HOMEWORK
Calculate Young’s modulus
for Al and Cu in the <111>,
<100>, and <110> directions.

Module #5

Origins of elasticity
Elastic constants in isotropic materials
Elastic constants in anisotropic materials

READING LIST
DIETER: Ch. 2, Pages 47-60

Pages 21-36 in Hosford ; Ch. 2 in Roesler ;
Ch. 8 in Nye ; Ch. 3 in McClintock and Argon

Ch. 7 in Sines ; Ch. 6 in Wagoner and Chenot
Ch. 11 in Sadd ﬁ




Elasticity

Important because most engineering design is done
in the elastic region. (Remember, plastic deformation
generally constitutes failure.)

Macroscopically, most polycrystalline materials are
elastically isotropic.

Microscopically, elastic behavior is inherently
anisotropic for individual grains.

Polycrystalline materials can be anisotropic if they
exhibit strong crystallographic textures.



Elasticity — cont'd

A

« Derived from atomic U "\_ _ Repulsion
bonding forces originating ‘-\ ‘*ll”*
from long range attractive \ SR
forces which draw atoms \ NG .

together until short range
repulsive forces become
large enough to balance A
them out. ! \gAmécﬁon

F is maximum at point
of inflection in U/r

* As such, elastic properties A curve
are an aggregate effect of 7/
individual deformations of
interatomic bonds.

F =-dU/dr

7

r




Bulk Elastic Behavior

* Applied force is transmitted by the network of bonds
constituting the material.

* Thus, elastic behavior depends quantitatively on the
magnitude of the interatomic forces.

« Elastic properties do not depend on microstructure of
the material.




Forces Between Atoms

« Bonds form when atoms either share (e.g., covalent
and metallic bonds) or transfer (e.g., ionic bonds)
electrons between atoms.

* This occurs to achieve a minimum in potential energy
for the system corresponding to a stable electron
configuration.

* This has been modeled for ionic systems as follows:



lonic Bond

Electron transfer from one
atom to another occurs due
to electrostatic interaction
between oppositely charged
ions (e.g., Na* and CI- in
NaCl).

Force of attraction between
ions is F

attract

Work is done to draw ions
together. Itis given by:

r _qz —A

Uattract — _‘-Elttract dl" — — m
: drer r

N
~N
Vv

2

q

attract ~

4re 1’

q = charge of ion
¢ = permittivity of free space

r = 1onic separation distance



Each atom maintains an electron cloud surrounding it. The outer
surfaces of each atom are both negatively charged.

Thus, at close distances, the electron clouds overlap and repel.
The repulsive force can be written as:

B

U

repel = n

The total energy of the system is thus the sum of the attractive and
repulsive components. It can be expressed in general as:

_|_U jﬁ

repel = m n

r r

U

total ~—

U

attract

This is the well known Lennard-Jones potential. You might recall
this from your chemistry or physics courses.



Repulsion

/

I~

Attraéction

v

v

The minimum energy point
corresponds to the equilibrium
separation (i.e., the equilibrium
bond length, r ).

The force between atoms is
simply the derivative (i.e., the
slope) of the energy versus
distance plot.

dU

total

dr

F=—

The bond stiffness is the
derivative of the force versus
distance plot.

_dF _d°U

total

dr dr?

S



At the equilibrium bond length, r,, the variation of F with r is essentially

linear, which means that the stiffness is essentially constant at small
distances from r,.

;-
dr

o

Using this expression, the force to “stretch” n bonds in a solid is:
anjSodrano (r—r)

where n is the number of bonds.

 The applied stress is:

G:E:nSO(r—rO)
A nr’




The strain can be expressed as:

Thus, stress becomes:

szi:n&(r—n)zﬁxf—r)zsgg
A nr’ v, v

o o o

From Hooke’s law:

o=FE¢
Thus,
2
poS_1dU
r,oor drt

The derived expression
shows that the modulus is
dependent upon bonding.

Modulus, and other elastic
properties, are
structure insensitive.

The directionality of elastic
properties does depend
upon atomic arrangement
(crystallography) in single
crystals. They tend to
average out in polycrystals.



