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Origins of elasticity
Elastic constants in isotropic materials

Elastic constants in anisotropic materials

READING LIST
DIETER:  Ch. 2, Pages 47-60

Pages 21-36 in Hosford ; Ch. 2 in Roesler ; 
Ch. 8 in Nye ; Ch. 3 in McClintock and Argon
Ch. 7 in Sines ; Ch. 6 in Wagoner and Chenot

Ch. 11 in Sadd

HOMEWORK
Calculate Young’s modulus 
for Al and Cu in the <111>, 
<100>, and <110> directions.



ElasticityElasticity

• Important because most engineering design is done 
in the elastic region.  (Remember, plastic deformation 
generally constitutes failure.)

• Macroscopically, most polycrystalline materials are 
elastically isotropic.

• Microscopically, elastic behavior is inherently 
anisotropic for individual grains.

• Polycrystalline materials can be anisotropic if they 
exhibit strong crystallographic textures.



Elasticity Elasticity –– contcont’’dd

• Derived from atomic 
bonding forces originating 
from long range attractive 
forces which draw atoms 
together until short range 
repulsive forces become 
large enough to balance 
them out.

• As such, elastic properties 
are an aggregate effect of 
individual deformations of 
interatomic bonds.
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Bulk Elastic BehaviorBulk Elastic Behavior

• Applied force is transmitted by the network of bonds 
constituting the material.

• Thus, elastic behavior depends quantitatively on the  
magnitude of the interatomic forces.

• Elastic properties do not depend on microstructure of 
the material.



Forces Between AtomsForces Between Atoms

• Bonds form when atoms either share (e.g., covalent 
and metallic bonds) or transfer (e.g., ionic bonds) 
electrons between atoms.

• This occurs to achieve a minimum in potential energy 
for the system corresponding to a stable electron 
configuration.

• This has been modeled for ionic systems as follows:



Ionic BondIonic Bond

• Electron transfer from one 
atom to another occurs due 
to electrostatic interaction 
between oppositely charged 
ions (e.g., Na+ and Cl- in 
NaCl).

• Force of attraction between 
ions is Fattract

• Work is done to draw ions 
together.  It is given by:
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• Each atom maintains an electron cloud surrounding it.  The outer
surfaces of each atom are both negatively charged.  

• Thus, at close distances,  the electron clouds overlap and repel.  
The repulsive force can be written as:

• The total energy of the system is thus the sum of the attractive and 
repulsive components.  It can be expressed in general as:

• This is the well known Lennard-Jones potential.  You might recall 
this from your chemistry or physics courses.

repel n
BU
r



total attract repel m n
A BU U U

r r


   



• The minimum energy point 
corresponds to the equilibrium 
separation (i.e., the equilibrium 
bond length, ro).

• The force between atoms is 
simply the derivative (i.e., the 
slope) of the energy versus 
distance plot.

• The bond stiffness is the 
derivative of the force versus 
distance plot.
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• At the equilibrium bond length, ro, the variation of F with r is essentially 
linear, which means that the stiffness is essentially constant at small 
distances from ro.

• Using this expression, the force to “stretch” n bonds in a solid is:

where n is the number of bonds.
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• The applied stress is:



• The strain can be expressed as:

• Thus, stress becomes:

• From Hooke’s law:

• Thus,
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The derived expression 
shows that the modulus is 
dependent upon bonding.

Modulus, and other elastic 
properties, are

structure insensitive.

The directionality of elastic 
properties does depend 

upon atomic arrangement 
(crystallography) in single 

crystals.  They tend to 
average out in polycrystals.



[From W.D. Callister, Jr, Materials Science and Engineering: An Introduction, 7th Ed., (Wiley, New York, 2007) p.28]

Bonding Energy

Bonding Type
Material, 

Substance kJ/mol
eV/Atom, Ion, 

Molecule
Melting 

Temperature °C

Ionic NaCl 640 3.3 801
MgO 1000 5.2 2800

Covalent Si 450 4.7 1410
C (diamond) 713 7.4 >3550

Metallic Hg 68 0.7 -39
Al 324 3.4 660
Fe 406 4.2 1538
W 849 8.8 3410

van der Waals Ar 7.7 0.08 -189
Cl2 31 0.32 -101

Hydrogen NH3 35 0.36 -78
H2O 51 0.52 0
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A bar chart illustrating Young’s moduli for some common examples of the primary 
classes of materials (i.e., metals, ceramics, polymers and composites).  Ceramics 
tend to exhibit the highest elastic moduli and polymers the lowest.  The elastic 
moduli of composites are between those of their constituents.

