
Module #7Module #7

Plasticity and the Theoretical Strength of Materials

READING LIST
DIETER:  Pages 117-119  and 243-245

Pages 44-53 in Meyers and Chawla, 1st edition
Ch. 1 in Strong Solids

HOMEWORK
Estimate the theoretical 
shear and cleavage 
strengths for tungsten.  
Elastic constants can be 
found are on p. 50 of 
your text.



When exposed to external forces, When exposed to external forces, 
materials will materials will ““breakbreak””

deformationdeformation

and/orand/or

fracturefracture

[i.e., change shape]

[i.e., separate into pieces]



Uniaxial Normal
Stresses


CLEAVAGE

Shear Stresses


SHEAR

• Specimen breaks suddenly with little or no
distortion; consumes little energy.  

• Brittle fracture. 
• The fracture path is perpendicular to a 

plane. 

• Specimen breaks with lots of distortion
(i.e., deformation) a specimen; consumes 
energy. 

• Ductile fracture.
• The fracture path is parallel to a plane.

Ways to Ways to ““breakbreak”” thingsthings










What is more likely,

cleavage or shear?



Theoretical StrengthTheoretical Strength
• We can answer the question posed on the previous 

viewgraph by estimating estimate the theoretical strengths 
required to cleave or shear a “perfect” material (i.e., a 
material that contains no defects).

• Theoretical strengths are related to:

– Interatomic forces

– Temperature

– State of stress

• For now, let’s ignore temperature effects and variations in 
the state of stress.



““PerfectPerfect”” Crystalline SolidsCrystalline Solids
• Atoms, ions, or molecules are arranged in periodic, repeating, 

symmetric patterns in three dimensions (i.e., atoms, ions, or 
molecules occupy specific lattice sites and exhibit specific 
symmetry relationships in their arrangement).

FCC HCP

Fig. 1.7 from Hull & Bacon, 4th ed. Fig. 1.8 from Hull & Bacon, 4th ed.



CleavageCleavage
• Separation of all atomic bonds on a 

plane perpendicular to an applied 
stress.

• Polanyi1 and Orowan2 devised a simple 
method to determine the theoretical 
strength of a perfect crystal.

• Critical assumptions:
– The crystal contains no defects and no 

stress concentrations at the crack tip.
– All atoms separate simultaneously once they 

reach a critical separation distance d.
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1M. Polanyi, Z. Phys., v. 7 (1921) p. 323.
2E. Orowan, Rep. Prog. Phys., v. 12 (1949) p. 185.



Cleavage Cleavage –– contcont’’dd

• The stress required to separate two 
atomic planes varies as a function of 
the distance between planes.  

• Orowan assumed a sinusoidal 
variance for simplicity.

• The area beneath the curve 
represents the work required to cleave 
the crystal (i.e., the work of 
deformation).
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At rest: F, σ = 0

Force applied:
Bonds stretch;
F, σ > 0

At failure: F, σ = 0



Work to CleaveWork to Cleave
• Two new surfaces are created by cleavage.  Work 

is needed to create these surfaces.  Thus there is a 
surface energy associated with these surfaces.

– Let  = surface energy/area (= E/A)

– For the two surfaces created, the
total surface energy = 2A.

• The work to cleave must be greater than the surface
energy of the newly created surfaces.





• The stress dependence on planar separation can be 
expressed as:

• We can find the constant K by relating the initial slope 
of the force-distance curve to Young’s modulus.

• When x is close to do [i.e., when (x-do) is small], the 
material responds in accord with Hooke’s law 
(i.e.,  σ = E).
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• If we assume that elastic deformation is restricted to 
the two planes shown in the adjacent figure, and 
that the material is isotropic, we can define the 
incremental strain (dε) as:

• If we substitute this expression into 
Hooke’s law:

• Where E is Young’s modulus.
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• Recall that:

• We can determine K by taking the derivative of this 
expression with respect to x and substituting it into 
our expression for E at x = do.

• The value of d, the interplanar spacing, is unknown 
and must be estimated.
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• Polanyi and Orowan equated the area under the stress-
distance curve to the energy of the surfaces created:

• From calculus:

• Let y = x – do; then dx = dy.
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The theoretical cleavage stress is the, max, maximum value 
of σ in equation [1] where we set the sine term equal to 1.
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If we substitute our recently derived value for d (from the 
previous slide) into this expression , we get:
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In this model, the surface energy term can be expressed as:
2
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The critical separation distance d is of the same order of 
magnitude as do (i.e., d  do).  THUS we can estimate the 
surface energy as:
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From this derivation we can conclude that the cleavage 
strength at absolute zero (i.e., 0 K) will be highest in materials
with high values of E and , and low values of do.



Some typical values for the theoretical cleavage stress as calculated 
from the derived expression are reproduced below. Table 1.1 in 
Chapter 1 of Strong Solids has a more complete listing.

Substance Direction E
(GPa)

Surface energy
(mJ m-2)

max
(GPa)

Silver <111> 121 1130 24

Silver <100> 44 1130 16

Gold <111> 110 1350 27

Nickel <100> 138 1730 37

Tungsten <100> 390 3000 61

-Iron <100> 132 2000 30

Diamond <111> 1210 5400 205

Al2O3 <0001> 460 1000 46

The largest sources of error are the surface energies (), which are 
very difficult to measure accurately.

More accurate methods for determining max are summarized 
Chapter 1 of Strong Solids (pp. 7-24).



ShearShear
• The other way to break/deform a 

material is via shear.

• Frenkel3 has devised a simple method to 
estimate the theoretical shear strength 
of a perfect crystal.

