

HOMEWORK
From Dieter
4-16

Module #12

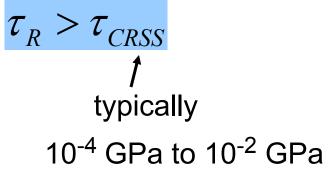
Deformation Twinning and Kink Bands

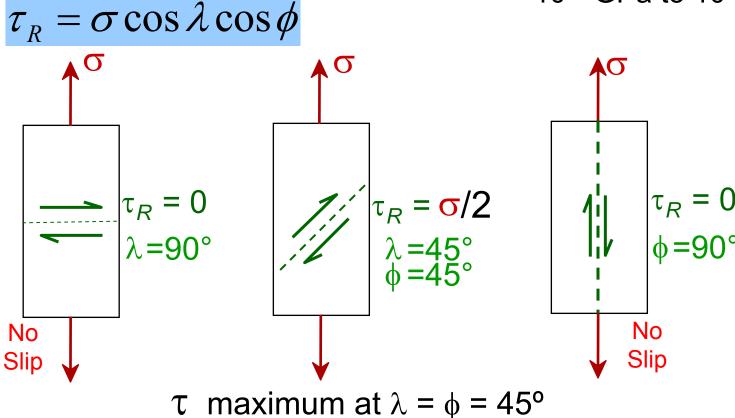
Reading

DIETER: Ch. 4, Pages 132-138

HERTZBERG: Ch. 3

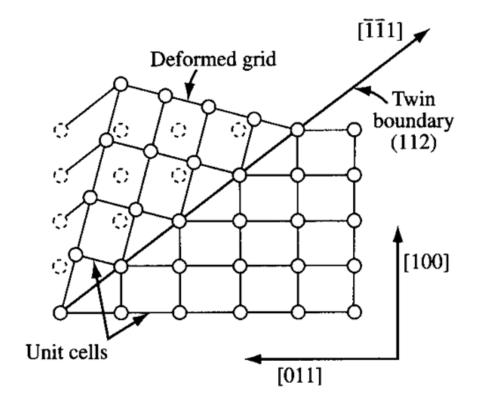
References in Bibliography


Bibliography


- 1. Mahajan, S; Williams, DF; "Deformation Twinning in Metals and Alloys," <u>International Metallurgical Reviews</u>, June 1973, Vol. 18, pp. 43-61.
- 2.J.W. Christian and S. Mahajan; "Deformation Twinning," Progress in Materials Science, 1995, Vol. 39, pp. 1-157.
- 3.R.E. Reed-Hill and R. Abbaschian, <u>Physical Metallurgy Principles</u>, 3rd edition (PWS-Kent, Boston, MA, 1992), pp. 538-560.
- 4. A. Kelly, G.W. Groves, and P. Kidd, <u>Crystallography and Crystal Defects</u>, Revised Edition (John Wiley & Sons, 2000), chapter 10, pp.315-338.
- 5. Pages 132-135 in Dieter (Ch. 4).
- 6. Pages 170-185 in Hosford.
- 7.C.N. Reid, <u>Deformation Geometry for Materials Scientists</u>, (Pergamon Press, Oxford, UK, 1973), chapter 7, pp. 179202

Critical Resolved Shear Stress

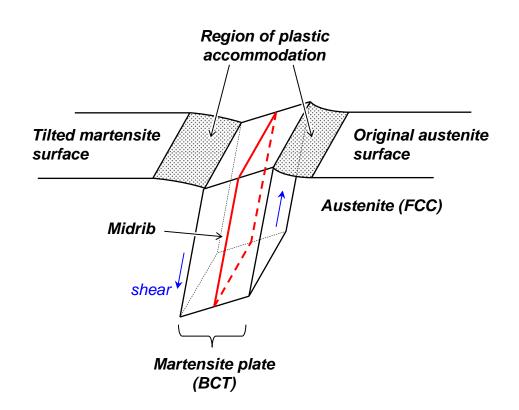
- Condition for dislocation motion:
- Crystal orientation can make it easy or hard to move dislocation



