Jia Zhao

Assistant Professor Department of Mathematics The University of Alabama, Tuscaloosa jia.zhao@ua.edu • http://www.zhaojia.net

RESEARCH	
INTEREST	

- Data Science, Physics-informed and Data-driven Machine Learning and Deep Learning
- Applied and Computational Mathematics, and Mathematical Biology & Ecology
- Continuum, Kinetic, and Multiscale Theory of Multiphase Complex Fluids
- Modeling Cellular Dynamics, Biofilms, Biogels, Cell Membrane and Active Matter
- Numerical Methods for PDEs and Scientific Computing

E

	 Numerical Methods for PDEs and Scientific Computing High-performance Computing Software Development in CPU + GPU Hybrid Ar 	rchitecture
EMPLOYMENT	The University of Alabama, Tuscaloosa, AL	
	 Tenure-track Assistant Professor at Department of Mathematics 	Jan 2025 – Current
	Binghamton University , Binghamton, NY ■ Associate Professor (tenured) at Department of Mathematics and Statistics	Aug 2023 – Dec 2024
	 Utah State University (USU), Logan, UT, USA Associate Professor (early tenured) at Department of Mathematics and Statistics Assistant Professor at Department of Mathematics and Statistics 	Jul 2022 – Jul 2023 Jul 2017 – Jun 2022
	University of North Carolina at Chapel Hill, Chapel Hill, NC, USAPostdoc at Department of Mathematics; Mentor: Greg Forest	Aug 2015 – Jul 2017
EDUCATION	University of South Carolina (UofSC), Columbia, SC, USA	
	■ Ph.D. in Applied and Computational Mathematics; Advisor: Qi Wang	Aug 2015
	Nankai University, Tianjin, China	
	 B.S. in Information and Computational Mathematics 	Jul 2010
AWARDS	 2022 Researcher of the Year, Department of Mathematics & Statistics, USU 	04/2022
	 2021 Researcher of the Year, Department of Mathematics & Statistics, USU 	04/2021
	■ Graduate Student Mentor of the Year, Department of Mathematics & Statistics, U	
	 SIAM Early Career Travel Award For SIAM-CSE 	02/2021
	■ SIAM Early Career Travel Award For ICIAM	07/2019
	 Dean's Dissertation Fellowship, UofSC, \$ 25,000 	Aug 2014 - May 2015
GRANTS	■ National Science Foundation, GEO-2530564, Co-PI, \$ 1.01M with PI: J. Frame and Co-PIs: F. Hu and Y. Zhang	Oct 2025–Sep 2028
	 National Science Foundation, DMS-2513764, Single PI, \$ 199,814 Program of Computational Mathematics 	Aug 2025–Jul 2028
	 BU Research Foundation, PI, \$10,000 Interdisciplinary Collaborations Grant, with Co-PI: C. Cheng 	Jun 2024–May 2025
	 NeuralMetrics.ai, Single PI, \$105,000 Leveraging quantum computing for large language models training 	Jan 2024–Dec 2024

■ National Science Foundation , GEO-2530564, Co-PI, \$ 1.01M with PI: J. Frame and Co-PIs: F. Hu and Y. Zhang	Oct 2025–Sep 2028
 National Science Foundation, DMS-2513764, Single PI, \$ 199,814 Program of Computational Mathematics 	Aug 2025–Jul 2028
■ BU Research Foundation , PI, \$10,000 Interdisciplinary Collaborations Grant, with Co-PI: C. Cheng	Jun 2024–May 2025
 NeuralMetrics.ai, Single PI, \$105,000 Leveraging quantum computing for large language models training 	Jan 2024–Dec 2024
 National Science Foundation, DMS-2111479, Single PI, \$ 200,000 Program of Computational Mathematics 	Sep 2021– Dec 2024
■ NVIDIA , Academic Hardware Award, total worth \$14,000, Single PI, one Quadro P6000 GPU and three RTX A5000 GPUs	Dec 2018, Mar 2022
■ National Institute of Health, R35-GM143194, Co-Investigator, \$ 1.8M with Investigator Yu Huang and Co-Investigator Kevin Moon	Aug 2021– Jul 2026
■ National Science Foundation, DMS-2114592 (Conference), Co-PI, \$15,257 with PI Luis Gordillo and co-PI James Powell	Aug 2021– Jul 2022

