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Types of Dislocation MotionTypes of Dislocation Motion

• Glide (conservative motion): 
–  moves on a plane that contains both its line and Burgers 

vector.
– A  that moves glides is called glissile.
– A  that can’t move is called sessile.
–  glide plane and direction depend upon crystal structure.

• Climb (non-conservative motion)
–  moves out of the glide plane perpendicular to the Burgers 

vector.

• Glide of many dislocations leads to slip which is the 
most common manifestation of plastic deformation.



Slip by Dislocation GlideSlip by Dislocation Glide
Glide requires relatively little atomic motion compared with 
the process for slip that we outlined for perfect (i.e., defect 
free) crystals.

After complete motion 
through crystal

b

Monotonic slip step
There is also no net change in
bonding.  This makes the stress 
to move a dislocation smaller than the theoretical stress to 
shear a perfect dislocation free crystal.



Force is required to move individual dislocationsForce is required to move individual dislocations

• We call it the Peierls-Nabarro force.

• The concept was originally developed in 1940 by 
Peierls1, but later refined by others2-4.

• It is the frictional force that must be overcome to
move an individual dislocation.

• It is a consequence of the distortion caused by the 
presence of a dislocation in a crystal lattice.

1R. Peierls, Proc. Phys. Soc., v. 52, p. 34 (1940).
2F.R.N. Nabarro, Proc. Phys. Soc., v. 59, p. 256 (1947).
3G. Leibfried and K. Lücke, Z. Phys., v. 126, p. 450 (1949).
4A.J. Foreman, M.A. Jawson, and J.K. Wood, Proc. Phys. Soc., v. 64, p. 156 (1951).



• A dislocation must pass through a higher energy configuration to move.  

• The force required to move the dislocation (i.e., to overcome stress 
field caused by lattice distortion)  shear stress on a slip plane.

• The Peierls-Nabarro force depends on the form of the force distance 
relation between atoms.
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• The Peierls-Nabarro stress is the shear stress required to move an 
individual dislocation on its slip plane.

• Its value depends upon the amount the lattice is distorted by the 
dislocation.  

• Amount of distortion described by dislocation width (w).

Displacement, xb/20

Force

or

Stress

b

τP-N
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• Above and below the slip plane, atoms are displaced from their 
equilibrium positions (u); this represents the distortion in the lattice 
caused by the dislocation.

• To accommodate the dislocation, there is differential displacement 
across the slip plane (Δu = uB – uA); this produces shear. 

• The maximum value of Δu is ±b/4.

d

b

Slip plane

Displacement u

B

A

Distortion induced 
by the presence 
of a dislocation.



Δu

x

w

+b/2

-b/2

• The width, w, is the distance over which the magnitude of Δu > ½ of 
its maximum value (i.e., Δ u/b > ½ or -b/4 ≤ Δu ≤ b/4).

• The width also provides a measure of the size of the core.

• Core widths vary between b and 5b and depend upon:
– Interatomic potential,
– Crystal structure.

Distortion described 
in terms of 
dislocation width, w

The width, w, is 
directly related to 
crystal structure
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Fig. A.
Schematic 
illustration of a 
wide dislocation; 
more typical of 
close-packed 
metals.

Fig. B.
Schematic 
illustration of a 
narrow 
dislocation; more 
typical of 
ceramics, 
intermetallics, 
and non-close-
packed metals.

Close packed 
structures: w is 
larger.  Distortion 
distributed through 
crystal lattice.

Non-close packed 
structures: w is 
smaller. Distortion 
concentrated into a 
smaller area.



Peierls and Nabarro estimated the energy of the dislocation 
per unit length as a function of dislocation position as:

from which the shear stress required to move a dislocation 
(i.e., Peierls stress) can be determined as:

Values of P-N vary with crystal structure.  In general,
P-N << theo.

Structure P-N

FCC & HCP 10-5 to 10-6 G

Covalent crystals ~10-2 G
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Let G = 100 GPa and ν = 0.3.