Forms of deformation other than slip

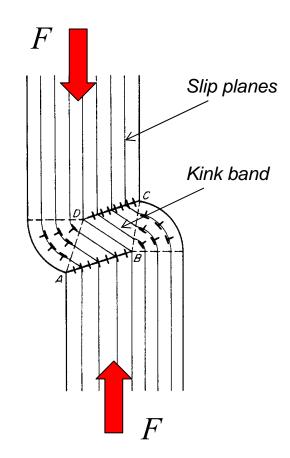
- Shear transformations represent an alternative to slip for inelastic (i.e., plastic) deformation.
- Types of shear transformations:
 - Deformation Twinning
 - Stress-induced Martensitic Transformations
 - Macroscopic Kinking

Deformation twinning


- The lattice inside a specific volume element undergoes an atomically homogeneous shear strain.
- This strain transforms the lattice into a mirror image of the exterior with respect to a reference plane (i.e., the twin plane/boundary).

Geometry of twinning in a BCC crystal. Figure adapted from A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, (Oxford University Press, Oxford, 2008) p. 63.

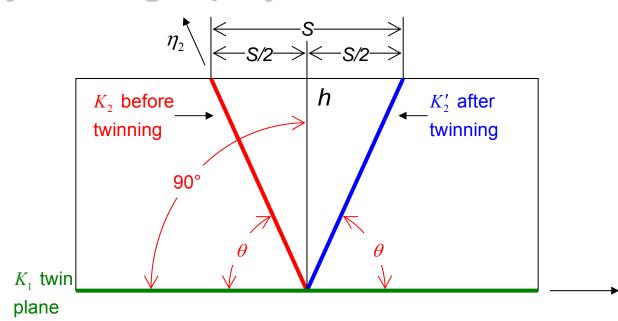
Stress-induced Martensitic Transformation


- Phase transformation.
 Produces a sheared region.
- Observed many materials:
 - Carbon Steels:
 - FCC γ -Fe \rightarrow BCT
 - Ti alloys
 - BCC → HCP
 - Cu-Zn alloys
 - BCC → FCT
 - $-ZrO_2$
 - Tetragonal → Monoclinic
 - Etc...

Schematic of shear that occurs during martensite formation. Figure adapted from G. Krauss, <u>Steels: Processing, Structure, and Performance</u>, (ASM International, Materials Park, 2005) p. 58.

Kink Bands

- Observed in some materials oriented such that there is no resolved shear stress for slip.
- The crystal essentially buckles locally.
- Can occur in compression and tension.


Schematic of a kink band and associated dislocation distribution. Adapted from R.W.K. Honeycombe, <u>The Plastic Deformation of Metals</u>, 2nd Ed., (ASM, 1984) p. 201.

Deformation Twinning

- Also known as 'mechanical twinning'.
- Second most important mechanism of plastic deformation after slip.
- It is not as common as slip, but it <u>can be</u> a main cause of plastic deformation.
- Twinning can also occur along with slip.

Crystallography of twins

Every structure has its own specific set of twinning elements.

 θ = angle between K_1 and K_2

S = the shear displacement of the upper surface relative to the bottom

h =width of the twin

 K_1 = the twinning plane (1st undistorted plane)