Sep 2020- Sep 2022

May 2019- May 2022

■ National Institute of Health, R15-GM132877, Co-Investigator, \$ 435,000

• Standard & Poor's Global Ratings, Single PI, \$95,000

Quantum algorithms for credit rating

	Program of Mathematical Biology	
	■ Simons Foundation, PI, \$ 4,000 AMS Simons Travel Grant	Jul 2016– Jun 2018
GRADUATE STUDENTS ADVISING	 Md Obaidul Haque, PhD student Isaac Stamper, PhD student; job: Computational Biologist at MSK Cancer Cent Zengyan Zhang, Ph.D.; first job: postdoc at PSU Benjamin Jones, MS, first job: scientist at National Security Agency Yili Zhang, MS, first job: research scientist at MathWorks 	Jan 2025– Current er Jan 2024– Sep 2024 Sep 2019– Aug 2024 Aug 2021– May 2023 Aug 2020– Jun 2022
	 Jarrod Mau, MS, first job: PhD program at Utah State University Guen Grosklos, Ph.D.; first job: postdoc at University of Montana Colby Wight, MS, First job: data scientist at PNNL 	Aug 2020 – Jun 2022 Apr 2018 – May 2022 Sep 2018 – May 2020
UNDERGRADUATE STUDENTS ADVISING	 Emily Liu, undergraduate Kaitlin Ho, undergraduate James Giuffre, undergraduate Zhiting Liang, undergraduate, recipient of BUPNUR grant Riley May, undergraduate, first job: graduate program at USU Manuel Santana, undergraduate student, CofS Researcher of the Year 	May 2024– Current May 2024– Current May 2024– Current Jan 2024– May 2024 Sep 2022–Jan 2023 Sep 2021–May 2022

• Emily Blackburn, undergraduate, recipient of the College of Science Mini-grant

■ National Science Foundation, DMS-1816783, PI, \$ 150,000

Benjamin Jones, undergraduate, recipient of the URCO grant

Program of Mathematical Riology

PUBLICATIONS

Below, $^{\triangle}$ denotes co-first authorship; * denotes corresponding author; * denotes undergraduate student; denotes graduate student; denotes postdoc. I have 3250+ Google Scholar citations, a h-index 32+ and i10-index 46+. See my Google Scholar for a complete list of my publications.

Jun 2018- May 2021

Aug 2019-May 2021

Jan 2018-Dec 2018

- J. Mau and J. Zhao. Discovery of governing equations with recursive deep neural networks. Communications on Applied Mathematics and Computation. Communications on Applied Mathematics and Computation, 7, 239-263, 2025.
- Q Hong, Z Zhang, and J Zhao*. Auxiliary relaxation method to derive thermodynamically consistent phase field models with constraints and structure preserving numerical approximations, *Journal of Computational Physics*, 522, 113598, 2025.
- Z. Zhang and J. Zhao*. Structure-preserving reduced order models for reversible-irreversible thermodynamically consistent PDEs. *Journal of Computational Physics*, 521, 113562, 2025.
- J Zhang, X Guo, M Jiang, T Zhou, and **J Zhao***. Linear relaxation method with regularized energy reformulation for phase field models. *Journal of Computational Physics*, 515, 113225, 2024.
- G. Jones, R. Sims, and **J. Zhao***. Computational modeling of microalgal biofilm growth in heterogeneous rotating algal biofilm reactors (RABR) for wastewater treatment. *Applied Mathematical Modeling*, 131, 487-504 2024.
- Q. Hong, Y. Gong, and **J. Zhao***. A physics-informed structure-preserving numerical scheme for the phase-field hydrodynamic model of ternary fluid flows. Numer. Math. Theor. Meth. Appl., 16 (3), 565-596, 2023.
- M. Jiang and J. Zhao*. Linear relaxation schemes for the Allen-Cahn-type and Cahn-Hilliard-type phase field models. Applied Mathematics Letters, 137:108477, 2023.
- Q. Hong, Y. Gong, and J. Zhao*. Thermodynamically consistent hydrodynamic phase-field computational modeling for fluid-structure interaction with moving contact lines. Journal of Computational Physics, 112409, 2023.
- G. Jones ♠, R. Sims, and **J. Zhao***. Experimental and theoretical investigations of rotating algae biofilm reactors (RABRs): Areal productivity, nutrient recovery, and energy efficiency. *Biotechnology and Bioengineering*, 120 (10), 2865-2879, 2023.
- J. Xu, J. Zhao and Y. Zhao*. Numerical Approximations of the Allen-Cahn-Ohta-Kawasaki (ACOK) Equation with Modified Physics Informed Neural Networks (PINNs). International Journal of Numerical Analysis and Modeling, 20 (5), 693-708, 2023.
- G. Grosklos and **J. Zhao**. Chaos does not drive lower synchrony for intrinsically-induced population fluctuations. *Ecological Modeling*, 475, 110203, 2023.
- Z. Zhang[♠], Y. Gong and J. Zhao. A remark on the invariant energy quadratization (IEQ) method for preserving the original energy dissipation laws. *Electronic Research Archive*, 30(2), 701-704, 2022.