What is the impact of crystal structure on τP-N?
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Variation of Variation of PeierlsPeierls Stress w/ Stress w/ dd and and bb

• For fixed b, τP-N decreases 
as d increases.

• An increase in b results in a
larger τP-N.

• “Slip via dislocation motion 
occurs more readily in close 
packed directions (lowest b) 
and on widely spaced 
planes (highest d).” This is 
because τP-N values are 
lowest on these planes.
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• For fixed d, P-N increases 
as b increases.

• An increase in d results in a
reduced P-N.

• “Slip via dislocation is more 
likely to occur more readily 
in close packed directions 
(lowest b) and on widely 
spaced planes (highest d).”
This is because P-N values 
are lowest on these planes.

The width, w, is 
directly related to 
crystal structureB*
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Close Packed PlanesClose Packed Planes
• Recall from your introductory materials courses: 

• Close packed planes (i.e., those with the smallest interatomic 
separation, d) are the ones that are spaced farthest apart (i.e., those 
with the largest b).

• We can relate properties to atomic/ionic packing factors (APF/IPF) or 
planar density.

Ionic Covalent

FCC/HCP BCC SC KCl NaCl CsCl MgO
Diamond 
cubic (Si)

APF
IPF

0.74 0.68 0.52 0.725 0.67 0.68 0.627 0.34

1 3 7 2 5 3 6 8P N 

Rank 1 – 8 where 1 is lowest and 8 is highest.A*
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Slip vs. atomic densitySlip vs. atomic density

• Non close-packed planes/structures

– Larger b

– Smaller d

– Larger

• Close-packed planes/structures

– Smaller b

– Larger d

– Smaller

Slip 
distance, b

Planar 
spacing, d

Slip plane(low atomic density)

P N 

P N 

Slip 
distance, b

Planar 
spacing, d

Slip plane
(high atomic density)



The Peierls-Nabarro stress is 
smaller than the critical resolved 
shear stress or the yield stress.

The CRSS and YS represent the 
conditions to move lots of 

dislocations



Slip Systems in CrystalsSlip Systems in Crystals

• A specific shear stress is required to 
induce dislocations to move.

• Dislocations slip on specific slip 
systems (i.e., specific crystal plane + 
specific crystal direction on that plane).

• The resolved shear stress on plane As
in direction y′ is:

• Applies for single crystals and individual 
grains in polycrystals.
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• Consider an arbitrary plane oriented at angle  with respect to the applied load F.
Let y′ = slip direction and z′ = slip plane normal.

• Consider SLIP on the -plane.

• NORMAL Force: FN = Fz′ = Fz cos

• SHEAR Force in the slip direction (y′): Fs = Fz cos.

• Area of slip-plane: As = A/cos (check:   As must have larger area than Ao.)

Resolved NORMAL Stress on the slip plane:

Resolved SHEAR Stress on the slip plane in the slip direction:

• The slip direction is not necessarily in same direction as tilt of the slip 
plane!

    2/ cos / cos cosN N s oF A F A      

   / cos / cos cos coss RSS s s oF A F A         

Resolved Shear StressResolved Shear Stress

Refer to 
illustration on 

previous 
viewgraph



• The active slip system will have the largest Schmid factor.

• If we relate the resolved shear stress to the macroscopic tensile yield 
stress as opposed to the flow stress, we get:

• CRSS is the resolved shear stress required to cause plastic 
deformation via slip.
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Example Problem 1Example Problem 1
Calculate the tensile stress that is applied along the [120]
axis of a  gold crystal to cause slip on the (111)[011] slip 
system.  The critical resolved shear stress is 10 MPa.

