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Dislocation Mobility, Stress-Strain Behavior 
and Yield Point Phenomena

READING LIST
DIETER: Ch. 4, Page 132 and Ch. 6, pages 197-203

HOMEWORK
Explain the influence of 

temperature on upper yield 
point formation in Al2O3 or Si.



Further implications of dislocation motionFurther implications of dislocation motion
• The implications of our discussions thus far indicate that 

plastic deformation at ambient temperatures results from
the motion of dislocations and dislocation densities
increase during plastic deformation.

• Previously, we showed that the shear strain resulting 
from dislocation motion could be represented as follows:

• Further, the shear strain rate associated with this type of 
deformation is:
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Further implications of dislocation motion Further implications of dislocation motion –– contcont’’dd

• Term on the right hand side of this equation is very small 
relative to the term on the left side and can be ignored, 
which reduces the strain rate equation to:

• This is the Taylor - Orowan equation.  We can use it to 
describe macroscopic plastic deformation in terms of 
dislocation behavior.

• This equation defines deformation in terms of how fast 
dislocations move.
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• This was investigated by Johnston and Gilman who showed that the
dislocation velocity for a number of ionic crystals and metals is a 
strong function of the shear stress in the slip plane as follows:

• Where v is the dislocation velocity,  is the applied shear stress in the 
slip plane, o is the shear stress for v = 1 m/s, and m is a constant.

• Dislocations glide velocities depend on:
– Applied stress;
– Purity of the crystal;
– Temperature;
– Type of dislocation.

m

o

v A 

 

  
 

This equation is empirical in nature 
and applies for a specific velocity 
range: 10-9 to 10-3 m/s



• Dislocation velocity increases 
rapidly at the critical resolved 
shear stress (crss or CRSS).

• This is where plastic 
deformation actually begins.

Figure

Stress dependence of the velocity of edge 
and screw dislocations in LiF (after Johnston 
and Gilman, J. Appl. Phys. 30, 129, 1959).  
Scanned from E.W. Billington and A. Tate, 
The Physics of Deformation and Flow, 
McGraw-Hill, New York, 1981, pages 418 
and 420.

Edge ’s 
move 

faster!



What do stressWhat do stress--strain curves look like?strain curves look like?

• We can use the Taylor-Orowan equation to predict what 
stress-strain curves will look like after yielding.

• Based on mobile dislocation density.

• We can also describe things in terms of solute locking of 
dislocations.  This is related to solid solution hardening.
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



RecapRecap
• Concerning yielding, many studies have illustrated that when a 

consistent measure of yielding is used, large scale deformation in 
single crystals will occur at the CRSS on a specific slip (glide) plane, 
in a specific slip direction.

• CRSS ≡ critical value of the shear stress on a glide plane where 
large-scale deformation occurs.

• The CRSS is not the stress required to move a single dislocation on 
a slip plane.  Rather it is the stress required to move many 
dislocations!

• By analogy, in a polycrystal, the yield stress is also the stress 
required to move many dislocations.  As we shall see later, it reflects 
the collective CRSS values for a number of single crystals (in this 
case grains).



• Plastic deformation occurs when the applied stress exceeds the 
elastic limit.

• Plastic deformation occurs primarily via the motion of defects.
– Point defects – diffusion aided flow (“creep”)
– Line defects – “slip”
– Surface/Planar defects – twins, APB’s, stacking faults, etc…
– Volume defects? – not really.  However, they do “influence” plastic 

deformation.
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In general, multiple events occur at the 
same time

(slip+twinning+creep+etc.)

Most deformation occurs via slip or 
twinning

(at ambient temperatures)

however

OUR CURRENT CONCERN IS SLIP



RecallRecall
• Slip is the relative displacement of crystallographic 

planes by discrete distances.

• Slip in crystals is a direct result of the motion of line 
defects, namely dislocations (’s).

• Dislocations represent boundaries between slipped and 
“unslipped” regions of a crystalline solid.
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Slip bands:
Composed of 
several slip 
lines/traces

100’s of Å
1000’s of Å

• Slip leads to the appearance of slip traces
on the surfaces of single crystal test 
specimens as is illustrated for Zn on the 
left.

• The slip traces correspond to the motion of 
many dislocations on specific slip planes.

[Callister, p. 183]



In polycrystals, what happens after slip?In polycrystals, what happens after slip?

• The same thing happens in polycrystals, however, the slip lines will 
be different in each grain.

• Consider each grain to be a single crystal that is rotated relative to 
the others.

[Callister, p. 186]



Dislocations move on 
specific planes and in 

specific directions

slip systems

This is what leads to slip 
traces in single crystals and

polycrystals
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•Slip bands/traces always correspond to specific 
crystallographic planes and directions.  

