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IntroductionIntroduction

• So far, we’ve considered the improvement of the mechanical 
properties of materials by modifying the internal structure of the 
material system either by alloying or processing.  

• We can also develop materials with even different properties by 
introducing additional phases/materials into a host material.  
This mixture of phases is termed a composite.

• In general, composites are relatively macroscopic mixtures of 
phases/materials.  These mixtures are sometimes natural, but 
are generally artificial.

• By mixing two different phases or materials, we can develop 
materials that have properties which are an average of those of 
the two components.



Introduction (2)Introduction (2)
• In a composites, strength/properties = average of 

strength/properties of the individual materials.

• We design composites so as to obtain the best attributes of the 
individual constituents.

• Microstructure of a composite = matrix + reinforcement

– Matrix:  
• phase that holds reinforcement together
• protects the reinforcement
• transmits load to the reinforcement.

– Reinforcement:  
• filaments, fibers, whiskers, etc., which have intrinsically high strength and modulus; 

reinforcements are often too brittle to use in monolithic forms. Sometimes “soft” reinforcements 
are used too.



Introduction (3)Introduction (3)
• Interface between reinforcement and matrix is often the most 

critical element in determining materials properties and 
performance.

– Is interface strong or weak?

• Influences transfer of stress from matrix to fiber

• Influences crack propagation

• Etc.

– Is there reaction at the interface?  Is there no reaction?

• Reactions change the properties of the fiber and matrix locally. Chemistry change

• Stress concentration

• Etc.



Classification of Composites (1)Classification of Composites (1)

• On basis of matrix:

– Polymer matrix composites (PMCs)

– Metal matrix composites (MMCs)

– Ceramic matrix composites (CMCs)

• Purpose of reinforcement

– PMC: increase stiffness (E), yield strength, tensile strength, and 
creep resistance

– MMC: increase yield strength, tensile strength, and creep 
resistance

– CMC: increase fracture toughness (Kc)



Classification of Composites (2)Classification of Composites (2)

• On basis of reinforcement

– Particle reinforced composites
• Natural

– Ex., precipitates
• Artificial

– Addition of immiscible phases

– Short fiber or whisker reinforced composites
• Artificial

– Continuous fiber or sheet reinforced MMCs
• Natural (“sort of”)

– Ex., DS eutectics
• Artificial



[Meyers & Chawla]



What can composites look like?What can composites look like?

Fiber 
reinforced

[Meyers & Chawla]

MMC

Figure 15.1 (a) Transverse section of a boron fiber reinforced aluminum composite.  Vf = 10%.  (b) Transverse section of a 
carbon fiber reinforced polyester resin. Vf = 50% (Optical).  (c) Deeply etched transverse section of a eutectic composite 
showing NbC fibers in a Ni-Cr matrix.  (d) SiC particles in an Al alloy matrix (SEM). Vf = 17%.
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[Meyers & Chawla]



What can composites look like?What can composites look like?

Which phase is the 
reinforcing phase?

MMC

[Bewlay et al., MRS Bulletin, v.28, n.9 (2003) p. 646-653]

Figure 5. Microstructural evolution in Nb-19.5Ti-13Cr-2Hf-17.5Si-2Al-1.2Sn (at.%) in the following conditions:  (a) as-
cast, (b) homogenized (1300°C/24h + 1400°C/76 h), and (c), (d) extruded (1350°C at 6:1 ratio), transverse and longitudinal 
sections, respectively.  The light phase is Nb, the gray phase in (Nb)5Si3, and the black phase is the Cr2(Nb)-type Laves 
phase.

(a) (b)

(a) (b)



GRAY DUCTILE

WHITE MALLEABLE

graphite

-ferrite

Fe3C

pearlite

graphite

-ferrite

graphite

-ferrite

[From Callister, 7th Ed., Fig. 11.3, pages 367-368]

Cast Iron: another good example of a compositeCast Iron: another good example of a composite
Particle reinforced MMCs



What do properties depend upon?What do properties depend upon?

• Matrix type
– Structure and intrinsic properties

• Reinforcement:
– Concentration
– Shape
– Size
– Distribution
– Orientation
– Matrix/reinforcement interface

• To begin, we will consider a laminate composite in order to 
develop the basic principles of reinforcement.



Basic mechanics (1)Basic mechanics (1)

• Consider the case where a force is applied along the y-direction.  In this 
instance, the stresses on the  and  lamellae are equal (i.e.,  = F/L2).

• The composite strain is the weighted average of the individual strains in 
each lamellae.

• The composite modulus is given by:
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Does Does strengthstrength change as we alter volume change as we alter volume 
fraction of reinforcing phase?fraction of reinforcing phase?

Answer:  NOT FOR THIS ARRANGEMENT!
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With this type of loading, 
both phases experience the 
same force and thus the 
same stress.  Therefore, 
F/F = 1.

Let F = strong phase.

The force ratio is 
independent of V.



• Point 1:
– V = 0.5; V = 0.5
– E = 100 GPa; E = 10 GPa
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Does Does modulusmodulus change as we alter volume change as we alter volume 
fraction of reinforcing phase?fraction of reinforcing phase?

Answer:  YES!

