equation, in terms of accuracy,
efficiency, and robustness.

Our study provided a comprehensive understanding of the strengths and
limitations of the rMIB, AMIB, relaxation, Newton, FFT, and multigrid
methods in solving the nonlinear PB equation. These investigations will
benefit our further development of an optimal approach for solving the PB
equation based on specific computational requirements and accuracy con-
siderations. For the nonlinear Kirkwood sphere problem, our results demon-
strate a strong dependence of accuracy on the domain size b, when a Dirichlet
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boundary condition is used. If the usual Dirichlet boundary condition (2)
is used, a similar dependence could be observed and will be reported else-
where. A more serious issue behind that is the lack of a physical boundary
condition for the nonlinear PB model, and a solution to this issue is under
our investigation.
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