Bonding Energy

Material, eV/Atom, lon, Melting
Bonding Type Substance kJ/mol Molecule Temperature °C
lonic NaCl 640 3.3 801
MgO 1000 5.2 2800
Covalent Si 450 4.7 1410
C (diamond) 713 7.4 >3550
Metallic Hg 68 0.7 -39
Al 324 3.4 660
Fe 406 4.2 1538
W 849 8.8 3410
van der Waals Ar 7.7 0.08 -189
Cl, 31 0.32 -101
Hydrogen NH; 35 0.36 -78
H,O 51 0.52 0

[From W.D. Callister, Jr, Materials Science and Engineering: An Introduction, 7th Ed., (Wiley, New York, 2007) p.28]
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Metallic Covalent or
bonding Ionic bonding

Steel I/WC
Copper ‘ , |

©
al I | CFRP
O I I/
) Alumina I | | I/I
E | |
S P I
S |Auminim | GFRP |
£ . - ‘ PEEK z /
g ¢ op Glass Fibreboard
g Lead
o
> | PTE

Metals Polymers Ceramics Composites

Courtesy of Granta Design

A bar chart illustrating Young’s moduli for some common examples of the primary
classes of materials (i.e., metals, ceramics, polymers and composites). Ceramics
tend to exhibit the highest elastic moduli and polymers the lowest. The elastic
moduli of composites are between those of their constituents.



stress is related to strain for an isotropic solid

« Hooke’s Law

A
JUnIoad . . .
— Isotropic Solids (properties
are the same in all
Load Slope = E (Modulus of elasticity) dlreCtlonS)

Stress

/ |

o=ckEore=—0o
E

0
) L] L] L ]
0 Strain — Anisotropic solids

(properties are directional)

Stress-strain plot for a linearly elastic material

Need different definition

— Let’s consider both cases



First consider the Poisson effect

unloaded

loaded

gx gy
v(z,x)= - and v(z,y) = -

A tensile stress along the z axis causes the material to
stretch along the z axis and to contract along the x and
y axes.

lateral strain

Poisson's Ratio, v =— — .
longitudinal strain



Room-
Temperature
Poisson’s Ratio
for Selected
Solids

Material Class

Material \Y
Metallic solid Ag 0.38
(crystalline) Al 0.34
Au 0.42
Cu 0.34
a-Fe 0.29
Ir 0.26
Ni 0.31
W 0.29
Covalent solid Ge 0.28
(crystalline) Si 0.27
Al,O, 0.23
TiC 0.19
Covalent lonic Solid MgO 0.19
Covalent Glass Silica glass 0.20
Network Polymer Bakelite 0.20
Ebonite (hard rubber) 0.39
Elastomer Natural rubber 0.49
Chain Polymer Polystyrene 0.33
Polyethylene 0.40
Van der Waal’s Solid Argon (at 0 K) 0.25
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The strains resulting from this stress state must be the sum of the strains
associated with loading along each individual axis.

o o
B B B
B: ¢ =7, £, =—VE, =~V xx
3 E
o o
SO _ W C _ C _ yy
C | Eyy T o0 gxx o _ngy =V
3 E
O O , .
A=B+C: ¢ =gl 4" =" _,, "W There s a similar
R R X E expression for ¢,



RECALL: Elastic Stress-Strain Relations

Strain in the Strain in the Strain in the
Stress x-direction y-direction z-direction
O-xx VO-XX VO_XX
O« E— &, = - — &, =
E o E E
o s g Yo ;O Yo,
xx E yy E zz E
VGZZ VGZZ GZZ
O-zz E— gxx - Yy - gZZ -
E E E
1 — —
E.=—| 0, — V(ny + O'ZZ) o
- - Variation in
1 _ _ . .
e, =—| o, —v(c.+o,) elqshc strain fqr
k- - an isotropic solid
1 — —
t.=—o.—v(o,+a,) because of the
E- - Poisson effect




Other Elastic Stress-Strain Relations for Isotropic Solids

* Bulk Modulus (X), also known as the volumetric elastic
modulus:

hydrostatic pressure o

m

_ —p_1
~ volume change produced A A B

where:
-p = hydrostatic pressure,

o.,to,+0,

o, =
3
A = dilatation (1.e., volume change) =¢_ + £, tE.

B = compressibility.



Other Elastic Stress-Strain Relations for Isotropic Solids

* Now we can relate the elastic constants.

