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MohrMohr’’s Circle in 3s Circle in 3--DD
• We can use a 3-D Mohr’s circle to visualize the state of 

stress and to determine principal stresses.

• Essentially three 2-D Mohr’s
circles corresponding to the 
x-y, x-z, and y-z faces of the 
elemental cubic element.
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Adapted from G.E. 
Dieter, Mechanical 
Metallurgy, 3rd ed., 
McGraw-Hill (1986) p. 37
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Influence of States of StressInfluence of States of Stress
• Biaxial and triaxial tension:

– Effectively reduces the shear stresses resulting in a 
considerable decrease in ductility.  (Plastic deformation is 
produced by shear stresses.)

• Uniaxial tension plus biaxial compression:

– Produces high shear stresses and contributes towards 
increased plastic deformation without fracture.

– This is like metal forming via extrusion which gives better 
ductility than uniaxial tension.



Multiaxial LoadingMultiaxial Loading

Most service conditions and forming operations 
(Ex., drawing) involve multiaxial loading.

Under multiaxial loading conditions, a material or 
structure may yield or fracture locally (or globally) 
depending upon the state of stress.

We can use the calculated principal stresses to 
define criteria for yielding or failure.



Yield/Failure Criteria (1)Yield/Failure Criteria (1)

Mathematical tools to decide whether the stress 
state in a material will cause plastic deformation or 
failure.

Consider an isotropic polycrystalline metal 
deformed in uniaxial tension.  It will yield when:

This is a valid yield criterion for the stated problem.

applied YS 



Yield/Failure Criteria (2)Yield/Failure Criteria (2)

Consider the same isotropic polycrystalline metal 
deformed in a multiaxial stress state.  

We can’t simply determine the stress at yielding 
because stress will vary from point to point.

Instead we calculate an equivalent stress from the 
components of the stress tensor and compare it with
the critical stress for yielding/failure.



Yield/Failure Criteria (3)Yield/Failure Criteria (3)
The equivalent stress, being a function of the stress 
tensor, can be expressed as:

At yielding/failure, this equivalent stress much reach 
the critical value (e.g., σYS, σf, τCRSS, etc.).  Thus:
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Yield/Failure Criteria (4)Yield/Failure Criteria (4)
Yield criteria are generally expressed as:

Thus, when f(σij) < 0, the material does not yield/fail.  

When f(σij) ≥ 0, the material yields/fails.

Example:
Uniaxial tension.  Material deforms elastically up to the yield stress.  When 
applied load reaches the critical load (i.e., the YS), plastic deformation 
occurs.  The yield/failure criterion could be expressed as:

    0ij equivalent ij criticalf      

  0ij applied YSf     



Yield/Failure Criteria (5)Yield/Failure Criteria (5)
For isotropic materials, we can express yield criteria 
in terms of principal stresses.

If we plot the function f(σ1,σ2,σ3) on orthogonal σ1, σ2, 
σ3 axes we obtain a yield surface.

We can use the yield surface to determine, for each 
possible state of stress, whether or not a material 
yields/fails.

 1 2 3, , 0f    



Yield/Failure Criteria (6)Yield/Failure Criteria (6)
There are many different yield criteria.

We will limit ourselves to these three:

1. Rankine
2. Tresca
3. von Mises

Remember, there are more than these two.



Yield (Failure) Criteria (7)Yield (Failure) Criteria (7)
Tresca (Maximum-Shear-Stress) Yield Criterion:

• Yielding occurs when the difference between the 
maximum and minimum normal stresses reaches a critical 
value, the yield strength
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Yield (Failure) Criteria (8)Yield (Failure) Criteria (8)
Rankine (Maximum-Principal-Stress) Criterion:

• Cleavage fracture occurs when the cleavage strength is 
reached before the yield strength.
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Yield (Failure) Criteria (9)Yield (Failure) Criteria (9)
Von-Mises Yield Criterion (Distortion Energy Criterion):

• Yielding occurs when the second invariant of the stress
deviator, J2, exceeds a critical value or:

J2 = constant = k2.

• What is the stress deviator and how do I find k2?

• The stress deviator represents the part of the total stress 
state that causes shape change (i.e., deformation).
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The Stress Deviator (1)The Stress Deviator (1)
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The Stress Deviator (2)The Stress Deviator (2)

• Take the determinant of the stress deviator.
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The Stress Deviator (3)The Stress Deviator (3)

• This yields a new cubic equation that has 
three new invariants:

• The invariants are the:
(1) sum of main diagonal; 
(2) sum of principal minors; 
(3) determinant of deviator tensor.