- M. Jiang*, J. Zhao and Q. Wang. Linear energy stable numerical schemes for a general chemo-repulsive model. *Journal of Computational and Applied Mathematics*, 114436, 2022.
- **J. Zhao***. A general framework to derive linear, decoupled and energy-stable schemes for reversible irreversible thermodynamically consistent models, *Computers & Mathematics with Applications*, 110, 91-109, 2022.
- M. Jiang, Z. Zhang and J. Zhao*. Improving the accuracy and consistency of the scalar auxiliary variable method with relaxation. *Journal of Computational Physics*, 456, 110954, 2022.
- G. Jones♣, D. Ellis♣, Z. Zhang♠, **J. Zhao*** and R. Sims. Optimal control of algae biofilm growth in wastewater treatment using computational mathematical models, *Contemporary Research in Mathematical Biology*, World Scientific Press, 2022.
- M. Jiang and J. Zhao*. Linear relaxation schemes for the Allen-Cahn-type and Cahn-Hilliard-type phase field models, *Applied Mathematics Letters*, 108477, 2022.
- L. Chen, Z. Zhang and **J. Zhao***. A new family of second-order unconditionally energy stable numerical schemes for gradient flow models. *Communications in Computational Physics*, 30:1290-1322, 2021.
- C. L. Wight and J. Zhao*. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks, *Communications in Computational Physics*, 29 (3), 930-954, 2021.
- **J. Zhao***. A revisit of the energy quadratization method with a relaxation technique. *Applied Mathematics Letters*. 120:107331, 2021.
- **J. Zhao***. Discovering phase field models from image data with the pseudo-spectral physics informed neural networks. *Communications on Applied Mathematics and Computation*, 3(2), 357-369, 2021. (Special Section on Machine Learning for Scientific Computing)
- L. R. Quinones[♥], J. Zhao, L. Gordillo. The effects of simple density-dependent prey diffusion and refuge in a predator-prey system, *Journal of Mathematical Analysis and Applications*, 498 (2), 124983, 2021.
- **J. Zhao*** and D. Han. Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations, *Journal of Computational Physics*, 443, 110536, 2021.
- Y. Li, W. Yu, J. Zhao and Q. Wang*. Second order linear decoupled energy dissipation rate preserving schemes for the Cahn-Hilliard-Extended-Darcy model, *Journal of Computational Physics*, 444, 110561, 2021.
- W. Yu, Y. Li, J. Zhao and Q. Wang*. Second order linear thermodynamically consistent approximations
 to nonlocal phase field porous media models, Computer Methods in Applied Mechanics and Engineering,
 386:114089, 2021.
- Q. Hong, Y. Gong, J. Zhao and Q. Wang*. Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint, *Applied Numerical Mathematics*, 170, 321-339, 2021.
- Q. Hong, J. Zhao and Q. Wang*. Energy-production-rate preserving numerical approximations to network generating partial differential equations, *Computers & Mathematics with Applications*, 84, 148-165, 2021.
- C. Lei, Y. Wang, J. Zhao, K. Li, H. Jiang* and Q. Wang*. A Predicative Patient Specific Model for Human Albumin Based on Deep Neural Networks, *Computer Methods and Programs in Biomedicine*. 196:105555, 2020.
- S. Sun, J. Li, J. Zhao and Q. Wang*. Structure-Preserving Numerical Approximations to a Thermodynamically Consistent Non-isothermal Model of Binary Viscous Fluid Flows, *Journal of Scientific Computing*, 83:50, 2020.
- Y. Gong, **J. Zhao*** and Q. Wang. Arbitrarily High-order Unconditionally Energy Stable SAV Schemes for Gradient Flow Models. *Computer Physics Communications*. 249, 107033, 2020.
- L. Chen and **J. Zhao***. A novel second-order linear scheme for the Cahn-Hilliard-Navier-Stokes equations. *Journal of Computational Physics*, 423:109872, 2020.
- Y. Gong, J. Zhao and Q. Wang*. Arbitrarily high-order linear schemes for gradient flow models, *Journal of Computational Physics*. 419:109610, 2020.
- J. Zhang, **J. Zhao***, and J. R. Zhang. A Non-uniform Time-stepping Convex Splitting Scheme for the Time- fractional Cahn-Hilliard Equation. *Computers and Mathematics with Applications*. 80(5):837-850, 2020.
- Y. Gong, **J. Zhao***, and Q. Wang. Arbitrary high order energy stable schemes for gradient flow models based on energy quadratization, *SIAM Journal on Scientific Computing*, 42(1): B135-B156, 2020.
- J. Zhang, M. Jiang, Y. Gong and **J. Zhao***. Energy-stable predictor—corrector schemes for the Cahn-Hilliard equation. *Journal of Computational and Applied Mathematics*. 276: 112832, 2020.