1 _ _

gx)C = E_GXX —V(Uyy +GZZ )_

— 1 B ]

£, = E-ny —v(o.+o0, )_
B 1

£ = E[Gzz —V(O'xx +0o, )]

Summation yields:
1-2v 1-2v 1o = A

m

gxx + gyy + gzz — (O-xx + O-yy + O-zz) =

o E
K="=
A 3(1—21/)




Other Relations Between |Isotropic Elastic Constants

In terms
of

Elastic E v E G K v E G A, 1
constants
oK u(3+2ul 1)
ol | = _ _3(1-2v)K | = _
E [elastic] E E (1-2v) 3KG 2151/ 2)
) __LE ) _1-2G/3K |1
’ ’ 2G ' 242G/3K | 2(1+u/2)
B E - _3(1—2V)K B B
G [shear] “2(1+v) =G 2(1+v) -G K
__E __E _ _ L 2u
K[bulk] _3(1—21/) _9—3E/G =K =K =A+——
E _
x _ v _E(1-2G/E)| _3Kv (.26 _,
(1+v)(1-2v) 3-E/G 1+v 3
B E - _3(1—2V)K G B
K “2(1+v) -G 2(1+v) |~ A

A, u = Lame constants




STRAIN ENERGY

Energy stored in a body due to deformation.

« Work to deform a body elastically is stored as elastic strain
enerqgy. Itis recovered when the applied forces are released.

« Strain energy is proportional to the area under the load-
deformation (stress-strain) curve.

 We will elaborate on this
concept on the next
few pages.

Load F

Deformation o



Strain Energy

* The first law of thermodynamics states:
dU =0Q+ oW =TdS — PdV

where,

dU = internal energy
00 = heat
oW = mechanical work done

* During elastic deformation, the amount of heat generated
1s negligible.

e Thus the work done on the body 1s converted into internal
energy and 1s fully recovered upon unloading.



ELASTIC STRAIN ENERGY - cont'd

« Consider an elemental cube that is subjected to only an elastic
tensile stress along the x-axis. The elastic strain energy, U, 1s:

U= %(load)(deformation)

dU:%qu :%(GXXA)(gxxdx):%(a ¢ )(Adx)

XX XX

= total elastic energy absorbed by the material
clement.

Since Adx 1s the volume, the elastic strain energy per
unit volume (1.€., the strain energy density) is:

g _dU _1
Adx 2

XX xx)'

(o.&



ELASTIC STRAIN ENERGY - cont'd

o
From Hooke's law, & _=—>*.
E

Therefore:

2
%y U, = Lo _ 1gfxE [1n tension]
2 FE 2

2

1 Iz, 1
U, 25( xyyxy) 5 Gy = 27/xyG [in pure shear]

In three dimensions, the general expression for elastic
strain energy 1s:

1
U, = 2(0‘ E.to & +0_¢& +Txy7/xy+rx27/xz+ryzyyz).

xx ™ xx wZyy 227 zz



ELASTIC STRAIN ENERGY - cont'd

In tensor notation, these general expressions become:

U =—0.6.=——>=—¢;
277 2FE 27

If we substite into these expressions, the variation in elastic strain
for an 1sotropic solid, accounting for the Poisson effect, we get:

1 1% | R )
U, = 2E(O- +0'y +0. )—E(O'XXO'W +0,0. -I—O'XXGZZ)-I—E(TW +7 +ryz)

[for a 3D 1sotropic solid]
Expressed in terms of strains and elastic constants:

U :%muc;(g;ﬁg;ﬁg;p

o

G472+



ELASTIC STRAIN ENERGY - cont'd

1
U :E( 8 +G g +G g +Txy7/xy+TxZ)/XZ+Ty27/yZ)

0 xx "~ xx wyy zz7 zz

The derivative of U, with respect to any strain component yields the
corresponding stress component, or:
oU

8517

= /1A+2Ggl.j =0

Similarly, the derivative of U, with respect to any stress component
yields the corresponding strain or:

You can use these terms to calculate stresses and strains in elasticty.
Techniques for doing this include Castigliano's theorem, the theorem
of least work, and the principal of virtual work.



Anisotropy and Single Crystals

* Forces between atoms are directional.

(110)gcc

* They act along the “lines” connecting the atoms together.



Relations between stress and strain for
anisotropic crystals

Since force varies with direction, elastic constants will
also vary.

In general, we need to relate every stress component to
every strain component.