[120]
[111]

[011]

(111)



Solution to Example Problem 1Solution to Example Problem 1

2 2 2 2 2 2

(1)(1) ( 2)( 1) (0)( 1) 3 3cos
5 3 15(1) ( 2) (0) (1) ( 1) ( 1)

     
  
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The angle between the tensile axis [120] and the normal to the slip
plane (111) is:

The angle between the tensile axis [120] and the sl
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ip direction [011] is:

Since CRSS = 10 MPa, 

 MPa

Angle btw. 
Tensile axis & slip 

plane normal

Angle btw. 
Tensile axis & slip 

direction



Solution to Example Problem 1Solution to Example Problem 1
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Note the differences in slip systems for different crystal structures.  Slip occurs 
when m is maximum.  This means that we must determine which particular slip 
system has the maximum m to obtain the CRSS.

      

Room temperature slip systems and critical resolved shear stress for
metal single crystals (from Dieter, 3rd Edition, p. 126).

Critical
Crystal Slip Slip S

Metal   Purity  Structure  Plane  Direction  
99.999 (0001) [1120] 0.18 [1]
99.996 (0001) [1120] 0.77 [2]
99.996 (0001) [1120] 0.58 [3]
99.99 (1010) [1120] 13.7 [4]
99.9 [1120] 90.1(1010)
99.999 (111)

(11199.97
99.93

Zn HCP
Mg HCP
Cd HCP
Ti HCP

Ag FCC

hear stress   
(MPa) Reference  

[110] 0.48 [5]
[110]) 0.73[110](111)
[110](111) 1.3

99.999 (111) [101] 0.65 [5]
99.98 [101](111) 0.94
99.8 (111) [110] 5.7 [5]
99.96 (110) [111] 27.5 [6]

(112)
(123)
(110) [111] 49.0 [7]

[1]  D.C. Jillson, 

Cu FCC

Ni FCC
Fe BCC

Mo BCC

Tran



, v. 188, p. 1129 (1950).
[2]  E.C. Burke and W.R. Hibbard, Jr., , v. 194, p. 295 (1952).
[3]  E. Schmid, "International Conference on Physics," v. 2, Physical Society of London (1935)

s. AIME
Trans. AIME

[4]  A.T. Churchman, , v. 226A, p. 216 (1954)
[5]  F.D. Rosi, , v. 200, p. 1009 (1954)
[6]  J.J. Cox, R.F. Mehl, and G.T. Horne, , v. 49, p. 118

Proc. R. Soc. London Ser. A
Trans. AIME

Trans. Am. Soc. Met.  (1957)
[7]  R. Maddin and N.K. Chen, , v. 191, p. 937 (1951)Trans. AIME



Example Problem 2Example Problem 2
Consider a cylindrical single crystal of silver of 5 mm 
diameter with its axis parallel to [321].  This crystal begins 
to deform plastically in compression at a load of 39 N.
Determine the CRSS for this crystal.



Schmid factor
Slip System � � cos� cos�

(a/2) [1 1 0] (1 1 1) 79.11 22.21 0.1749
(a/2) [1 0 1] (1 1 1) 67.79 22.21 0.3500
(a/2) [0 1 1] (1 1 1) 79.11 22.21 0.1749
(a/2) [0 1 1] (1 1 1) 55.46 51.89 0.3499
(a/2) [1 0 1] (1 1 1) 40.89 51.89 0.4666
(a/2) [1 1 0] (1 1 1) 79.11 51.89 0.1166
(a/2) [1 1 0] (1 1 1) 19.11 72.02 0.2917
(a/2) [1 0 1] (1 1 1) 67.79 72.02 0.1167
(a/2) [0 1 1] (1 1 1) 55.46 72.02 0.1750
(a/2) [0 1 1] (1 1 1) 79.11 90.00 0.0000
(a/2) [1 0 1] (1 1 1) 40.89 90.00 0.0000
(a/2) [1 1 0] (1 1 1) 19.11 90.00 0.0000

Solution to Example Problem 2Solution to Example Problem 2
  .

