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IntroductionIntroduction
• Dislocations are line defects that distort the perfect crystal lattice.

• This lattice distortion produces an elastic stress field inside the crystal.

► The magnitude of the elastic stress field can be estimated using elasticity 
theory.  The next viewgraph provides a general explanation of why.

► We can in turn use this information to determine the energy of the 
dislocation, the force it exerts on other dislocations, and its energy of 
interaction with other defects.

• Interactions between the stress fields (i.e., the distorted regions) around 
dislocations (and those of other defects) ultimately determine the 
mechanical properties of the lattice.



Strain energy of a dislocationStrain energy of a dislocation
• The energy of a dislocation comes from the distortion associated with 

the displacement of atoms from their equilibrium positions.

 A few lattice spacings from the core, say at a distance ro, we can model 
things using elasticity theory as the displacements are very small.  
Hooke’s law applies here. ro is called the cutoff radius.  It typically has 
a value near b.
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Strain EnergyStrain Energy
• Strain increases the internal energy of a body.  The 

elastic strain energy per unit volume is given by:

• Thus, for an element of volume dV, the elastic strain 
energy can be expressed as:

• We can utilize this expression to estimate the elastic 
strain energy for a dislocation by incorporating the 
components of stress and strain that surround the 
dislocation.
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• A crystal containing a dislocation is 
not at its lowest energy state.  
There is a strain energy term (Etotal) 
that must be added to the lattice 
energy of the crystal.

• The distortions caused by the 
presence of edge and screw 
dislocations are simulated on 
cylindrical diagrams to the right.  
The diagrams depict each type of 
dislocation as a distorted cylinder.

• Using these diagrams, we can 
calculate the strain energy on the 
basis of elasticity theory.  This is 
detailed in Hull and Bacon [1] and in 
Weertman and Weertman [2].

[1] D. Hull and D.J. Bacon, Introduction to Dislocations, 4th ed. 
(Butterworth-Heinemann, Oxford, 2001), pp.62-72.
[2] J. Weertman and J.R. Weertman, Elementary Dislocation Theory
(Oxford University Press, Oxford, 1992), pp. 32-40,
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Screw DislocationScrew Dislocation

• Elastic stresses around a screw dislocation:

• All shear components parallel to the dislocation line.
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Edge DislocationEdge Dislocation
• Elastic stresses around an edge dislocation:

• Stress field has dilatational and shear components.
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Schematic representation of the 
stress field about an edge 

dislocation
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• Etotal can be divided into two parts:

Etotal = Ecore + Eelastic (strain energy).

• The core contribution (Ecore) is difficult to calculate.  It is estimated to 
have a value of ≈0.5 eV/plane threaded by a dislocation.

• From elasticity theory, the elastic strain energy per unit length of 
dislocation is given by:
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• For all of the different types of dislocations, the value of Eelastic depends 
on ro and the crystal radius R through a slowly varying logarithmic term.  
This is illustrated in the figure on the next page.
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• The value of Eelastic depends 
weakly on ro and the crystal 
radius R through a slowly 
varying logarithmic term 
outside of the core region.

• We can approximate Eelastic for 
any type of dislocation as:
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• One of the important consequences of this relationship is that it allows
for determination of whether or not it is energetically feasible for two 
dislocations to react/combine to form another.

• This is generally known as Frank’s Rule. 
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Dislocations of unit strengthDislocations of unit strength

• The Burgers vector of a crystal must also 
connect one equilibrium lattice position to 
another.

• Crystal structure determines Burgers vector.

►If Burgers vector = one lattice spacing then 
the dislocation is of unit strength.



Dissociation of dislocationsDissociation of dislocations

• Because of energy considerations it is possible for some
dislocations with strengths greater than or equal to unity 
to dissociate (split) into shorter segments.  

• This is occurs in some close-packed (i.e., FCC and HCP)
crystals such as where equilibrium positions are not the 
edges of the unit cell.

• Can have serious implications on plastic deformation.
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• In this example, the separation into partial dislocations is 
energetically favorable.  There is a decrease in strain energy.

• The separation produces a stacking fault between the partials.

Dissociation of a unit dislocation in an FCC crystalDissociation of a unit dislocation in an FCC crystal
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Forces on dislocationsForces on dislocations
• When the stresses applied to a crystal are large enough, 

dislocations will move resulting in plastic deformation.  
Deformation will occur via slip or climb.

• The applied load induces work on the crystal during 
dislocation motion.