Thus we must define two new elastic constants:

— (C = stiffness
— S = compliance
We also re-write Hooke's law as:

O, = Cijklgkl or &, = Sijklgkl



Stiffness Is a
4™ rank tensor

34 =81 terms
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Matrix/Contracted Notation

« We often replace the indices with matrix (contracted) notation
for simplicity [Voigt, Lehrbuch der Kristallphysik (Teubner
VErlag, Berlin, 1910)].

x—>11->1 yy—>22-52 zz—>33->3
vz—=>23->4 xz—>13->5 xp—>12->6

(11 12<—13\ (1 6<5)

N
22 23 = 2 4
N A N A

. 33) \ 3

 Thus, Hooke's law is often re-written in matrix form as:

o, —Cpqg or 8p—S o,

7N

row column



Additional note about contracted notation

* Numbers 1-3 are associated
with normal stresses and
strains.

* Numbers 4-6 are associated
with shear stresses and
strains.

* On the next slide | attempt to
show you which stresses and
strains are related to each
elastic constant.




O.,& o.,)
T E N S O R Cxxxx Cxxyy CXXZZ Cxxyz CXXXZ Cxxxy
nyxx nyyy nyZZ nyyz nyxz nyxy
C szxx szyy CZZZZ szyz szxz szxy
ikl
’ Cyzxx Cyzyy Cyzzz Cyzyz Cyzxz Cyzxy
szxx szyy szzz szyz szxz szxy
nyxx nyyy nyzz nyyz nyxz nyxy
T,& 7, ]/
O.& o,)
CONTRACTED ¢, C, C;|C, C5 (4
CZI C22 C23 C24 C25 C'26
C.. _ C31 C32 C33 C34 C35 C36
7 C41 C42 C43 C44 C45 C46
CS 1 C52 C53 C54 CSS C56
C6 1 C62 C63 C64 C65 C66
T,& 7, 7/




Contracted vs. Tensor Notation

* Contracted notation 1s simple and convenient
for conducting matrix inversions.

» However, for coordinate transformations or
invariant determination, 1t 1s more useful to use
the stiffness and compliances in tensor notation.



g U U UU
o U U Uu
T & 5 F F _F
o U U U U
o U U Uu
SIS GI S}
o U U Uu
[l

- N N <t O
E 6 B b b b

=~

= N
» K =
20 meN
SRS vV =
hOOSl.
Cnml.tOOH/AU
e ~
S 88888
L ESSET
Q QO -~
=& 220§

Cpng —> Cpq 1s the STIFNESS matrix

(sz

5 b B b b b

%) S2 S3 S4 SS S6

B B uny uoun

- S-S S S

YUy Ly vy g
I

£, =5,0, —> S is the COMPLIANCE matrix



Stiffness and compliance matrices are also symmetric about the main diagonal

S P F B
CH C% C% C% Cﬁ
SRS
CB CB C%
S J
CU

T
S P F
I I
ST T T
S EEE S
ST TITC
ST TJITC

R R - S R~
vy il vy g
S G+
vy »y o
vy vy
ZEE%)

o

Uy Uy oy ny
Uy ;s oy oy
- S S S S
vy Yy !y vy
oy Ay w
oy By w

Uy oy oy

Required number of components reduces to 21

The number can be further reduced by considering crystal symmetry



Neumann's Principle

« “The symmetry of any physical property of a crystal
must include the symmetry elements of the point
group of the crystal.”

« Point groups are the group of macroscopic symmetry
elements possessed by the structure of a crystal.”

* Crystals exhibit specific point symmetries.

« Crystal “properties” will include the point group but
can exhibit more symmetry than the point group.

* Review pages 20-25 and 279-288 in Nye for a more complete treatment.



Possible Macroscopic Symmetry Elements

* Center of symmetry
« Mirror plane
» 1-, 2-, 3-, 4- or 6-fold rotation axes

e 1- 2- 3-, 4- or 6-fold inversion axes



Crystal systems

« The 32 crystal
classes (i.e., point
groups) are
conventionally
grouped into seven
crystal systems.

The requirements
for membership in a
given crystal
system is that the
symmetry of the
class should
possess a certain
minimum
characteristic.