 

Silver has an FCC crystal structure.  Thus the slip system is 111 110   
There are 12 distinct slip systems for FCC.  For each we must compute 
and tabulate the corresponding angles  and , as well as the Schmid 
factors.  This is done via the cosine  law.         
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1 1 1 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2

cos
h h k k l l

h k l h k l
h k l h k l

 
 

   

 

max
39cos cos cos cos 2

(5 ) / 4

2 0.466 0.935

CRSS

CRSS

P m
A

    




   

  

2

 N  MPa
 mm

 MPa  MPa

 

mmax



Schmid factor
Slip System � � cos� cos�

(a/2) [1 1 0] (1 1 1) 79.11 22.21 0.1749
(a/2) [1 0 1] (1 1 1) 67.79 22.21 0.3500
(a/2) [0 1 1] (1 1 1) 79.11 22.21 0.1749
(a/2) [0 1 1] (1 1 1) 55.46 51.89 0.3499
(a/2) [1 0 1] (1 1 1) 40.89 51.89 0.4666
(a/2) [1 1 0] (1 1 1) 79.11 51.89 0.1166
(a/2) [1 1 0] (1 1 1) 19.11 72.02 0.2917
(a/2) [1 0 1] (1 1 1) 67.79 72.02 0.1167
(a/2) [0 1 1] (1 1 1) 55.46 72.02 0.1750
(a/2) [0 1 1] (1 1 1) 79.11 90.00 0.0000
(a/2) [1 0 1] (1 1 1) 40.89 90.00 0.0000
(a/2) [1 1 0] (1 1 1) 19.11 90.00 0.0000

Solution to Example Problem 2Solution to Example Problem 2
  .

 

Silver has an FCC crystal structure.  Thus the slip system is 111 110   
There are 12 distinct slip systems for FCC.  For each we must compute 
and tabulate the corresponding angles  and , as well as the Schmid 
factors.  This is done via the cosine  law.         

   
1 2 2 1 1 2

1 1 1 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2

cos
h h k k l l

h k l h k l
h k l h k l

 
 

   

mmax

 

max
39cos cos cos cos 2

(5 ) / 4

2 0.466 0.935

CRSS

CRSS

P m
A

    




   

  

2

 N  MPa
 mm

 MPa  MPa

 



• Condition for dislocation motion: CRSS  R

• Crystal orientation can make
it easy or hard to move dislocation

10-4 GPa to 10-2 GPa
typically

 coscosR

Critical Resolved Shear StressCritical Resolved Shear Stress

 maximum at  =  = 45º

R = 0
=90°



R = /2
=45°
=45°



R = 0
=90°





The next 14 viewgraphs provide 
illustrations of the operative slip systems 

in different crystals.

We will cover basic structures (i.e., fcc, 
hcp, bcc) in lecture.

You should review the material on ionic, 
covalent, and ordered (intermetallic) 

crystals on your own time.



Common Slip Planes in MetalsCommon Slip Planes in Metals
fcc

12 slip systems

[Felbeck and Atkins, 2nd Ed., p. 117]

 Four 111  planes each with 3 110  slip directions

110  

01 1  101  

112  

 111

x

y

z



(a) (b)

 Pyramidal Plane 1011

Figure.  Primary slip planes and directions for HCP crystals.  (a) Basal slip plane; (b) 
prismatic slip plane; (c) pyramidal plane; and (d) other possible slip planes. 

 Basal Plane 0001  Prismatic Plane 10 10

 

 
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Pyramidal Plane 124 10 12

Pyramidal Plane 135 1121

Pyramidal Plane 134 1122
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12 10  

1120  

2 1 10  

hcp



12 slip systems possible
# active depends on c/a ratio

 
 

 

One 0001  plane with three 1120  slip directions

Three 1010  planes with one 1120  slip direction on each

Six 1011  planes with one 1120  slip direction on each

Figure.  (a) Basal slip plane; (b) atomic arrangement on basal 
plane with possible slip directions indicated.