 K_2 = the 2nd undistorted plane

 η_1 = shear direction

η₂ = direction defined by intersection of shear plane with <math>K₂

$$\gamma = \frac{S}{h}$$

$$= 2\tan(90^{\circ} - \theta)$$

$$= 2\cot\theta$$

Crystallography of twins

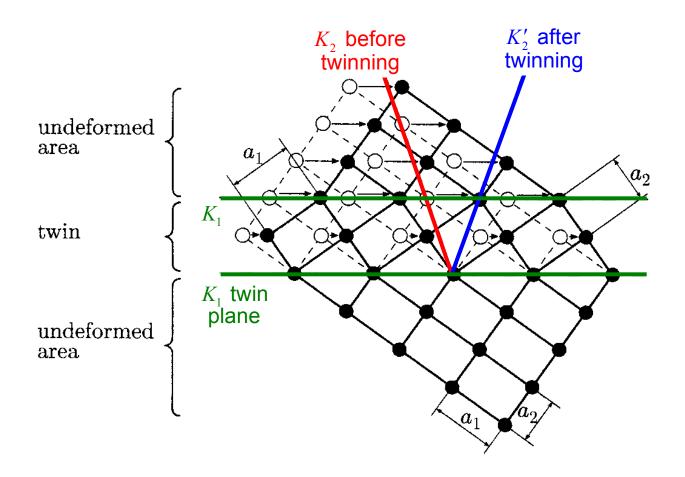
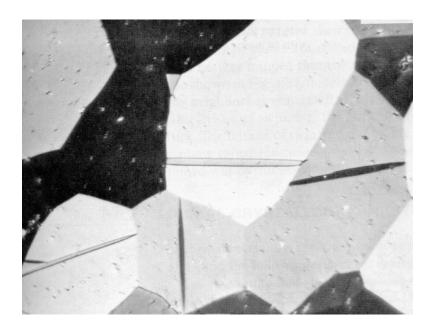
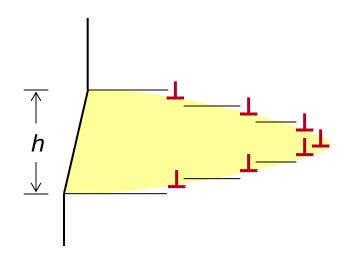


Figure showing the formation of a twin band. Figure adapted from Roesler et al., Mechanical Behavior of Engineering Materials, (Springer, New York, 2008) p. 224.


Where does deformation twinning occur?

- Hexagonal metals such as Zn and Mg twin when they are deformed at ambient temperatures.
- BCC metals such as Fe twin when they are deformed at sub-ambient temperatures.

Twinning Planes, Directions, and Shears


Structure	Twin Plane & Direction	Shear	Max. strain
FCC	(111)[112]	0.707	41.4%
BCC	(112)[111]	0.707	41.4%
		Cd: 0.171	8.9%
		Zn: 0.139	7.2%
HCP	(10 <u>1</u> 2)[10 <u>11</u>] —	Mg: 0.129	6.8%
		Ti: 0.139	8.7%
		Be: 0.199	10.4%

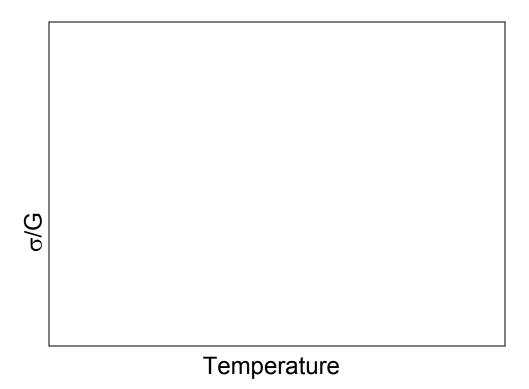
What do deformation twins look like?

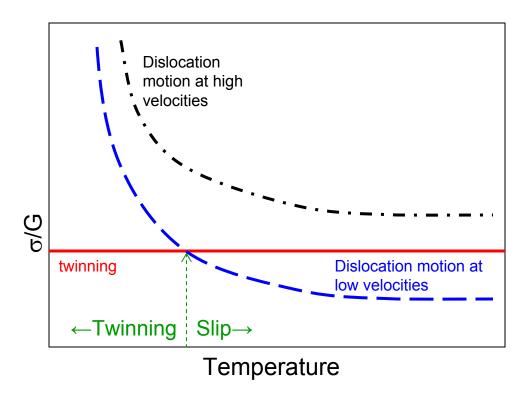
Deformation twins in Zr [Reed-Hill, p. 539]

Tend to be lens-shaped.