Courtesy of Granta Design

Covalent or
Ionic bonding

Metallic 
bonding



stress is related to strain for an isotropic solidstress is related to strain for an isotropic solid

• Hooke’s Law

– Isotropic Solids (properties 
are the same in all 
directions)

– Anisotropic solids 
(properties are directional)

Need different definition

– Let’s consider both cases
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First consider the Poisson effectFirst consider the Poisson effect

A tensile stress along the z axis causes the material to 
stretch along the z axis and to contract along the x and 
y axes.

lateral strainPoisson's Ratio, 
longitudinal strain
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RoomRoom--
Temperature Temperature 
PoissonPoisson’’s Ratio s Ratio 
for Selected for Selected 
SolidsSolids

Material Class Material 

Metallic solid Ag 0.38

(crystalline) Al 0.34

Au 0.42

Cu 0.34

-Fe 0.29

Ir 0.26

Ni 0.31

W 0.29

Covalent solid Ge 0.28

(crystalline) Si 0.27

Al2O3 0.23

TiC 0.19

Covalent Ionic Solid MgO 0.19

Covalent Glass Silica glass 0.20

Network Polymer Bakelite 0.20

Ebonite (hard rubber) 0.39

Elastomer Natural rubber 0.49

Chain Polymer Polystyrene 0.33

Polyethylene 0.40

Van der Waal’s Solid Argon (at 0 K) 0.25



The strains resulting from this stress state must be the sum of the strains 
associated with loading along each individual axis.
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RECALLRECALL:  Elastic Stress:  Elastic Stress--Strain RelationsStrain Relations

Stress
Strain in the
x-direction

Strain in the
y-direction

Strain in the
z-direction

Variation in 
elastic strain for 
an isotropic solid
because of the 
Poisson effect
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• Bulk Modulus (K), also known as the volumetric elastic 
modulus:

hydrostatic pressure 1
volume change produced

where: 
-   hydrostatic pressure,

3
  dilatation (i.e., volume change) ,

  compressibility.
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Other Elastic StressOther Elastic Stress--Strain Relations for Isotropic SolidsStrain Relations for Isotropic Solids



• Now we can relate the elastic constants.
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Other Relations Between Isotropic Elastic ConstantsOther Relations Between Isotropic Elastic Constants

= μ= G== G=μ

= λ====λ

== K= K==K [bulk]

= μ= G== G=G [shear]

=== ν== νν

==== E= EE [elastic]
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STRAIN ENERGYSTRAIN ENERGY
Energy stored in a body due to deformation.

• Work to deform a body elastically is stored as elastic strain
energy.  It is recovered when the applied forces are released.

• Strain energy is proportional to the area under the load-
deformation (stress-strain) curve.

• We will elaborate on this
concept on the next
few pages.

Deformation δ

Lo
ad

 F
1
2

U F



Strain EnergyStrain Energy
• The first law of thermodynamics states:

where,

dU = internal energy
δQ = heat
δW = mechanical work done

• During elastic deformation, the amount of heat generated 
is negligible.

• Thus the work done on the body is converted into internal 
energy and is fully recovered upon unloading.

dU Q W TdS PdV    



ELASTIC STRAIN ENERGY ELASTIC STRAIN ENERGY –– contcont’’dd
• Consider an elemental cube that is subjected to only an elastic 

tensile stress along the x-axis.  The elastic strain energy, U, is:
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 total elastic energy absorbed by the material 
element.

Since  is the volume, the elastic strain energy per  
unit volume (i.e., the strain ene
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From Hooke's law, = . 

Therefore:

1 1  [in tension]
2 2

1 1 1  [in pure shear]
2 2 2

In three dimensions, the general expression for elastic 
strain energy is:
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2
2

In tensor notation, these general expressions become:

1 1 1 .
2 2 2

If we substite into these expressions, the variation in elastic strain
for an isotropic solid, accounting for the Poisso
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[for a  3D  isotropic solid]
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The derivative of  with respect to any strain component yields the
corresponding stress component, or:
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You can use these terms to calculate stresses and strains in elasticty.
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o
ij

ij

U 






s theorem, the theorem
of least work, and the principal of virtual work.

ELASTIC STRAIN ENERGY ELASTIC STRAIN ENERGY –– contcont’’dd



• Forces between atoms are directional.

• They act along the “lines” connecting the atoms together.

Anisotropy and Single CrystalsAnisotropy and Single Crystals

(110)BCC



• Since force varies with direction, elastic constants will 
also vary.

• In general, we need to relate every stress component to 
every strain component.