Common Slip Planes in MetalsCommon Slip Planes in Metals

2 1 10  

12 10  

1120  (b)

 Basal Plane 0001

(a)

12 10  

1120  

2 1 10  

hcp



 010

111  

101  

111  
110  

111  120  

Common Slip Planes in MetalsCommon Slip Planes in Metals

bcc 12
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[After Felbeck and Atkins, 2nd Ed., p. 118]

48 slip 
systems
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   

   

 

Crystal Slip Slip Number of non- Slip directions Number of 
structure plane direction parallel planes per plane slip systems

fcc 111 110 4 3 4 3 12

bcc 110 111 6 2 6 2 12

112

 

 

Slip systems for the most common lattice types.

 

   

   

   

   

11 1 12 1 12 1 12

123 111 24 1 24 1 24

hcp 0001 1120 1 3 1 3 3

10 10 1120 3 1 3 1 3

1011 1120 6 1 6 1 6

 

 

 

 

 



Dislocations and Materials ClassesDislocations and Materials Classes

► Covalent Ceramics
(Si, diamond):  Motion hard.
-directional (angular) bonding

► Ionic Ceramics (NaCl):
Motion hard.

-need to avoid ++ and - -
neighbors.

+ + + +

+++

+ + + +

- - -

----

- - -

• Metals:  Disl. motion easier.
-non-directional bonding
-close-packed directions

for slip. electron cloud ion cores

+
+

+

+
+++++++

+ + + + + +

+++++++



Fig. 4.21. (a) Schematic 
representation of an edge 
dislocation in NaCl; (b) 
demonstration of how 
dislocation jogs in ionic 
crystals can have effective 
charges.  [Figure adapted 
from Kingery et al, p. 172].

The edge dislocation in the 
ionic crystal consists of two 
extra half planes of ions to 
maintain charge neutrality.

Ionic SolidsIonic Solids
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Ionic Solids Ionic Solids –– contcont’’dd

• It’s a bit easier to see 
on this diagram.

• To preserve electrical 
neutrality, an extra half 
plane of atoms must 
consist of:

– a half plane of 
cations 

– a half plane of 
anions.

Schematic representation of an edge 
dislocation in a solid with a NaCl
structure.  You are looking at the 
(100) plane.  In this image the 
Burgers vector is [011].

b

Anion

Cation

Extra ½ planes of atoms



NOTENOTE

• To maintain structural regularity (and charge 
neutrality), two extra half planes of atoms are 
required.

• This makes Burgers vectors more complicated in 
ionic crystals compared to metallic counterparts with 
the same crystal structures (see next slide).

• Dislocations in ionic crystals can have an effective 
charge which can influence mobility.



Fig. 14.10. Translation gliding in the <110> direction on (a) the {110} plane and (b) the 
{100} plane for crystals with the rock salt (i.e., NaCl) structure.  {110}<110> glide is 
preferred.  [Figure adapted from Kingery et al, p. 713].

Must maintain charge balance and same nearest neighbors

(011)
(100)

Ionic SolidsIonic Solids
NaCl has an
FCC Bravais 

lattice

011b    



Table 17.4  Independent slip systems for some ceramics.

[from Carter and Norton, Ceramic Materials Science and Engineering, p. 314]

Limited # 
independent slip 
systems



Ordered StructuresOrdered Structures

a) Schematic of an ordered AB 
crystal.

A atoms are next to B atoms.

b) Slip by passage of a single 
edge dislocation (Burgers 
vector = b) produces like 
bonds (A-A, B-B).

Undesirable.  Antiphase 
boundary (APB) forms.

[Figures adapted from Courtney, p. 122]
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Ordered StructuresOrdered Structures
c) Slip by movement of a 

“superlattice” dislocation (i.e., 
2 partial dislocations, Burgers 
vector = 2b) retains desired 
bonding.

A atoms next to B atoms.

d) Due to elastic repulsion, 
superlattice dislocations split 
into partials dislocations 
separation and an APB.

APB width (w) depends on 
APB energy.

[Figures adapted from Courtney, p. 122]
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Ordered StructuresOrdered Structures

• In some crystals such as FCC 
Cu3Au or Ni3Al, the 
superdislocations are 
composed of two unit 
(a/2)[110] dislocations.