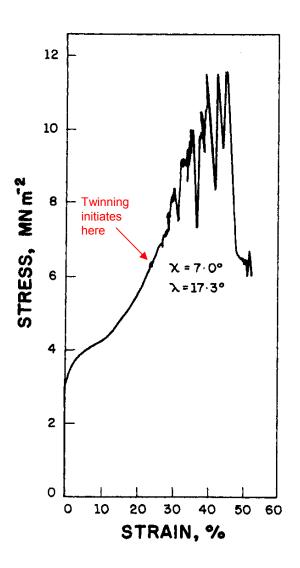
 Can be represented by arrays of dislocations.

- Central plane is approximately parallel to K_1 .
- Many models for deformation twins (e.g., pole mechanisms).
- See a reference like Hirth and Lothe or one of the review articles on the reading list for more details.


Plastic deformation via twinning (1)


It is different from slip

- After twinning, the twinned region of a grain is a mirror image of the original lattice. After slip, the slipped region will have the same orientation as the original grain.
- Twinning consists of uniform shear strain while Slip consists of shear displacement of an entire block of a crystal.
- The twinning direction is always polar (i.e., in a single direction) while the slip direction can be positive or negative.
- Twinning causes a change of shape of a specific type and magnitude as determined by crystallography. This is not so with slip. The shape change varies with slip.


Plastic deformation via twinning (2)

• The stress required to form a twin is generally much larger than that required to cause slip. It is also less sensitive to temperature.

- Twinning tends to occur in instances where plastic deformation via slip (or diffusion) is hindered.
 - BCC metals at low temperatures
 - High strain-rate (ballistic) deformation
 - Etc...

- Twins form and move very quickly (near the speed of sound). This leads to the "cry" heard when polycrystalline Sn is bent plastically.
- The formation and motion of twins during straining can lead to serrated stress-strain curves as is shown for Cd on the left.

[Meyers & Chawla, 1st ed, p. 267]

Influence of stacking-fault energy on twinning

- Recall: a reduction in stacking fault energy facilitates the formation of stacking faults.
- This also promotes twinning.
- WHY?

Anything else?

Influence of stacking-fault energy on twinning

- Recall: a reduction in stacking fault energy facilitates the formation of stacking faults.
- This also promotes twinning.
- WHY?

Cross-slip of dislocations is inhibited leading to planar slip.

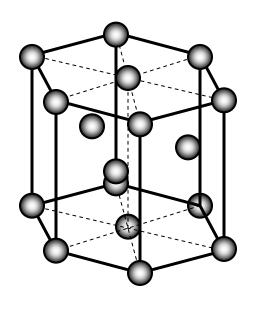
Anything else?

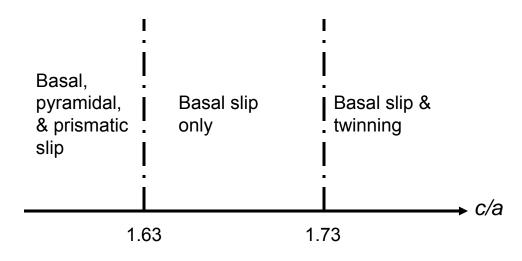
CAN TWINNING CONTRIBUTE TO PLASTIC DEFORMATION?

- Yes!
- Twinning can contribute due to the shear that it produces.
- This plastic strain however is very small.
- ➤ Twinning "may" also reorient part of a crystal such that its becomes favorable for slip to occur.
 - Remember, rotation or re-orientation of a crystal changes the Schmid factor.

This corresponds to case where the entire single crystal twins.