- J. Zhang, J. Zhao*, and Y. Gong. Error Analysis of Full-discrete Invariant Energy Quadratization Schemes for the Cahn-Hilliard Type Equation. *Journal of Computational and Applied Mathematics*. 372: 112719, 2020.
- K. Gasior[△], J. Zhao[△], G. McLaughlin, G. Forest, A. S. Gladfelter and J. Newby. Molecular competition and partial demixing leads to intra-droplet patterning in phase-separated biological condensates, *Physical Review E*, 99, 012411, 2019.
- L. Chen, J. Zhang, **J. Zhao***, W. Cao, H. Wang and J. Zhang. An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection. *Computer Physics Communications*, 245, 106842, 2019.
- X. Yang* and **J. Zhao**. Linear schemes with unconditional energy stabilities for the nonlocal Cahn-Hilliard phase field model, *Computer Physics Communications*, 235, 234-245, 2019.
- X. Yang* and J. Zhao. On Linear and Unconditionally Energy Stable Algorithms for Variable Mobility Cahn-Hilliard Equation with Logarithmic Flory-Huggins Potential. *Communications in Computational Physics*, 25, 703-728, 2019.
- Y. Zhao and J. Li and J. Zhao and Q. Wang*. A linear energy and entropy-production-rate preserving scheme for thermodynamically consistent crystal growth models. *Applied Mathematics Letters*, 98, 142-148, 2019.
- Y. Gong and J. Zhao*. Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach. *Applied Mathematics Letters*, 94, 224-231, 2019.
- L. Chen, **J. Zhao*** and Y. Gong. A novel second-order scheme for the Molecular Beam Epitaxy model with slope selection. *Communications in Computational Physics*, 25, 1071-1096, 2019.
- J. Li, J. Zhao and Q. Wang*. Structure preserving numerical approximations of thermodynamically consistent crystal growth models, *Journal of Computational Physics*, 382:202-220, 2019.
- J. Zhao, L. Chen*, and H. Wang. On power law scaling dynamics for time-fractional phase field models
 during coarsening. Communications in Nonlinear Science and Numerical Simulation, 70:257-270, 2019.
- H. Liu, A. Cheng, H. Wang* and **J. Zhao**. Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation, *Computers and Mathematics with Applications*, 76(8):1876-1892, 2018.
- Y. Gong, J. Zhao and Q. Wang*. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities, *Computer Physics Communications*, 219:20-34, 2018.
- Y. Gong, J. Zhao, XG. Yang and Q. Wang*. Full discrete second-order linear schemes for hydrodynamic phase field models of viscous fluid flows with variable densities, SIAM Journal on Scientific Computing, 40(1):B138-B167, 2018.
- Y. Gong, **J. Zhao** and Q. Wang*. Second order fully-discrete energy stable methods on staggered grids for hydrodynamic phase field models on binary fluid mixtures. *SIAM Journal on Scientific Computing*, 40(2): B528-B553, 2018.
- X. Yang*, J. Zhao and X. He. Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation, *Journal of Computational and Applied Mathematics*, 343:80-97,2018.
- Y. Gong, J. Zhao and Q. Wang*. Linear second-order energy stable schemes for hydrodynamic models
 of binary mixtures based on a spatially pseudospectral approximation, *Advances in Computational Mathematics*, 44 (5),1573-1600, 2018.
- J. Zhao, X. Yang, Y. Gong, X. Zhao, XG. Yang, J. Li and Q. Wang*, A general strategy for numerical approximations of non-equilibrium models, Part I: thermodynamic systems, *International Journal of Numerical Analysis & Modeling*, 15(6): 884-918, 2018.
- L. Chen, J. Zhao* and X. Yang. Stabilized linear schemes for the molecular beam epitaxy model with slope selection. *Applied Numerical Mathematics*, 310:77-97, 2018.
- X. Yang, Y. Gong, J. Li, J. Zhao and Q. Wang*. On hydrodynamic phase field models for binary fluid mixtures., *Theoretical and Computational Fluid Dynamics*, 32(5):537-560, 2018.
- **J. Zhao** and X. Yang, Y. Gong, and Q. Wang*. A novel linear, second order, unconditionally energy-stable scheme for a hydrodynamic **Q**-tensor model for liquid crystals. *Computer Methods in Applied Mechanics and Engineering*, 318:803-825, 2017.
- X. Yang*, J Zhao*, Q. Wang and J. Shen. Numerical approximations of a three components Cahn-Hilliard phase-field model based on invariant energy quadratization method, *Mathematical Model* and Methods in Applied Sciences, 27:1993-2023, 2017.