• In this structure the 
superdislocations can 
dissociate producing an 
additional APB bound on each 
side by individual stacking 
faults.

• Really complicates dislocation 
motion.

Schematic looking down on a slip plane in an ordered 
A3B crystal.  [Figure adapted from Courtney, p. 123; 
Originally from Marcinkowski, et al., Acta Metall., 9
(1961) 129]



RECALLRECALL
dislocations move viadislocations move via

• Glide (conservative motion): 
–  moves on a surface that contains both its line and Burgers 

vector.
– A  that moves this way is glissile.
– A  that can’t move is sessile.
–  glide surface and direction depend upon crystal structure.

• Climb (non-conservative motion)
–  moves out of the glide surface, perpendicular to the 

Burgers vector.



Dislocation motion via Dislocation motion via ““glideglide”” / / ““slipslip””

Edge 
moves 
this way

Screw 
moves 
this way

EDGE

SCREW

Schematic illustration of single crystal deformation via motion of 
a screw dislocation.  (a) Application of a shear stress τyx can 
introduce a screw dislocation into a crystal along line EF and 
cause it to move to position HG.  (b) Lattice presentation clearly 
showing that the dislocation has right-hand screw character.

Adapted from S.M. Allen and E.L. Thomas; The Structure of 
Metals; Wiley, New York, (1998) p. 285

τyx

τyx

x

y

z

E

F

G

H

τyx

τyx

(a) (b)

x

y

z

τyx

τyx

τyx

τyx

Schematic illustration of single crystal deformation by motion 
of an edge dislocation.  (a) Application of shear stress τyx can 
introduce an edge dislocation into a crystal along AB and 
cause it to move to position DC.  (b) Lattice representation 
clearly showing that the dislocation has edge character.

Adapted from S.M. Allen and E.L. Thomas; The Structure of 
Metals; Wiley, New York, (1998) p. 284

(a) (b)

A

B
C

D



Process of slip by 
expansion of a dislocation 
loop on a slip plane.

•Edge, screw, and mixed 
segments move.

•Final shear of crystal is 
produced by edge and 
screw dislocations.

b
Dislocation line

b

b

Dislocation line

b
b

b





b b

$ 

(1)

(2)

(3)



b


Slip plane

Slip Cross-Slip

Screw dislocations are not restricted to
a single plane.  They can cross-slip

Edge dislocations cannot

Primary slip plane

Cross-slip plane


b



Dislocation GlideDislocation Glide
• Dislocations glide at glide velocities that depend on:

– Applied stress;
– Purity of the crystal;
– Temperature;
– Type of dislocation.

• Johnston and Gilman who showed that the dislocation velocity for a 
number of ionic crystals and metals is a strong function of the shear 
stress in the slip plane as follows:

• Where v is the dislocation velocity,  is the applied shear stress in 
the slip plane, o is the shear stress for v = 1 m/s, and m is a 
constant.

m

o

v A 

 

  
 

This equation is empirical in nature 
and applies for a specific velocity 
range: 10-9 to 10-3 m/s



• Dislocation velocity increases 
rapidly at the critical resolved 
shear stress (crss or CRSS).

• This is where plastic 
deformation actually begins.

• We address the details later.

Figure

Stress dependence of the velocity of edge 
and screw dislocations in LiF (after Johnston 
and Gilman, J. Appl. Phys. 30, 129, 1959).  
Scanned from E.W. Billington and A. Tate, 
The Physics of Deformation and Flow, 
McGraw-Hill, New York, 1981, pages 418 
and 420.

Edge ’s 
move 

faster!



ClimbClimb

Positive climb of a 
dislocation due to 

vacancy annihilation

Negative climb of a 
dislocation due to 

vacancy generation

V

V

V



ClimbClimb

• Climb is a diffusion dominated process.

• It will be minimal at low temperatures where 
diffusion is difficult.

• It can be significant at high temperatures 
where diffusion is easier.