Table 17.1 Twinning Modes in Selected Metals


Crystal Structure	Metal	Twin Mode	Twinning Shear, S	Maximum Tensile Strain Single Crystal
Face-Centered Cubic Body-Centered	All	{111}<112̄>	0.707	0.40
Cubic Hexagonal	All	$\{112\}\langle 11\overline{1}\rangle$	0.707	0.40 Twin
Close-Packed	Be	$\{10\overline{1}2\}\langle10\overline{11}\rangle$	0.19	0.095 strains
	Ti	$\{10\overline{1}2\}\langle10\overline{1}1\rangle$	0.18	0.09 <u>can be</u>
	Ti	{1011}(1012)	0.10	0.05 large.
	Ti	$\{11\overline{2}2\}\langle11\overline{23}\rangle$	0.22	0.11 Generally
	Ti	$\{11\overline{2}4\}\langle22\overline{43}\rangle$	0.22	0.11 / they are
	Zr	$\{10\overline{1}2\}\langle10\overline{1}1\rangle$	0.17	0.085
	Zr	$\{11\overline{2}1\}\langle11\overline{26}\rangle$	0.63	0.083 Not.
	Zr	$\{11\overline{2}2\}\langle11\overline{23}\rangle$	0.23	0.12
	Mg	$\{10\overline{1}2\}\langle10\overline{1}1\rangle$	0.13	0.065
	Mg	$\{10\overline{1}1\}\langle10\overline{12}\rangle$	0.14	0.07
	Zn	$\{10\overline{1}2\}\langle10\overline{1}1\rangle$	0.14	0.07
	Cd	$\{10\overline{12}\}\langle10\overline{11}\rangle$	0.17	0.085


[Reed-Hill]

For a more thorough explanation of deformation twinning, see your Physical Metallurgy textbook or one of the recommended references.

^{13.} Schmid, E., and Boas, W., Kristallplastizität, p. 64. Julius Springer, Berlin, 1935.

Influence of *c/a* ratio on twinning in hexagonal crystals

Contrasts between slip and twinning

TWINNING

SLIP 1.

1.

2.2.

3.

3.4.

4.5.

• 5.

Contrasts between slip and twinning

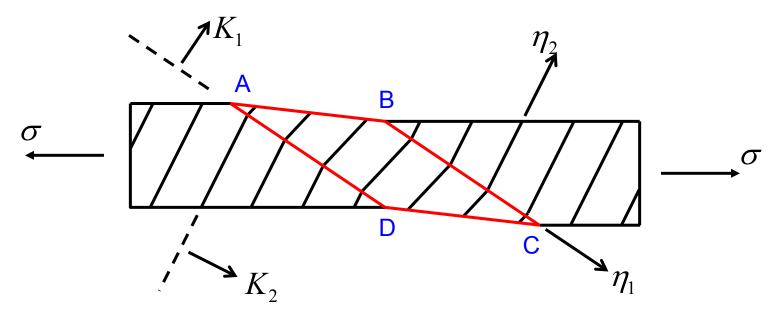
SLIP

TWINNING

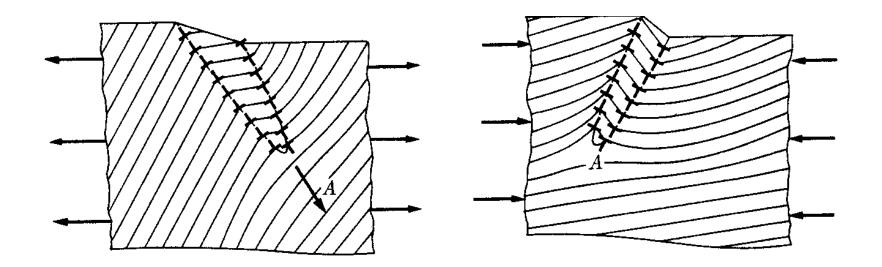
- 1. Occurs in atomic distances
- 2. Shear strain is not uniform
- 3. Occurs in both directions
- 4. Preserves crystal orientation
- 5. Stress to cause yielding is lower than the stress to continue deformation
 - $\tau_{\text{yield}} < \tau_{\text{flow}}$

1. Occurs in fractions of atomic distances

- 2. Displacement is uniform from one plane to the next.
- 3. Unidirectional.
- 4. Changes crystal orientation (mirror)
- 5. Stress to nucleate a twin is greater than the stress to move a twin
 - $\tau_{\text{nucleation}} > \tau_{\text{flow}}$


Kink Bands*

- Orowan (1942)
- Secondary deformation mode that is initiated by "localized" slip.
- Macroscopic mechanism. Not to be confused with kinking of dislocations.
- ➤ Kink bands correspond to localized and symmetric bending of the structure about an axis that lies in the slip plane and perpendicular to the slip direction.