- X. Yang*, **J. Zhao** and Q. Wang. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, *Journal of Computational Physics*, 333:104-127, 2017.
- **J. Zhao**, Q. Wang and X. Yang*. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach, *International Journal for Numerical Methods in Engineering*, 110(3):279-300, 2017.
- **J. Zhao**, H. Li, Q. Wang and X. Yang*. Decoupled energy stable schemes for a phase field model of three-phase incompressible viscous fluid flow, *Journal of Scientific Computing*, 70(3):1367-1389, 2017.
- **J. Zhao**, T. Zhang, and Q. Wang*. Modeling and simulation of bacterial biofilm treatment with applications to food science, *Nanotechnology in Food Science*, 235-256, John Wiley & Sons, 2017. (invited book chapter)
- **J. Zhao** and Q. Wang*. 3D numerical simulations of biofilm growth dynamics with quorum sensing in a flow cell. *Bulletin of Mathematical Biology*, 79(4):884-919, 2017.
- **J. Zhao**, Q. Wang and X. Yang*. Numerical approximations to a new phase field model for two phase flows of complex fluids, *Computer Methods in Applied Mechanics and Engineering*, 310:77-97, 2016.
- J. Zhao, X. Yang, J. Li and Q. Wang*. Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals, SIAM Journal of Scientific Computing, 38(5):3264-3290, 2016.
- **J. Zhao**, X. Yang, J. Shen and Q. Wang*. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids, *Journal of Computational Physics*, 305:539-556, 2016.
- M. Kapustina[△], D. Tsygankov[△], J. Zhao[△], T. S. Wessler, A. Chen, X. Yang, N. Roach, T. C Elston, Q. Wang*, K. Jacobson* and M. G. Forest*. Modeling the excess cell surface stored in a complex morphology of bleb-like protrusions. *PLOS Computational Biology*, 12(3):e1004841, 2016.
- Y. Shen[△], J. Zhao[△], C. Fuenta-Nunez, Z. Wang, R. E. W. Hancock, J. Li, M. Haapasalo* and Q. Wang*. Experimental and theoretical investigation of multispecies oral biofilm resistance to Chlorhexidine treatment, *Scientific Reports*, 6:27537, 2016.
- J. Zhao and Q. Wang*. Semi-discrete energy-stable schemes for a tensor based hydrodynamic model of nematic liquid crystals flows, *Journal of Scientific Computing*, 68:1241-1266, 2016.
- J. Zhao and Q. Wang*. Modeling cytokinesis of eukaryotic cells driven by actomyosin contractile ring, *International Journal for Numerical Methods in Biomedical Engineering*, 32(12), 2016.
- **J. Zhao** and Q. Wang*. A 3D multiphase hydrodynamic model for cytokinesis of eukaryotic cells, *Communications in Computational Physics*, 19(03):663-681, 2016.
- **J. Zhao**, Y. Shen, M. Haapasalo, Z. Wang and Q. Wang*. A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms, *Journal of Theoretical Biology*, 392:83-98, 2016.
- **J. Zhao***, P. Seeluangsawat, and Q. Wang. Modeling antimicrobial tolerance and treatment of heterogeneous biofilms, *Mathematical Bioscience*, 282:1-15, 2016.