• Thus we must define two new elastic constants:

– C  stiffness
– S  compliance

• We also re-write Hooke’s law as:

or   ij iij j ijkl klkl klC S   

Relations between stress and strain for Relations between stress and strain for 
anisotropic crystalsanisotropic crystals
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Allow us to 
reduce the 
number of 

constants from 
81 to 36
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Matrix/Contracted NotationMatrix/Contracted Notation

• We often replace the indices with matrix (contracted) notation 
for simplicity [Voigt, Lehrbuch der Kristallphysik (Teubner
VErlag, Berlin, 1910)].

• Thus, Hooke’s law is often re-written in matrix form as:

11 1 22 2 33 3
23 4 13 5 12 6

11 12 13 1 6 5
22 23 2 4

33 3

xx yy zz
yz xz xy

     
     

   
         
   

or  p p qq qq p pC S   

row column



Additional note about contracted notationAdditional note about contracted notation

• Numbers 1-3 are associated 
with normal stresses and 
strains.

• Numbers 4-6 are associated 
with shear stresses and 
strains.

• On the next slide I attempt to 
show you which stresses and 
strains are related to each 
elastic constant.

x
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y
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Contracted vs. Tensor NotationContracted vs. Tensor Notation

• Contracted notation is simple and convenient 
for conducting matrix inversions.  

►However, for coordinate transformations or 
invariant determination, it is more useful to use 
the stiffness and compliances in tensor notation.
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qp qpC 

qp qpS  Spq is the COMPLIANCE matrix

Note the change 
from  tensor 
notation to matrix 
notation.  See 
Chapter 8 in Nye 
for details.

Cpq is the STIFNESS matrix



Stiffness and compliance matrices are also symmetric about the main diagonal

Required number of components reduces to 21

The number can be further reduced by considering crystal symmetry 
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NeumannNeumann’’s Principles Principle
• “The symmetry of any physical property of a crystal 

must include the symmetry elements of the point 
group of the crystal.”

• Point groups are the group of macroscopic symmetry 
elements possessed by the structure of a crystal.*

• Crystals exhibit specific point symmetries.

• Crystal “properties” will include the point group but 
can exhibit more symmetry than the point group.

* Review pages 20-25 and 279-288 in Nye for a more complete treatment.



Possible Macroscopic Symmetry ElementsPossible Macroscopic Symmetry Elements

• Center of symmetry

• Mirror plane

►1-, 2-, 3-, 4- or 6-fold rotation axes

• 1-, 2-, 3-, 4- or 6-fold inversion axes



Symbolism for the symmetry elements of the
32 point groups

[Table from J.F. Nye, Physical Properties of Crystals, (Oxford University Press, Oxford, 1985) p. 280]

Crystal systems

• The 32 crystal 
classes (i.e., point 
groups) are 
conventionally 
grouped into seven 
crystal systems.

• The requirements 
for membership in a 
given crystal 
system is that the 
symmetry of the 
class should 
possess a certain 
minimum 
characteristic.



Cubic

Hexagonal
120°

Tetragonal

Rhombohedral

Orthorhombic

Monoclinic

Triclinic

• We can describe shapes 
and arrangements of 
points within shapes in 
terms of the symmetry 
exhibited by them.

• In crystal systems, the 
symmetry of a class of 
crystals should possess a 
certain characteristic 
symmetry (i.e., certain 
minimum symmetry 
elements).



Table adapted from R. Tilley, Crystals and Crystal Structures, John Wiley & Sons, Hoboken, NJ, 2006, p. 73.

We describe crystal symmetry relative to specific crystallographWe describe crystal symmetry relative to specific crystallographic ic 
axes and symmetry elements operating on those axesaxes and symmetry elements operating on those axes

Crystal System Primary Secondary Tertiary
Triclinic
Monoclinic [010],  unique axis b

[001],  unique axis c
Orthorhombic [100] [010] [001]
Tetragonal [001] [100

The order of Hermann-Mauguin symbols in point groups

  
 

], [010] [1 10], [110]
Trigonal, Rhombohedral Axes [111] [110], [011], [101]
Trigonal, Hexagonal Axes [001] [100], [010], [110]
Hexagonal [001] [100], [010], [110] [1 10], [120, [210]
Cubic [100], [010], [001] [111], [1 11], [11 1], [1 11] [1 10], [110], [01 1],

[011], [101], [101]

The concept of crystal symmetry is illustrated on the next six vThe concept of crystal symmetry is illustrated on the next six viewgraphs.iewgraphs.

You should review this and related literature on your own time.You should review this and related literature on your own time.



• Rotation about the center 
point.

• 180° rotation moves point 
“1” to “2” but produces 
same pattern.