^{*} A.G. Crocker and J.S. Abell, "The crystallography of deformation kinking," *Philosophical Magazine* 33 (1976) 305-310.

^{*} J.B. Hess and C.S. Barrett, "Structure and nature of kink bands in zinc," *Trans. Metall. Soc. AIME* 185 (1949) 599-606.

Crystallography of kink bands

- Slip occurs on planes K_2 in the direction η_1 .
- Due to an enhanced local change in the specimen axis, slip becomes concentrated in region ABCD.
- Boundaries AD and BD orient themselves so as to become symmetric with respect to the structure. The deformation is in essence a simple shear on the plane K_1 in the direction η_1 .
- [Adapted from A.G. Crocker and J.S. Abell, "The crystallography of deformation kinking," *Philosophical Magazine* 33 (1976) 305-310].

[McClintock and Argon, p. 135]

- When crystals with only one set of easy slip planes nearly normal to the tensile axis are extended.
- When crystals with their slip systems nearly parallel to the compression axis are compressed.
- Has been observed in FCC, BCC, HCP, and ionic crystals.

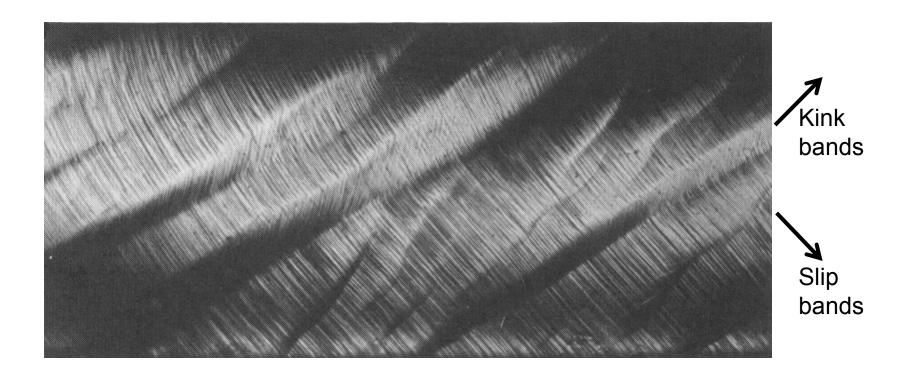


Fig. 8.4. Kink bands in an Al single crystal deformed 17.5% in tension. 100X. [Copied from R.W.K. Honeycombe, <u>The Plastic Deformation of Metals</u>, 2nd <u>Edition</u> (American Society for Metals, 1984) p. 203.]

Kink bands often occur:

- 1. When there is no resolved shear stress for slip (compression or tension).
- 2. In layered structures such as the so-called $M_{n+1}AX_n$ (MAX) phases.
- 3. When twin re-orientation inhibits slip or induces buckling stresses.

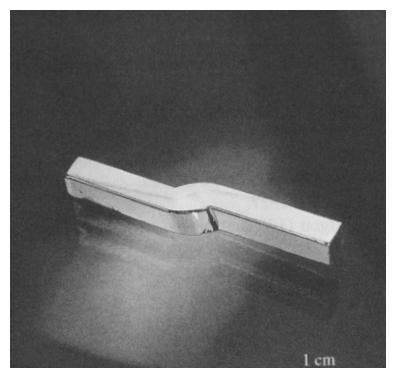


Fig. 2.21. A macroscopic kink in a Cd crystal (courtesy of J. J. Gilman, private communication, 1961). Figure adapted from A.S. Argon, <u>Strengthening Mechanisms in Crystal Plasticity</u>, (Oxford University Press, Oxford, 2008).