SELECTED SEMINAR TALKS

 Department of Mathematics, SUNY at Buffalo, NY 	Oct 2024
 Department of Mechanical Engineering, SUNY at Binghamton, NY 	Mar 2024
■ Department of Mathematics, University of Alabama, AL	Mar 2024
 Department of Mathematics and Statistics, SUNY at Binghamton, NY 	Nov 2022
 Department of Mathematics, University of North Texas, TX 	Mar 2022
 Center for Computational Mathematics and Applications, Pen State University, PA 	Feb 2022
 Data-driven Discovery Seminar Series, Western Washington University, WA 	Nov 2021
■ SciML Seminar, Texas A&M University, TX	Sep 2021
■ Department of Mathematics, Brigham Young University, UT	Nov 2020
 Department of Mathematics, George Washington University, D.C. 	Sep 2020
 Department of Mathematics, University of Wyoming, WY (canceled) 	Sep 2020
 Department of Mathematics, Montana State University, MT 	Nov 2019
 Department of Mathematics, University of Utah, Salt Lake City, UT 	Oct 2018
 Department of Mathematics & Statistics, Idaho State University, ID 	Feb 2018
 Department of Mathematics, Brigham Young University, UT 	Nov 2017
■ Interdisciplinary Research Forum, Ecology Center, Utah State University, UT	Oct 2017
 Department of Biological Engineering, Utah State University, UT 	Sep 2017
 Department of Mathematical Sciences, Yeshiva University, NY 	Mar 2017
 Department of Mathematics and Statistics, Georgia State University, GA 	Mar 2017
 Department of Mathematics, University of Louisiana at Lafayette, LA 	Feb 2017

	 Department of Mathematics, University of Alabama, AL 	Feb 2017
TEACHING EXPERIENCE	 at University of Alabama MATH 359 Mathematical Theory of Data Science MATH 537 Mathematical Foundations of Data Analytics and Programming 	Fall 2025 Spring 2025
	 at Binghamton University MATH 392 Scientific Computing with R; MATH 488A Linear Algebra for Statistice MATH 372 Dynamical Systems; MATH 488A Linear Algebra for Statistics MATH 304 Linear Algebra 	rs Fall 2024 Spring 2024 Fall 2024
	 at Utah State University MATH 5810/6910 Mathematical Optimization MATH 5810/6810 Numerical Methods for PDEs MATH 5810/6910 Mathematical Optimization MATH 280 Ordinary Differential Equations; MATH 5810/6810 Scientific Computer MATH 2280 Ordinary Differential Equations MATH 6620 Finite Difference Methods for PDEs; MATH 2270 Linear Algebra MATH 6610 Computational Linear Algebra; MATH 2270 Linear Algebra MATH 5620 Numerical Solutions of DEs MATH 2270 Linear Algebra; MATH 5810 Numerical PDEs MATH 2270 Linear Algebra 	Spring 2023 Fall 2022 Spring 2022 Iting Fall 2021 Spring 2021 Fall 2020 Fall 2019 Spring 2019 Fall 2018 Spring 2018
SELECTED PROFESSIONAL ACTIVITIES	 Co-organizing Conferences 2nd SIAM Northern States Conference, Organizing Committee Chair 1st SIAM Northern States Section Student Chapters Conference, Faculty Organize 1st SIAM Northern States Conference, Organizing Committee Member 2nd SIAM Wasatch Student Chapters Conference, Faculty Organizer Selected Service Vice President (elected), SIAM Northern States Section Faculty mentor for SIAM student chapter at USU 	Mar 2023 r Oct 2020 Sep 2019 Apr 2019 Nov 2018 – Jul 2023 Sep 2017–Jun 2022