Implications of ClimbImplications of Climb

Dislocation 
line

jogs

• Climb of short sections of 
dislocation lines result in the 
formation of steps called jogs.

• Dislocation climb proceeds by 
the nucleation and motion of 
jogs.

►Jogs are steps on a 
dislocation that move it from 
one atomic plane to another.

•There is also another type of dislocation step called a kink.

►Kinks are steps that displace the dislocation within the slip 
plane.



Jogs and kinksJogs and kinks

• Jogs and kinks are short segments of a dislocation.

• They have the same Burgers vector as the line on 
which they lie.

• The same rules apply for conservative and non-
conservative motion of jogs and kinks as regular 
dislocations.



• Kinks have the same slip plane as the dislocation line.

• Kinks do not impede glide of a dislocation line.  

• Kinks can actually assist glide.

$$
These figures 
were adapted 
from Hull and 
Bacon’s text 
(Fig. 3.16).

Kinks in edge and screw dislocations

b



• Kinks spread laterally along the length of the dislocation line 
resulting in forward motion of the dislocation line.

EP-N

x
b

MOTION OF DISLOCATIONS

b

y

xKink

1

2

3

4

5

w

w

w • To glide, dislocations 
must overcome the 
Peierls-Nabarro barrier.  

• Dislocation lines do this 
in a step-like fashion
where a small segment 
proceeds beyond the 
Peierls barrier first 
producing a kink.



Kink PropagationKink Propagation

• Dislocation velocity, v, is a function of kink velocity, vk:

where L is the length of the dislocation segment and b is 
the Burgers vector.

• Kink velocity is a function of kink formation energy (Wk):

where Q = Wk for a single kink (#2) and 2Wk for a double 
kink (#3 and #4).

k
bv v
L 

22 expk
k

b D Qv
kT kT

    
 

 kv v



• This process occurs because lateral propagation of kinks occurs 
more readily than forward motion of an entire line over the 
Peierls-Nabarro barrier.

• This is because

EP-N

x

b

b
x

y

EP-N

E0

[Argon, p.96]

MOTION OF DISLOCATIONS

b

y

x

kv

.kv v

v

There is a driving force for 
the kink to move from a 

high energy to a low 
energy state.



1 2

3 4

θ

1 2

3 4

Kink GeometryKink Geometry
• Kink widths are determined 

by a balance between line 
tension forces and the 
Peierls barrier.

• (A) Kinks tend to be 
narrower and more difficult 
to move in less close 
packed structures.

• (B, C) Kinks tend to be 
more diffuse and easier to 
move in close-packed 
structures.

1

4

(A)

(B)

(C)

max

max

max

min

min

min



These figures 
were adapted 
from Hull and 
Bacon’s text 
(Fig. 3.16).

• Edge dislocations:
– Jogs do not impede the glide of edge dislocations.

• Screw dislocations:
– Jogs have “edge character” and are be restricted to glide along the 

dislocation line (normal to b).  This requires climb.  Thus, they do
impede motion of screw dislocations.  (illustrated on the next viewgraph)

Jogs in edge and screw dislocations

$ $

b



Movement of a jog on a screw Movement of a jog on a screw 

[Adapted from Hull & Bacon, p. 131]

Movement of a jog on a screw dislocation.  The jog AB has a Burgers vector 
normal to AB.  It is therefore a short length of edge dislocation.  The plane 
defined by AB and it’s Burgers vector is AB2D.  It is the plane upon which AB 
can glide.  Movement of the screw dislocation 1AB2 to 1´A´B´2´ requires climb 
of jog AB to A´B´

A

B D

A´

B´

1

2

1´

2´

b

Direction the screw 
dislocation will 
move

The edge portion can only 
move in this direction via 
climb.  This increases point 
defect concentration.

The edge portion is 
restricted to glide on this 
plane.





Motion of a jogged screw dislocationMotion of a jogged screw dislocation
implicationsimplications

Adapted from Fig. 2.26 in R.W. 
Hertzberg, Deformation and Facture 
Mechanics of Engineering Materials, 4th

Ed., (Wiley, New York, 1996) p. 84.