Symbolism for the symmetry elements of the
32 point groups

Symbol on International
Symmetry element stereogram symbol
centre of symmetry . no symbol 1
mirror plane . full line (great circle) m
Rotation axes
1-fold (monad). no symbol 1
2-fold (diad) . 2
3-fold (triad) . A 3
4-fold (tetrad) . ¢ 4
6-fold (hexad) . . 6
Inversion axes

1-fold (inverse monad) = centre of sym- =

metry,(: ) v no symbol 1
2-1:;1(1 }E;n:z;-:a diad) = mirror plane normal 88 for mirror plane 2 (=m)
3-fold (inverse triad) = 3-fold rotation axis A _

plus a centre of symmetry 3
4-fold (inverse tetrad) (includes a rotation ® _

diad axis) 4
8-fold (inverse hexad) = a rotation triad @ _

axis plus a plane normal to it 6 (= 3/m)

[Table from J.F. Nye, Physical Properties of Crystals, (Oxford University Press, Oxford, 1985) p. 280]




 We can describe shapes
and arrangements of

Cublc
points within shapes in
terms of the symmetry

exhibited by them. Orthorhombic

S

« In crystal systems, the s
symmetry of a class of S
crystals should possess a Monodlinic
certain characteristic

symmetry (i.e., certain TeTago;:
minimum symmetry
elements). @ Triclinic

Rhombohedral



We describe crystal symmetry relative to specific crystallographic
axes and symmetry elements operating on those axes

The order of Hermann-Mauguin symbols in point groups

Crystal System Primary Secondary Tertiary
Triclinic - - -
Monoclinic [010], unique axisb — —

[001], unique axis ¢
Orthorhombic [100] [010] [001]
Tetragonal [001] [100],[010] [110],[110]
Trigonal, Rhombohedral Axes [111] [110],[011],[101]
Trigonal, Hexagonal Axes [001] [100],[010],[110]
Hexagonal [001] [100],[010],[110] [110],[120,[21
Cubic [100],[010],[001] [111],[1T1],[111],[111]

210]
[110],[110],[011],
[011],[T01],[101]

Table adapted from R. Tilley, Crystals and Crystal Structures, John Wiley & Sons, Hoboken, NJ, 2006, p. 73.

The concept of crystal symmetry is illustrated on the next six viewgraphs.

You should review this and related literature on your own time.



Rotation about the center
point.

180° rotation moves point
“1” to “2” but produces
same pattern.

Second 180° rotation
moves original point

(labeled with a “1”) back
to its starting point.

2-fold rotation.



4 3 m 4-fold inversion

Tetrahedron 4 € axes parallel to

inscribed in a cube = X,y.Z
(aka, <100>)
4
(a) (b)
3-fold rotation axes
parallel to cube — 3
diagonals
(aka, <111>)
Mirror plane
€« parallel to face
diagonals

(aka, <110>)

(d) Mirror

Symmetry elements in a regular tetrahedron. (a) tetrahedron inscribed in a cube
showing three Cartesian axes; (b) 4-fold inversion axes along x [100], y [010]
and z [001]; (c) 3-fold rotation axes passing through vertex and center of
opposite triangular face (i.e., [111]); (d) mirror planes parallel to [110]. Adapted
from Fig. 4.6 in R. Tilley, Crystals and Crystal Structures, John Wiley & Sons,
Hoboken, NJ, 2006.




43m
Octahedron
inscribed in a cube

3-fold inversion
axes parallel 10 c—
cube diagonals

(aka, <111>)

2-fold rotation axes
parallel to face mmm—
diagonals
(aka, <111>) with
perpendicular
mirror plane.

(e)

Mirror

4-fold rotation axes

.( parallel to x,y,z
Mirror — (aka, <100>) with
perpendicular
mirror plane.

(b)

F
A C
D 5 .
R. Tilley, Crystals and
B Crystal Structures,
(d) John Wiley & Sons,
Hoboken, NJ, 2006.

Figure 4.7 Symmetry elements present in a regular
octahedron: (a) an octahedron in a cube, showing
the three Cartesian axes; (b) each tetrad rotation
axis (4) lies along either x-, y- or z and is normal
to a mirror plane; (c) three-fold inversion axes (3)
pass through the centre of each triangular face; (d) a
triangular face viewed from above; (d) diad axes
through the centre of each edge lie normal to mirror
planes



We describe lattice shapes and
arrangements of lattice points in
the same way.