• Second 180° rotation 
moves original point 
(labeled with a “1”) back 
to its starting point.

• 2-fold rotation.

1

2



43m 4-fold inversion 
axes parallel to 

x,y,z
(aka, <100>)

3-fold rotation axes 
parallel to cube 

diagonals 
(aka, <111>)

Mirror plane 
parallel to face 

diagonals 
(aka, <110>)

Tetrahedron 
inscribed in a cube

B*

Symmetry elements in a regular tetrahedron.  (a) tetrahedron inscribed in a cube 
showing three Cartesian axes;  (b) 4-fold inversion axes along x [100], y [010]
and z [001];  (c) 3-fold rotation axes passing through vertex and center of 
opposite triangular face (i.e., [111]);  (d) mirror planes parallel to [110].  Adapted 
from Fig. 4.6 in R. Tilley, Crystals and Crystal Structures, John Wiley & Sons, 
Hoboken, NJ, 2006.



43m
Octahedron 
inscribed in a cube

4-fold rotation axes 
parallel to x,y,z

(aka, <100>) with 
perpendicular 
mirror plane.

3-fold inversion 
axes parallel to 
cube diagonals 
(aka, <111>)

2-fold rotation axes 
parallel to face 

diagonals
(aka, <111>) with 

perpendicular 
mirror plane.

R. Tilley, Crystals and 
Crystal Structures, 
John Wiley & Sons, 
Hoboken, NJ, 2006.

B*



We describe lattice shapes and 
arrangements of lattice points in 

the same way.



Symmetry of the Cubic Symmetry of the Cubic PP--LatticeLattice

Adapted from W. Borchardt-Ott, Crystallography, 2nd Edition, (Springer, Berlin, 
Germany, 1995) p. 99

Primary Secondary Tertiary

100 111 110

4 3 2

Letter 
symbol

P m m


  

Four 3-fold 
rotation axes 

parallel to cube 
diagonals 

(aka, <111>)



[Nye, p. 284]

• There are only 32 
crystal classes derived 
from the 7 crystal 
systems (i.e., shapes).

• Each has a certain 
characteristic 
symmetry.

• They are presented on 
stereograms on this 
viewgraph and the two 
that follow.

Table 21.3

Triclinic

Monoclinic

Orthorhombic

Table 21
Symmetry elements and conventions for the choice 

of axes in the 32 crystal classes
Symbols of centrosymmetrical classes are enclosed in boxes

B*



[Nye, pp. 285-286]
Table 21.2

Tetragonal

Table 21.3

Trigonal

B*



[Nye, pp. 287-288]
Table 21.4

Hexagonal

Table 21.5

Cubic

B*



21

13

9

5, 6 or 7

6 or 7

5

3

Number of 
Elastic 

Constants

- None -
One 1-fold rotation
or rotoinversion axis 

 ≠  ≠  ≠ 90°a ≠ b ≠ cTriclinic

One 2-fold rotation
or rotoinversion axis 

parallel to y-axis
 =  = 90° ≠ a ≠ b ≠ cMonoclinic

Three 2-fold rotation
or rotoinversion axes 
parallel to x,y,z-axes

 =  =  = 90°a ≠ b ≠ cOrthorhombic

One 3-fold rotation
or rotoinversion axis 

parallel to z-axis
 =  =  ≠ 90°a = b = c

Rhombohedral
(Trigonal)

One 4-fold rotation
or rotoinversion axis 

parallel to z-axis
 =  =  = 90°a = b ≠ cTetragonal

One 6-fold rotation
or rotoinversion axis 

parallel to z-axis

 =  = 90°; 
 = 120°a = b ≠ cHexagonal

Four 3-fold rotation
or rotoinversion axes 

parallel to body 
diagonals

 =  =  = 90°a = b = cCubic

Minimum Symmetry 
Elements

Interaxial
Angles

Axial
Relation-

ships

Crystal 
System

Influence of Crystal Symmetry on Number of Elastic ConstantsInfluence of Crystal Symmetry on Number of Elastic Constants
Increasing 
crystal 
symmetry

Increasing 
# Elastic 

const.



More Reading Regarding the Reduction of More Reading Regarding the Reduction of 
Elastic Constants with Increasing SymmetryElastic Constants with Increasing Symmetry

• A clear explanation of the reduction in the number of 
elastic constants due to crystal symmetry is provided in 
Chapter 6 of Wagoner and Chenot (pp. 196-207).

• Excellent explanations are also provided in Nye (i.e., 
Ch. 8 and Appendix B) and in Reid (Ch. 3).

• You are urged, but not required, to review some of this 
material.