•Usually the close packed planes and close packed directions.  

•Each step on the surface of a tensile specimen is proportional 
to nb, where n is an integer and b is the Burgers vector.
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• Some stress strain curves 

exhibit upper yield points.  
Some don’t.

• WHY?

• Can be considered 2 ways:

1) In terms of dislocation 
velocity and density

2) In terms of solute 
diffusion (strain aging*). 

* Strain aging is related to solid 
solution hardening which will be 
addressed later.



RecallRecall
• Dislocation induced strain can be equated as:

• The shear strain rate associated with this type of 
deformation can be equated as:

this is the Taylor-Orowan equation.

• This equation is dominated by two terms (ρ and v), 
both of which depend upon a series of testing and 
materials parameters as indicated below:
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Now, the Orowan equation can be reNow, the Orowan equation can be re--written as:written as:

• In a general tensile test, the strain rate consists of an 
elastic component and a plastic component (elastic-
plastic deformation).

where
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• After substitution, the strain rate equation can be re-
written as:

• In this equation, the dislocation density and the 
dislocation velocity are dependent on - (or -) 
behavior.

• Recall:

which can be re-written as:
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• If we consider a single crystal, when the crystal yields, there is the 
possibility of work hardening.

• As we will discuss in detail later, work hardening occurs when normally 
mobile dislocations intersect, thus tying each other up. 

• During work hardening, dislocations continue moving.  This will result a 
back stress that reduces the effective stress required to establish a 
critical dislocation velocity to the applied stress minus the back stress or: 

where  is in this case the total stress applied on the dislocations (i.e., 
the effective stress). 

• This back stress is often called the internal stress.

(back stress)applied  



• We can say something definitive about yield behavior by first 
assuming linear work hardening. 

• In this case, the internal stress then becomes:

• Thus:

• If we substitute this expression into:

we get:
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the dislocation velocity to 
stress and strain. 



• Dislocation density depends on plastic strain in the following way:

• If we incorporate this dependence into the Taylor-Orowan 
relationship we get the following expression:

This expression describes in full the stress-strain behavior of a solid.

• Below the elastic limit, there is no  plastic strain.  Thus term (1) 
dominates this expression up to the elastic limit.

• Beyond the elastic limit, there is significant dislocation multiplication 
AND significant plastic strain.  Thus (2) will begin to dominate.
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• Getting back to the actual - curves, some have sharp upper yield points 
and some don’t.  WHY?

• Many reasons.  One explanation can be provided in terms of dislocation 
density using the equation that was derived on the preceding page.

• In materials that exhibit upper yield points (UYP), the slope of the stress-
strain (and thus stress-time) curve at that UYP is equal to zero.
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• Thus, at the upper yield point:

which can be re-written as:

• At the yield point:

thus: 
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• The flow stress will decrease from this value until 
work hardening is significant.  

• When the lower yield point (LYP) is reached, the 
work hardening rate (d/d) equals zero.  

• Once the LYP is exceeded, d/d increases due to 
work hardening.



• At the lower yield point:

• Do you recognize this equation?

• If we combine it on a graph with the expression for elastic strain we get 
the plot that follows.

• Using this model, it is possible to explain the occurrence of UYPs and 
LYPs in tensile tests.  This model does not work for all materials.
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• If we remove all constants from the derived equation, we can 
observe a general trend:

• This expression tells us that at higher strain rates, the yield stress 
(and flow stress) should be higher. 

• Generally, it has been observed that as strain rate increases:

1. The work hardening rate increases

2. Ductility decreases

3. Yield drops, if they are present at all, get larger.  This is illustrated on 
the next slide.
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Effects of temperature and strain rate on size of UYP in Al2O3.

Fig. 14.26.  (a) Deformation behavior of single-crystal Al2O3.   On the left the effect of 
temperature and on the right the effect of strain rate.  A sharp yield stress and a 
sharp yield drop are observed.  [Figure adapted from Kingery et al., Introduction to 
Ceramics, 2nd Edition, (Wiley, New York, 1976) p. 730.]



• Illustrates the 
relationships 
between mobile 
dislocation density 
and strain rate.

• Also, when m is 
small, UYPs are 
more pronounced
than when m is large.

• Why do FCC 
materials not 
generally exhibit 
UYPs while BCC 
materials often do?

Fig. 14.18.  Differential shapes of stress-strain curves at yielding as interpreted in 
terms of dislocation density.  [Figure adapted from Kingery et al., Introduction to 
Ceramics, 2nd Edition, (Wiley, New York, 1976) p. 721.  This figure was originally 
adapted from the classical work of Gilman.]