• In turn, the dislocation responds to the applied stress as 
though it were experiencing a force.  The force is given 
by:

We will consider the glide/slip force now and the climb 
force later.
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Glide force on a dislocationGlide force on a dislocation
• If we consider a glissile dislocation () under an applied 

shear stress ().  The dislocation has a Burgers vector b.

• When a segment of the dislocation line dl
moves forward a distance ds, the regions 
of the crystal above and below the slip 
plane are displaced relative to each other 
by a distance that is equivalent to the 
Burgers vector, b.

• The average shear displacement of the 
crystal due to glide of segment dl is thus:

• where A is the area of the entire slip plane.

Displacement ds
of an element dl
in its slip plane 
used to determine 
the glide force.
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• The external force ( f ) acting uniformly on this small area (due to ) is:

• The work done when the small element dl glides forward is therefore:

• Since force = work divided by the distance over which it is applied (ds), 
the glide force per unit length on a dislocation (dl), FL, is:

• This force, which is the result of externally applied stress, acts normal to 
the dislocation line along its length.  This is the Peach-Koehler equation. It 
is often given as:

Forces on dislocations (2)Forces on dislocations (2)

 is the shear stress in the slip plane resolved 
in the direction of b.
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General Peach-Koehler equation
• Most dislocations are mixed.  Mixed dislocations are oriented such that the tangent 

to the dislocation line (i.e., the sense vector , t, or l) is neither parallel or 
perpendicular to the Burgers vector.  In this case:

• In 3D space, all will have components parallel to the x,y,z axes.  We also need to 
account for components of stress that are parallel to the x,y,z axes.

• If we let g = σijb, then:

where FL is the force per unit length of dislocation.  This is essentially F/L for a 
straight dislocation where L is the length of the dislocation line.

This general form of the Peach-Koehler equation is used to calculate the magnitudes 
of the forces on and the forces between dislocations.
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Forces exerted on a straight Forces exerted on a straight screwscrew dislocationdislocation
• Elastic stresses around a screw dislocation:

• All shear components acting parallel
to the dislocation line.  

• Thus:
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,b 

• Taking the cross product of (b) and the line sense (ξ) we get:

This tells us that only τxz, and τyz can exert a force on this dislocation and that 
the force acts perpendicular to the dislocation line along its length.

• Consider a straight screw dislocation as illustrated below.

General Peach-Koehler equation – cont’d
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• Elastic stresses around an edge dislocation:

• Thus:
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• Taking the cross product of (b) and the line sense (ξ) we get:

This tells us that only τxy and σxx can exert a force on this dislocation and that 
the force acts perpendicular to the dislocation line along its length.  Fx is the 
glide force (+y direction). while Fy is the climb force (in –y direction).

• Consider a straight edge dislocation as illustrated below.

General Peach-Koehler equation – cont’d
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Bending of Dislocations Bending of Dislocations -- 11
• In addition to the Peach-Koehler force, 

dislocations develop a line tension.

• Line tension develops because the strain energy 
of a dislocation is proportional to its length.  

• Any increase in length, increases the strain 
energy of the dislocation in proportion to its 
length.



Bending of Dislocations Bending of Dislocations -- 22
►Therefore, dislocations bend and/or always try to 

straighten out to reduce their lengths.

• Straight dislocations are shorter and thus have 
lower strain energies than curved dislocations.

• The line tension, Γ, which is the increase in 
energy per unit increase in dislocation length can 
be expressed as:

2Gb 



• Consider the curved dislocation illustrated below.

• A specific shear stress, τo, is required to overcome 
Γ and maintain the radius of curvature, R.

• τo is maximum when dθ = 90°

Line tension on dislocations (1)Line tension on dislocations (1)
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Line tension on dislocations (2)Line tension on dislocations (2)
• The outward force (fout) due to applied stress τo is:

• The outward force is opposed by a line tension force acting 
along OA.  It is given by:

• Curvature will be maintained if:
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• This equation provides an adequate approximation 
for most dislocations (it does, however, make some 
generally invalid assumptions).

• We will use a version of this when we discuss 
strengthening via the immobilization of dislocations.

• See Hirth and Lothe, Friedel, or another text on 
dislocations for more detailed treatment.
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Line tension on dislocations (3)Line tension on dislocations (3)

[Stress required to bend  to radius R]



There is a significance to the concept 
of forces on dislocations.

Dislocations will always try to adopt 
configurations that will reduce their 

total elastic strain energies.