Symmetry of the Cubic P-Lattice *
\R%J)

\Q%% Letter
- symbol

T _ Four 3-fold
Pa4/m 3 2/m rotation axes
_ NN parallel to cube
D %/ (100)(111)(110) diagonals
Clay) )?I%J/ Co (aka, <111>)

Dﬁ
b & by 9 4 b, d biey)

“ e (a))
P4/m.... P..3... Po Um
10
(@) (111) (110
Primary Secondary Tertiary

Fig. 6.24. a Space group P 4/m 3 2/m . In the other diagrams, only the symmetry elements
corresponding to the symmetry directions (a), (111), (110) are shown.
bP4/m..., e¢eP...3...,dP....2/m

! ! !
(@) 11 (110)

Adapted from W. Borchardt-Ott, Crystallography, 2"¢ Edition, (Springer, Berlin,
Germany, 1995) p. 99




Table 21
Symmetry elements and conventions for the choice

There are Only 32 of axes inthg32 crystal classes

Symbols of centrosymmetrical classes are enclosed in boxes
crystal classes derived Trictinic O
from the 7 crystal
systems (i.e., shapes).
Monochmc
Each has a certain .
characteristic
symmetry. onhorhombm
They are presented on \’ J
stereograms on this
viewgraph and the two .
that follow. Nyo. p. 2641

Table 21.3



Tetragonal Trigonal

4mm om
v Yy Yy X,
-, x,
x,x, e
4/mmm
y
&y

x,x,

[Nye, pp. 285-286] | |20¢ 212 Table 21.3




Hexagonal Cubic

[Nye, pp. 287-288] | 20214 Table 21.5




Influence of Crystal Symmetry on Number of Elastic Constants *

Axial : . Number of
Crystal ) Interaxial Minimum Symmetry )
Relation- Elastic
System ) Angles Elements
ships Constants
Four 3-fold rotation
: . o _  _ ano | Orrotoinversion axes
Cubic a=b=c |a=p=y=90 parallel to body 3
diagonals
0 o One 6-fold rotation
— a=p=90°% , , ,
Hexagonal a=b#c ~ 120° or rotoinversion axis 5
Y parallel to z-axis
One 4-fold rotation
Tetragonal a=b#c a=p=y=90° | orrotoinversion axis 6or7
parallel to z-axis
Rhombohedral One 3—.fold r.otatio.n
_ | a=b=c a=pB=y#90° | orrotoinversion axis 5,6or7
(Trigonal) parallel to z-axis
Three 2-fold rotation
Orthorhombic arb#c a=p=y=90° | orrotoinversion axes 9
parallel to x,y,z-axes
One 2-fold rotation
Monoclinic arb#c a=y=90°#p | orrotoinversion axis 13
parallel to y-axis
- None -
Triclinic arb#c a#zB#y#90° | One 1-fold rotation 21

or rotoinversion axis

Increasing
crystal
symmetry

A

S L LT T T e e e E TR TR P T Y P T PR PR LR LR TERY

Increasing
# Elastic
const.



More Reading Regarding the Reduction of
Elastic Constants with Increasing Symmetry

* A clear explanation of the reduction in the number of
elastic constants due to crystal symmetry is provided in
Chapter 6 of Wagoner and Chenot (pp. 196-207).

« Excellent explanations are also provided in Nye (i.e.,
Ch. 8 and Appendix B) and in Reid (Ch. 3).

* You are urged, but not required, to review some of this
material.



Form of the elastic constant matrices for different symmetries.

Triclinic
Both classes

Monoclinic
All classes

Orthorhombic

All classes

Tetragonal

Classes 4mm, 42m,
422,4/ mmm

Classes 4,4,4/m

Classes 3,3

Trigonal

Classes 32,3m,3m

Zero component (s =0, ¢ = 0)
Non-zero component (s # 0, ¢ # 0)
Equal components

Numerically equal but opposite
©®=2@ fors; ©® = @/2 forc
X=2(s),— 5p) or (¢c;; — ¢y))/2

x$ 83

Diad || x, Diad || x,
standard
orientation
Hexagonal Cubic Isotropic

All classes

All classes

R

All classes

Figure adapted from J.F.
Nye, Physical Properties of
Crystals, Oxford University

Press (1985), p. 140-141.