A: No stress

B: Under stress

C: At critical stress

Direction of 
dislocation 
motion

Rc

Slip plane

b

b

b

Vacancies

R

Slipped The jog, which has edge 
character can’t move on the 
available slip plane.  The screw 
segments continue moving 
forming a dislocation dipole.

At this stress, the dislocation 
dipole pinches off leaving 
behind interstitials or 
dislocation loops.



Origin of dislocation debris and dipolesOrigin of dislocation debris and dipoles

The trails of defects are often  produced 
during plastic deformation usually appear as 
dislocation loops.

Fig. 7. Dislocation dipoles and debris in two-phase 
titanium aluminides. Alloy 1, compression at T=295 K to 
strain  =3%. (a) Dislocation dipoles and debris (arrowed) 
are trailed and terminated at jogs in screw dislocations.  
From F. Appel, U. Sparka and R. Wagner, Intermetallics
v.7, n. 3-4 (1999) pp. 325-334.

Figure  Formation of dislocation loops 
from a dislocation dipole.  (a) 
Dislocation dipole; (b) Elongated 
dislocation loop; and (c) row of small 
loops (i.e., debris). [Adapted from Fig. 
7.11 in Hull & Bacon].

b

b

b



From D. Hull and D.J. Bacon, 
Introduction to Dislocations, 4th

Ed., (Butterworth-Heinemann, 
Oxford, 2001).

Synopsis:
• Small jogs are dragged 

behind

• Large jogs, dislocations 
move independently

• Intermediate jogs, 
dislocations interact and 
cannot pass each other 
except at very high 
stress.



Jogs and kinks can also result 
from the intersection of 

dislocations



Intersection of DislocationsIntersection of Dislocations

Figure 7.1 Intersection of edge dislocations with 
Burgers vectors at right angles to each other.  (a) 
before intersection and (b) after intersection 
producing jog PP´ in AB.  [Adapted from Hull & 
Bacon].

Figure 7.2 Intersection of edge dislocations with 
parallel Burgers vectors.  (a) before intersection 
and (b) after intersection producing kink PP´ in 
AB and kink QQ´ in XY [Adapted from Hull & 
Bacon].



Dislocation IntersectionsDislocation Intersections

Figure 7.3 Intersection of edge dislocation AB with 
right-handed screw dislocation XY. (a) Before 
intersection. (b) After intersection jog PP´ is 
produced on AB and jog QQ´ is produced on XY
[Adapted from Hull & Bacon].

Figure 7.4 Intersection of screw dislocation 
AB and XY. (a) Before intersection. (b) After 
intersection jogs are produced on both screw 
dislocations. [Adapted from Hull & Bacon].

Dislocation intersections 
can lead to dislocation 
multiplication and work 

hardening.

Creation 
of 1 edge 
jog which 
impedes 
further 
screw 

dislocation 
motion

Creation of 
2 edge 

jogs which 
impedes 
further 

dislocation 
motion



What happens when dislocations collide (5)?What happens when dislocations collide (5)?

b3

Dislocation loop

Edge 
dislocation

b1

Figure A. What happens 
when two edge dislocations 
with different Burgers vectors 
move across the slip planes 
ABCD and EFGH and to cut a 
dislocation loop.

A B

CD
b2E F

H
Edge 
dislocation

screw

edge edge

screw

G



What happens when dislocations collide (6)?What happens when dislocations collide (6)?

b3

Dislocation loop
Edge 

dislocation

b1

Figure B. Two edge 
dislocations are assumed to 
have moved across the slip 
planes ABCD and EFGH and 
to have cut a dislocation loop.  
The result of this intersection 
is the formation of a pair of 
kinks and jogs on the 
dislocation loop.  In this 
drawing the kinks will be of 
magnitude b1 while the jogs 
will be of magnitude b2.

A B

CD

b2

E F

GH

Edge 
dislocation

screw

edge edge

screw

jogs

kinks