Interactions/forces between dislocationsInteractions/forces between dislocations

• What is the force on dislocation 2 due to 
the presence of dislocation 1?  The 
dislocations have parallel Burgers 
vectors.

• Parallel edge dislocations:
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Forces between dislocations (4)Forces between dislocations (4)
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Forces between dislocations (5)Forces between dislocations (5)

The implications of this distribution of stresses is that dislocations will assume different 
configurations depending upon their type, sign, and orientation.
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• What is the force on dislocation 2 due to 
the presence of dislocation 1?  The 
dislocations have parallel Burgers 
vectors.

• Parallel screw dislocations:
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Glide force:  

Climb force:  

General equation:  

Forces between dislocations (6)Forces between dislocations (6)
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Climb ForceClimb Force
• The component Fy is a mechanical climb 

force per unit length.

• It results from the normal stress of 
dislocation #1 attempting to push the 
extra half plane of dislocation #2 from
the crystal.

►This only occurs if point defects can be 
emitted from or absorbed by the core of 
dislocation #2.

►Creation and annihilation of point defects 
induces chemical forces due to changes 
in defect concentration.
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Climb ForceClimb Force

• For negative climb which involves vacancy emission (i.e., F < 0), the sign of the 
chemical potential changes so that c > co.  This causes f to build up to balance F in 
equilibrium.

• In the presence of a supersaturation of vacancies (c/co), the dislocation will climb up 
under the chemical force f until compensated by the mechanical force F (external 
stresses or line tension).

Figure 4.15 Mechanical and 
chemical forces for climb of an 
edge dislocation.  Vacancies 
(shown as squares) have a 
local concentration c in 
comparison with the equilibrium 
concentration co in a 
dislocation-free crystal. 
From D. Hull and D.J. Bacon, 
Introduction to Dislocations, 4th Ed., 
(Butterworth-Heinemann, Oxford, 
2001). 
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Implications of forces between dislocations (1)Implications of forces between dislocations (1)

• Two like edge dislocations (i.e., both have parallel Burgers 
vectors) lying on the same slip plane will repel each other.

• We can approximate this from the equations developed for 
elastic strain energy.

Slip plane

b b

2 2 2(2 )E Gb Gb G b    elastic

Note the increased elastic strain energy



Slip plane

b

b

Implications of forces between dislocations (2)Implications of forces between dislocations (2)

• Two unlike edge dislocations (i.e., both have opposite 
Burgers vectors) lying on the same slip plane will attract
each other and annihilate out.

2 2 0E Gb Gb   elastic

Note the lack of elastic strain energy



Implications of forces between dislocations (3)Implications of forces between dislocations (3)

Slip plane 1

b

b

Slip plane 2

• Two unlike edge dislocations (i.e., both have opposite 
Burgers vectors) lying parallel slip planes separated by a 
few atomic spacings will attract each other and annihilate
out leaving vacancies.



This results in unique 
configurations of dislocations.

Low-angle 
boundaries
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Figure 2
Numerical simulation of the total 
stress field and arrangement of 
dislocations in a solid.

[M.-C. Miguel, A. Vespignani, S. 
Zapperi, J. Weiss and J.-R. Grasso, 
Nature v. 410, pp. 667-671(5 April 
2001).]

The elastic stress fields around dislocations will interact either to repel 
or annihilate each other and to minimize elastic strain energy and 

obtain an equilibrium configuration.



Implications of forces between dislocations Implications of forces between dislocations (7)(7)

Dislocation 
dipoles and 
work 
hardening

• Consider two dislocation sources (S) operating on parallel slip planes



• After application of a stress, the two circled segments will interact 
positively leading to a stable (45°) dislocation configuration for the two 
unlike segments.  Once in this orientation, the two segments can no 
longer move past each other.  The dislocations become locked.  Slip is 
inhibited.

• This leads to hardening due to a reduction in dislocation mobility and a 
reduction in mobile dislocation density. 

S

S

S

S

(Before)

(After)



• Image forces
– Free surfaces offer no stress in opposition to the 

displacements caused by an approaching dislocation.
– Strain energy of the crystal decreases as a dislocation 

approaches a free surface.  This pulls the dislocation 
towards the free surface (i.e., it “pulls the dislocation out of 
the crystal.

– Another image and appropriate mathematics are detailed on 
the next 2 pages.

Forces between Dislocations and Free SurfacesForces between Dislocations and Free Surfaces
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[Adapted from Argon, p. 37 (with modification)]
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and

at , , the force on the screw dislocation is:
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at , , the force on the edge dislocation is:
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