Equal stress 
condition



Basic mechanics (2)Basic mechanics (2)

• Consider the case where a force is applied along the z-direction.  In this 
instance, the stresses on the  and  lamellae are different.

• The strains on the  and  lamellae are equal.

• The composite modulus is given by:
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This is a composite plot of the elastic modulus for the composite that we used 
in the example.  The blue curve shows the upper bound for modulus and the 
red curve shows the lower bound as calculated using the rule of mixtures. The 
moduli of particle-reinforced materials generally lies between the values 
predicted for laminate composites, but near the lower bound.  In fact, for 
particle reinforced composites:
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Basic mechanics (3)Basic mechanics (3)

• The composite stress for this arrangement is given by:
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• What this plot shows is that 
the equal-strain condition for 
reinforcement (i.e., strong 
phase aligned parallel to 
applied force) is most useful 
for reinforcement.

• Under these conditions, the 
strengthening phase (i.e., the 
reinforcement) is much more 
effective at carrying load.

• However, there must be a 
certain volume fraction of the 
reinforcing phase present.

Increasing 
reinforcement 
strength/stiffness

Equal-stress arrangement

Influence of reinforcement arrangement on strengthInfluence of reinforcement arrangement on strength

[after Courtney, p. 251]
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Reinforcement with continuous fibers (1)Reinforcement with continuous fibers (1)

• Most widely utilized phase 
geometry.

• WHY?  Extraordinary strengths 
can be obtained in fibrous 
materials.  Some particularly 
important ones are noted in this 
table.

• High strength fibers must be 
protected as their fracture 
toughness is generally low.

[Courtney]



Reinforcement with continuous fibers (2)Reinforcement with continuous fibers (2)
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• Stage I
– Both fiber and matrix deform elastically.

• Stage II
– Generally, the matrix will begin to deform plastically at a strain that 

is less than the elastic limit of the fiber.
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• Stage III
– This stage only occurs if the fibers deform plastically prior to

fracture

• f = fiber failure strain
– Fibers begin to deform locally or fracture.
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Critical fiber volume fraction needed to strengthenCritical fiber volume fraction needed to strengthen

• Vc = critical volume fraction of fibers

• Vmin = minimum fiber volume fraction required to increase strength of matrix
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Fiber volume fraction, Vf

S
tre

ss

0 1

f

Vc

Vmin

( )c f f m m fV V    

(1 )c m m f mV V    

min

( )
( )

m m f

f m f

V
  
  






( )
( )

m m f
c

f m m f

V
  

   



 

Typical values for Vc and Vmin
range from 0.02 to 0.10



Discontinuous fibersDiscontinuous fibers
• The equal strain volume fraction rule does not apply to composites 

containing discontinuous fibers.

• In discontinuous fibers, there is a critical fiber length Lc for effective 
strengthening.

where f = tensile strength of fiber, m = shear strength of fiber-matrix 
interface, and d = fiber diameter.

• For glass and carbon composites, Lc  (20 – 150  d) mm.

• Fibers that are shorter than the critical length have less strengthening per 
unit volume than continuous fibers.

• WHY?
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Figure 6.9 (a) A schematic of a matrix containing discontinuous fibers.  (b) The geometry of one fiber 
is shown in the cross-hatched region.  At the fiber end, tensile load can’t be instantaneously transferred 
to the fiber from the matrix.  (c) The tensile load-transfer process is accomplished by development of a 
shear stress at the fiber-matrix interface owing to the relative displacement of the fiber and matrix 
along this interface.  The displacement is proportional to the arrows shown, and is zero at the fiber 
midpoint and a maximum at the fiber end.  (d) A small increment of length dx of a fiber; the 
incremental fiber tensile stress (dσf) is obtained by a force balance; i.e., (πdf2/4) df = m(πdf2dx), 
where m is the interfacial shear stress.

[after Courtney, p. 258]
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• The shear stress at the midpoint of a fiber is less than that at
the ends.

• Fibers do work by transferring load from the “weak” matrix to 
the “strong/stiff” fiber.  This requires a large interfacial area.

[after Courtney, p. 259]



matrix
fiber




• No load is transferred to the fiber at its ends.

• Load is transferred along the length of the fiber

[after Courtney, p. 259]



• Fibers need to be of a certain 
length to yield maximum 
strengthening.

• Read the captions for the two 
figures presented on the left.

• Fiber orientation is also important.
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[Courtney]



Fiber 
failure

Shear 
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of matrix

Normal 
yielding 
of matrix

       
4 4

2 2
, 2 2 2 2* * *

cos 1 1 sincos sinUTS c

my

   
  

 
    
 
  

Tsai-Hill failure criterion for fiber reinforce composites

[Courtney]



CrossCross--PlyingPlying
• Cross-plying aligned fibers to 

produce sandwich structures 
provides better utilization of 
composites.

• A 0-90° composite is illustrated 
to the right.

• Most composites contain more 
than two plies.

• Other ply arrangements are possible and are used to improve in-
plane loading.

Schematic of a 0-90° cross-ply fiber composite.  
Such configurations are useful for biaxial 
loading of composites.  Other configurations 
(e.g. 0-45°, 45-45°, or 0-45-90°) can be 
similarly employed.  [Figure scanned from 
Courtney, p. 267].