Cubic Symmetry and Elastic Constants

3

Application of a stress along the [100] direction evokes a certain
elastic response. Stresses applied along the [010] or [001] axes will
evoke an equivalent elastic response. Thus:

— Cy =0y =0Cy

Similarly, applied shear stresses will evoke equivalent responses
along the following axes:

= G4y = Cs5 = Cggy Cyp = Cy3= Cg

The number of independent elastic constants for a cubic material is 3.



Isotropy considerations

3

« Cubic materials are not necessarily isotropic.

« For these systems, anisotropy is defined by the Zener ratio, A:

(Cll _CIZ)/2C44
A= or
2(Su _S12)/S44

NOTE: Some books (Ex., Hertzberg) present an
inverted version of this equation. However, the
implications are still the same.

 When the Zener ratio = 1, the material is isotropic.



FOR CUBIC SOLIDS

Cll C12 C12 O O O
c, C, 0 0 0
c, 0 0 0

C, 0 0

C, O

C44

Sll S12 S12 O O O
S S, 0 0 0
S, 0 0 0

S, 0 0

S, O

S44

C44 =

C11 B sz

Sy = 2(S11 - Szz)

We can assume that most polycrystalline solids are isotropic but not all.



Many parameters are used to describe the elastic
properties of materials

P T . L S
A Sy 2(S11—Slz) S

See Ch. 8 in Nye, Ch. 13 in Newnham, or Ch. 10 in Gersten for a
more thorough explanation.

Wikipedia also provides a nice discussion.



Elastic Moduli in Cubic Materials

We can use the different relations among elastic constants
to ascertain elastic moduli in any crystallographic orientation

1:S11 _2(S11 =95 _;S44j(052:82 + By’ "‘05272)

hkl

Where a, 3, and y are the direction cosines between the [/kl]
crystal direction and the [100], [010], and [001] directions
(i.e., the x,y,z axes).

o = cos(ZL[hkl][100]) ; B = cos(L[Akl][010]) ; vy = cos(ZL[hkI][010])



TABLE 1.3 Stiffness and Compliance Constants for Selected Crystals®

(10° Pa) (101 Pa~}
Material 1 Ci12 Caq S 512 Sas
Cubic

Aluminum 10.82 6.13 2.85 1.57 —0.57 3.51
Copper 16.84 12.14 7.54 1.50 —-0.63 1.33
Gold 18.60 15.70 4.20 2.33 —1.07 2.38
Iron 23.70 14.10 11.60 0.80 -0.28 0.86
Lithium fluoride 11.2 4.56 6.32 1.16 —0.34 1.58
Magnesium oxide 29.3 9.2 15.5 0.401 —0.096 0.648
Molybdenum® 46.0 17.6 11.0 0.28 —0.08 091
Nickel 24.65 14.73 12.47 0.73 -0.27 0.80
Sodium chloride? 4.87 1.26 1.27 2.29 —-0.47 7.85
Spinel (MgAL,O,) 27.9 15.3 15.3 0.585 —0.208 0.654
Titanium carbide® 51.3 10.6 17.8 0.21 —0.036 0.561
Tungsten 50.1 19.8 15.14 0.26 —0.07 0.66
Zinc sulfide 10.79 7.22 4.12 2.0 —0.802 243

€11 C12 €13 €33 Caq 511 512 513 533 Sa4

Hexagonal

Cadmium 12.10 481 442 513 1.85 123 —-0.15 —-093 355 540
Cobalt 30.70 16.50 1030 3581 7.53 047 -0.23 -0.07 032 132
Magnesium 597 262 217 6.17 164 220 —-079 -—-050 197 6.10
Titanium 16.0 9.0 6.6 18.1 4.65 097 -047 -0.18 0.69 215
Zinc 16,10 342 501 6.10 3.83 0.84 005 -073 284 261

4 Data adapted from H. B. Huntington, Solid State Physics, Vol. 7, Academic, New York, 1958, p. 213,

and K. H. Hellwege, Elastic, Piezoelectric and Related Constants of Crystals, Springer-Verlag, Berlin,
1969, p. 3. :
> Note that E,g0>E ;.

R.W. Hertzberg, Deformation & Fracture Mechanics of Engineering Materials, 4th ed.,
(John Wiley & Sons, New York, 1996) p. 14.




Example Problem

« Compute the elastic modulus for tungsten in
the <110> direction.

We need the direction cosines for the unit
vectors in the cubic lattice.