3 2
1 2 3 0J JJ       



The Stress Deviator (4)The Stress Deviator (4)

• Two of the new invariants, the invariants of the 
stress deviator, are of great importance:
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The Stress Deviator (5)The Stress Deviator (5)
• In uniaxial tension, yielding occurs when σ1 = σYS

(yield stress) and σ2 = σ3 =0.  Thus J2 becomes:

• It represents the condition required to cause 
yielding.
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The Stress Deviator (6)The Stress Deviator (6)

• Therefore, the von Mises criterion becomes:

• Yielding occurs when J2 equals or exceeds the 
tensile yield stress.
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• Look at Figure 1.11 from Courtney’s text (next page).  This figure shows 
the yield locus for plane stress.

• States of stress with principal stresses lying within the bounds of 
the yield locus do not produce yielding.

Quadrant I: yielding occurs when 1 or 2 = ys

max (1) - min (3=0) = ys

Quadrant II: 1 (min) < 0; 2  0; 3 = 0)
2 - 1 = ys
so neither 1 or 2 = ys and still get yielding

• The Tresca criterion is less complicated (in terms of math).  It is often 
used in engineering design.  It is also more conservative.

• However, the Tresca criterion does not take into account the 
intermediate principal stress and requires that you know the maximum 
and minimum principal stresses.



FIGURE 1.11

(a) The Tresca yield condition for biaxial loading.  Stress combinations lying within the curve do not result in plastic flow;  
those lying outside it do.  In quadrants I and III, yielding occurs when the magnitude of the algebraically largest (in I) or 
smallest (in III) stress exceeds σys, the tensile yield strength.  In quadrant II, (σ2>0, σ1<0, σ3=0), yielding is defined by σmax
(=σ2)-σmin(=σ1) =σys, and this results in a 45° line defining yielding.  The yield criterion is similar in quadrant IV (σ1>0, σ2<0, 
σ3 = 0), except that σ1 and σ2 are interchanged.  (b) The von Mises yield condition for biaxial loading is shown by the solid 
line.  Stress combinations lying within the ellipse do not lead to plastic flow; those lying outside do.  The Tresca condition 
(dotted line) is compared to the von Mises one in the figure.  The former is more conservative and the two are equivalent 
only for uniaxial (σ1,2>0 with σ2,1=σ3=0), and balanced biaxial (σ1=σ2, σ3=0), tension.  (c) Comparison of experimental data 
for selected metals with the Tresca and von Mises criteria.  The latter clearly fits the better data, though the difference 
between the criteria is not great.

[adapted from Courtney, p. 18]
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• Stress combinations lying within the 
curve do not result in plastic flow;  those 
lying outside it do.  

• In quadrants I and III, yielding occurs 
when the magnitude of the algebraically 
largest (in I) or smallest (in III) stress 
exceeds σys, the tensile yield strength.  

• In quadrant II, (σ2>0, σ1<0, σ3=0), 
yielding is defined by σmax (=σ2)-
σmin(=σ1) =σys, and this results in a 45°
line defining yielding.  The yield 
criterion is similar in quadrant IV (σ1>0, 
σ2<0, σ3 = 0), except that σ1 and σ2 are 
interchanged. 

minor tensile stress does
not affect the stress 
required for yielding.
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• The von Mises yield condition for biaxial 
loading is shown by the solid line.  

• Stress combinations lying within the 
ellipse do not lead to plastic flow; those 
lying outside do.  

• The Tresca condition (dotted line) is 
compared to the von Mises one in this 
figure.  

• The former (Tresca) is more 
conservative and the two are equivalent 
only for uniaxial (σ1,σ2 > 0 with σ2, σ1 = 
σ3=0), and balanced biaxial (σ1=σ2, 
σ3=0), tension.



Comparison
• Comparison of experimental data for 

selected metals with the Tresca, Rankine, 
and von Mises criteria.  

• The latter (von Mises) clearly fits the 
data better for ductile metals.

• The Rankine criterion fits a brittle metal 
like gray cast iron quite well.

• However, the difference between the 
criteria is not great.

From, Mechanical Behavior of Materials: Engineering Methods for 
Deformation, Fracture, and Fatigue, Third Edition, p. 275, by 

Norman E. Dowling. ISBN 0-13-186312-6.
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights 

reserved.
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• The yield strength for a new Ni-base superalloy is 1000 
MPa.  Determine whether yielding will have occurred on 
the basis of both the Tresca and Von Mises failure criteria 
assuming the following stress state.
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Example ProblemExample Problem
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1. First determine the principal stresses
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• Principal stresses:

σ1 = 223.7; σ2 = -200.0; σ3 = -1123.0

• Von Mises:

For yielding to occur J2 ≥ k2 (=σo
2/3)  therefore  k = 789.9. 

σo = k  (3)1/2 = 1368.1 MPa

Since 1168.1 MPa > 1000 MPa, yielding occurs.

• Tresca:

Since σo = 1346.7 MPa > 1000 MPa, yielding occurs.
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2. Substitute principal stresses into equations for Tresca and Von Mises 
failure criteria
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