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ObjectiveObjective

• The objective of this module is to present some of the 
dislocations observed in FCC, HCP and BCC crystal 
structures.

• This section is intentionally brief.  More details can be 
found by consulting the reading list.

• We will not address ceramics or intermetallics here.  
They will be addressed separately.



Plastic Flow in GeneralPlastic Flow in General

• Slip occurs via glide

• Slip occurs on close-packed planes in close-
packed directions

• Slip system = Slip plane + Slip direction



Slip in FCC CrystalsSlip in FCC Crystals

Each unit cell contains 4 {111} planes
Each {111} plane contains 3 <110> directions

Thus, there are 12 slip systems in an FCC unit cell
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RECALL: Dissociation of dislocationsRECALL: Dissociation of dislocations

• Because of energy considerations it is also possible for some
dislocations to dissociate (split) into shorter segments.  This is 
favorable in certain crystals (Ex., FCC).

• This is possible in close-packed crystals such as FCC and HCP 
where equilibrium positions are not the edges of the unit cell.
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• In this example, the separation into partial dislocations is 
energetically favorable.  There is a decrease in strain energy.

• Separation produces a stacking fault between the partials.

Shockley Partial Dislocations in FCC crystalsShockley Partial Dislocations in FCC crystals
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“A” type (111) plane

“B” type (111) plane
“C” type (111) plane

In an fcc lattice, slip occurs on (111) planes in <110> directions
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“A” type (111) plane

“B” type (111) plane
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The vector b1 represents the unit Burgers vector
However, there is a “simpler” path.
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Less energy is required if unit dislocation dissociates:



• AB represents a regular (un-extended) dislocation.

• BC and BD represent partial dislocations.

• The region between BC and BC represents the stacking fault.  In this region, 
the crystal has undergone “intermediate” slip.

• BC + stacking fault + BD represents an extended dislocation.

• Extended dislocations (in particular screw dislocations) define a specific slip 
plane.  Thus, extended screw dislocations can only cross-slip when the partial 
dislocations recombine.  See the illustration on the next page.  

• This process requires some energy.
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Extended DislocationExtended Dislocation
[Partial Dislocation + SF + Partial Dislocation]

• An extended screw dislocation must constrict before it can cross slip.
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(1) Extended 
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Schematic illustration



• It is more difficult to re-combine wide stacking faults (i.e., those with 
large d).

• Cross-slip is more difficult in materials with low SFE.  Thus high SFE 
materials will work harden more rapidly.  

• We will address this in more detail when we discuss work hardening.

Material
SFE

(mJ/m2)
Fault
width

Strain
Hardening

rate REASONS
Stainless Steel <10 ~0.45 High Cross slip is more difficult

Copper ~90 ~0.30 Med

Aluminum ~250 ~0.15 Low Cross slip is easier

See pages 74-79 in Hertzberg
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Geometry of close-packed planes appropriate for dissociation into
Shockley partial dislocations.  The large blue arrow corresponds to

 while the small green arrows correspond to  and .

Figure adapted from R.C. Reed, Superalloys: Fundamentals and 
Applications, (Cambridge University Press, Cambridge, 2006) p. 56.



Thompson 
Tetrahedron

Shows 
relationships of all 
total & partial ‘s in 

FCC system.

[M.A. Meyers and K.K. 
Chawla, Mechanical 
Metallurgy, (Prentice-Hall, 
1984) p. 249]



[M.A. Meyers and K.K. Chawla, Mechanical 
Metallurgy, (Prentice-Hall, 1984) p. 249]

BA = Bγ + γA

Convenient way to 
visualize dislocation 

reactions in fcc
crystals



Frank Partial dislocations in FCC crystalsFrank Partial dislocations in FCC crystals

• Formed by inserting or 
removing one close-
packed {111} layer of 
atoms.  This results in 
either an intrinsic or an 
extrinsic stacking fault.

• This results in an edge 
dislocation with a 
Burgers vector is normal 
to the {111} plane of the 
fault.  This dislocation is 
sessile.

[Hull & Bacon]

[111]
3
oab 



Interaction of dislocations on intersecting slip planesInteraction of dislocations on intersecting slip planes
• Consider intersection (111) slip planes in an FCC lattice
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Interaction of dislocations on intersecting slip planes
• Consider intersection (111) slip planes in an FCC lattice.
• <110> dislocations can separate into Shockley partials.
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AT INTERSECTION
This combination is known as a Lomer-
Cottrell lock.  It is termed a stair-rod 
dislocation and is sessile.

Figure adapted from 
I. LeMay, Principles 
of Mechanical 
Metallurgy, Elsevier 
(1981) p. 111

Lomer-Cottrell lock



Dislocations in Hexagonal CloseDislocations in Hexagonal Close--Packed CrystalsPacked Crystals
Dislocations are similar to those in FCC crystals.

 Close-packed plane:  0001

Close-packed direction:  1120

Shortest lattice vectors:  1120
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[Hull & Bacon, p. 102]



Figure 6.1 Burgers vectors in the 
hexagonal close-packed lattice.  
(Originally from Berghezan et al., Acta
Metall., v.9 (1961) p. 464.  Scanned 
from Hull & Bacon, p. 103).

Table 6.2. Dislocations in HCP materials [adapted from Hull & Bacon, p. 104]
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AB = perfect (unit) dislocation
A = Shockley partial type

HCP



HCPNonNon--basal slipbasal slip

• Can occur.  Burgers vector is 
still:

• In Be, Mg, Cd and Zn, perfect 
dislocations dissociate into 
Shockley partials.

[Hull & Bacon, p. 105]
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Slip in BCC CrystalsSlip in BCC Crystals

Each unit cell contains 6 {110} planes
Each {110} plane contains 2 <111> directions

Thus, there are 12 {110}<111> slip systems in an BCC unit cell.
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Close-packed directions on 110 :  111

Shortest lattice vectors:  111
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Slip in BCC Crystals Slip in BCC Crystals –– contcont’’dd
In BCC slip can also occur on {112} and {123} planes in 

<110> directions

Each unit cell contains 12 {112} planes
Each {112} plane contains 1 <111> direction
Thus, there are 12 {112}<111> slip systems.

Each unit cell contains 24 {123} planes
Each {123} plane contains 1 <111> direction
Thus, there are 24 {112}<111> slip systems.

Thus there are a total of 48 possible slip systems in
BCC crystals



Dislocations in BodyDislocations in Body--Centered Cubic CrystalsCentered Cubic Crystals

• Slip on {110} is most prevalent. 

• However, {112}, and {123} planes, but

• Three {110} planes intersect a [111] direction.  Unit 
screw dislocations can easily move from one {110} 
to {123} and/or {211} planes resulting in wavy slip 
lines.

• Extended dislocations are uncommon.