<hkl> =<110>

B=1N2 z ‘,<1/1&7
y=0

X

o =12




Example Problem — cont'd

1 1
T Sy _2(S11 =5 —2544j(0(2,32 + By +05272)
ikl

L 0.26-2 (0.26 —(-0.07)— % (O.66)j (i +0+ Oj

EIIO

=0.26—(0)(1/4)

E ., =384.6 GPa




Elastic Moduli in Hexagonal Crystals

[001]
_y alhki]

v 1 212 4 2 2
m ——=5,0=y)" +S8,1 +r (1_7/ )(2S13+S44)
[010] Ehkl

[100] Hexagonal

o o =cos(ZL[hKI][100]) ; p = cos(L[hKI][010]) ; y = cos(L[hk{][010])
for the hexagonal unit cell.

 In hexagonal crystals, E,,, depends only on the direction
cosine y which lies perpendicular to the basal plane.

* As a result the modulus of elasticity in hexagonal crystals is
Isotropic everywhere in the basal plane.



[001

]
Fig. 2.10 from Roesler et al.
Orientation dependence of Young’s
modulus for some materials. In each
o0 spatial direction, the distance of the
[100 surface from the origin is a measure
of Young’s modulus. For example,

o . , Copper 1is elastically soft along
(a) Titanium carbide  (b) Tungsten, 4 = 1.00 (c) Aluminum, 4 = 1.23 <100> type directions and is

A4=0.88 elastically stiff along <111> type
directions.

We can describe anisotropy
in terms of the Zener ratio:

A= 2(511 _Slz) _ 2C44

(d) Silicon, 4 =1.57  (b) Gold, 4 = 1.89 (f) o Tron, 4 = 2.13 S (€ —Cy)

When 4 = 1, the material 1s
isotropic. As A4 deviates, the
material becomes more
anisotropic.

(g) Nickel, 4=2.50  (h) Copper, 4 = 3.22 (i) Zinc

E o001y / E(1010) = 2-13



Elastic properties of polycrystals

In single crystals elastic constants are determined by
bonding between atoms. As such, most single crystals are
mechanically anisotropic.

In polycrystals, the anisotropic behavior of each grain
“averages out” because: (a) grain orientations tend to be
random; and (b) the deformation of one grain is dependent
on the deformation of its neighbor.

Exceptions occur when the material is textured (i.e., the
grains exhibit a preferred orientation).

Page 34 in Hosford lists some possibilities.



Temperature dependence of elastic moduli

* Young's modulus does vary with temperature.

* For metals and ceramics there are some general
rules of thumb for temperatures lower than half of the

melting temperature.

Metals: E(T)=E(O K)-(1 - O.5TTJ

mp

Ceramics: E(T)=E(0 K)-(1—O.3TT]

mp

 Different rules apply for polymers.



Origin of T dependence

Repulsion

Attraction

Raising T increases the energy of
the atoms by an amount U,
causing them to oscillate about
their equilibrium positions.

The repulsive interaction is short
range in comparison to the
attractive interaction.

The mean distance between
atoms thus grows when
temperature is increased due to
oscillation.

Thermal expansion increases and
E decreases with increasing T.



Young’s modulus also tends to scale with T, ) for similar reasons.

E (GPa)j .
500— Ir
R
(&
| |
W
400— Ru J
-~ - g
[ ] ~
7~
300— . Me
Be _
Fe P
200— L
Mn Ni~ u
- Ta
Zn // .tr [ (;I‘ ]
100 gy - 7Al mg Ti Nb
TN Agp =
W m u Zr
-~ 23 mpp Mg
0 | | | | | | —
0 500 1000 1500 2000 2500 3000 3500
Tono (K)



Influence of alloying

* Alloying generally has little
influence on the stiffness of

materials. This is because the 207
solubility of alloying elementsis  E T‘?O‘H ’,,”'o
generally very small (<10%). CPal . ,Q,,f”
121 <~>-4>’<a(>

« As noted by Roesler et al., the 100
elastic modulus for Al alloys 50 -
varies by roughly 10% while [Roesler, p. 41]
their strengths can be 0 ' . . .

1
0 20 40 60 &80 100
—_—
Cu % N1

significantly altered by alloying.

 The Cu-Ni system is an
exception to the rule. Niis
100% soluble in Ni.