• Consider a crystal structure consisting of 
two neighboring planes with a 
separation distance d and an interatomic 
spacing b.

• Assume the individual planes do not 
distort under an applied shear stress.

3J. Frenkel, Z. Phys., v. 37 (1926) p. 572.
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Plastic deformation will occur when the applied shear stress (app) is 
large enough to overcome the potential energy barriers.  At that point, 
atoms will move from one equilibrium position to the next one.

This process is known as “slip.”

Under an applied stress, atoms will 
pass sequentially through 
equilibrium positions (i.e., A, B, C, 
etc…).

At each equilibrium position, the 
potential energy  is minimum and 
 = 0.

At non-equilibrium positions, 
increases.  is maximum at ½b.
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Between equilibrium positions, 
varies cyclically.  Assuming the 
variation is sinusoidal.

We can express this variation as:

2sin .K
b
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In this equation K is a constant that describes the amplitude of the sine 
wave and b is the period of the sine wave.

Recall: for small displacements, Hooke’s law (i.e.,  = εE or  = γG for 
isotropic solids) applies leading to:
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If we can re-arrange the equation, and solve 
for K.
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If we substitute this expression back into our 
idealized expression for  we get:

Since τ is essentially the derivative of the Φ-x curve, τmax occurs when 
x = b/4 (i.e., when the sine term → 1)

The relationships between energy and stress for shear yielding are more 
clearly illustrated on the next viewgraph.
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Fig. 6.15. Energy and stress curves for 
rigid shear yielding.  
[Copied from G. Gottstein, Physical 
Foundations of Materials Science, 
(Springer-Verlag, Berlin, 2004) p. 213]



Consider a face centered cubic (fcc) crystal.  The relationship between the 
lattice parameter and the interatomic spacing is given by:

2 2 2
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For fcc crystals, the close packed plane, which is the most likely plane 
where shear will occur is (1 1 1).
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The spacing between crystal planes in a cubic 
system is given by:
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Substituting the expression for d111, the spacing between (111) planes, in 
for d in the original equation and our new expression for b into the equation 
for max:

More refined methods of calculation are described in Chapter 1 of Strong 
Solids.

b is the 
distance 
between 
atom 
centers on 
lines where 
they touch!

b



Some typical values for the theoretical shear 
stress (adapted from p.29 of Strong Solids).

If we compare max and 
max, we find that max is 
two or more times 
larger than max.

What this means is that 
materials are more 
likely to deform via 
shear than to cleave.

This isn’t always true.  
Just most of the time.

Material G
(GPa) max/G

max
(GPa)

Copper (10K) 33.2 0.039 1.29

Copper 30.8 0.039 1.2

Gold 19.0 0.039 0.74

Silver 19.7 0.039 0.77

Cobalt 84 0.039 3.49

Aluminum 23 0.039 0.9

Aluminum 23 0.114 2.62

Nickel 62 0.039 2.4

Nickel 62 0.114 7.1

Silicon* 57 0.24 13.7

α-Iron 60 0.11 6.6

Tungsten 150 0.11 16.5

Al2O3 (basal) 147 0.115 16.9

Zinc 38 0.034 2.3

Graphite 2.3 0.05 11.5  10-2

NaCl 18 0.159 2.9

*For Si, the same value of max/G has been taken as for diamond.  
Therefore the estimate for Si is likely high.



Slip bands:
Composed of 
several slip 
lines/traces

100’s of Å
1000’s of Å

In ductile crystalline 
solids, proof that slip (i.e., 
planar shear) occurs is 
provided by the 
appearance of slip lines 
on the surfaces of single 
crystals or individual 
grains.

I’ve schematically 
illustrated slip lines above 
and provided a picture of 
the real thing.  We’ll 
discuss their 
crystallographic nature a 
little later.

Figure
Slip in a zinc single crystal.  
[Copied from W.D. 
Callister, Jr, Materials 
Science and Engineering: 
An Introduction, 7th Ed., 
(Wiley, New York, 2007) 
p.183.]



How do theoretical strengths compare with real How do theoretical strengths compare with real 
strengths?strengths?

ESTIMATE
In most cubic crystals, b  d

(i.e., they are of the same order of magnitude).
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experimental << max ; also, experimental << max

Theoretical and experimental yield/shear strengths for various Materials

Theoretical Shear Stress Experimental Shear Stress

Material
G/2
(GPa)

G/2
(106 psi) (MPa) (psi) max/exp.

Silver 12.6 1.83 0.37 55 ~3  104

Aluminum 11.3 1.64 0.78 115 ~1  104

Copper 19.6 2.84 0.49 70 ~4  104

Nickel 32 4.64 3.2-7.35 465-1,065 ~1  104

Iron 33.9 4.92 27.5 3,990 ~1  103

Molybdenum 54.1 7.85 71.6 10,385 ~8  102

Niobium 16.6 2.41 33.3 4,830 ~5  102

Cadmium 9.9 1.44 0.57 85 ~2  104

Magnesium 
(basal slip) 7 1.02 39.2 5,685 ~2  104

Magnesium 
(prism slip) 7 1.02 39.2 5,685 ~2  104

Titanium 
(prism slip) 16.9 2.45 13.7 1,985 ~1  103

Beryllium
(basal slip) 49.3 7.15 1.37 200 ~4  104

Beryllium
(prism slip) 49.3 7.15 52 7,540 ~1  103



The difference is attributed to the The difference is attributed to the 
presence of DEFECTSpresence of DEFECTS

• Microcracks → σexperimental << σmax

• Dislocations → τexperimental << τmax

• Etc…