Triclinic
Both classes

Monoclinic
All classes

Orthorhombic
All classes

Form of the elastic constant matrices for different symmetries.

Tetragonal

Classes 4, 4,4 / m
Classes 4 , 42 ,

422,4 /
mm m
mmm

Trigonal

Classes 32, 3 ,3m mClasses 3, 3

2Diad
standard

orientation

x 3Diad x

Cubic
All classes

Isotropic
All classes

Hexagonal
All classes

Zero component (s = 0, c = 0)
Non-zero component (s ≠ 0, c ≠ 0)
Equal components
Numerically equal but opposite
 = 2 for s;  = /2 for c
=2(s11 – s22) or (c11 – c22)/2

Figure adapted from J.F. 
Nye, Physical Properties of 
Crystals, Oxford University 
Press (1985), p. 140-141.



Cubic Symmetry and Elastic ConstantsCubic Symmetry and Elastic Constants

• Application of a stress along the [100] direction evokes a certain 
elastic response.  Stresses applied along the [010] or [001] axes will 
evoke  an equivalent elastic response.  Thus:
– C11 = C22 = C33

• Similarly, applied shear stresses will evoke equivalent responses 
along the following axes:
– C44 = C55 = C66; C12 = C13 = C23

• The number of independent elastic constants for a cubic material is 3.

1

3

2



Isotropy considerationsIsotropy considerations

• Cubic materials are not necessarily isotropic.

• For these systems, anisotropy is defined by the Zener ratio, A:

• When the Zener ratio = 1, the material is isotropic.

NOTE:  Some books (Ex., Hertzberg) present an 
inverted version of this equation.  However, the 
implications are still the same.

 

 

11 12 44

11 12 44

/ 2
or

2 /

C C C

S S S
A







1

3

2



FOR CUBIC SOLIDS

We can assume that most polycrystalline solids are isotropic but not all.

11 12 12

11 12
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Many parameters are used to describe the elastic 
properties of materials

See Ch. 8 in Nye, Ch. 13 in Newnham, or Ch. 10 in Gersten for a 
more thorough explanation.

Wikipedia also provides a nice discussion.

11

1E
S

  44 11 12

1 1
2

 


G
S S S

12

11

S
S

  

 2 1 



EG

These expressions are for isotropic solids.  They are interrelated



Elastic Moduli in Cubic MaterialsElastic Moduli in Cubic Materials

Where α, β, and γ are the direction cosines between the [hkl]
crystal direction and the [100], [010], and [001] directions 

(i.e., the x,y,z axes).

α = cos([hkl][100]) ; β = cos([hkl][010]) ; γ = cos([hkl][010])

We can use the different relations among elastic constants 
to ascertain elastic moduli in any crystallographic orientation

 2 2 2 2 2 2
11 11 12 44

1 12
2hkl

S S S S
E

            
 



R.W. Hertzberg, Deformation & Fracture Mechanics of Engineering Materials, 4th ed., 
(John Wiley & Sons, New York, 1996) p. 14.



• Compute the elastic modulus for tungsten in 
the <110> direction.

We need the direction cosines for the unit 
vectors in the cubic lattice.

<hkl> = <110>

α = 1/√2

β = 1/√2

γ = 0

Example ProblemExample Problem

x

z

y

<110>



Example Problem Example Problem –– contcont’’dd

 2 2 2 2 2 2
11 11 12 44

110

110

1 12
2

1 1 10.26 2 0.26 ( 0.07) (0.66) 0 0
2 4

0.26 (0)(1/ 4)

384.6 GPa

hkl

S S S S
E

E

E

            
 

          
  

 





• α = cos([hkl][100]) ; β = cos([hkl][010]) ; γ = cos([hkl][010])
for the hexagonal unit cell.  

• In hexagonal crystals, Ehkl depends only on the direction 
cosine γ which lies perpendicular to the basal plane.  

• As a result the modulus of elasticity in hexagonal crystals is 
isotropic everywhere in the basal plane.

Elastic Moduli in Hexagonal CrystalsElastic Moduli in Hexagonal Crystals

  2 2 4 2 2
11 33 13 44

1 (1 ) 1 2
hkl

S S S S
E

        

Hexagonal

[hkl]

[100]

[010]

[001]

 





Fig. 2.10 from Roesler et al.
Orientation dependence of Young’s 
modulus for some materials.  In each 
spatial direction, the distance of the 
surface from the origin is a measure 
of Young’s modulus. For example, 
Copper is elastically soft along 
<100> type directions and is 
elastically stiff along <111> type 
directions.

[100]

[001]

[010]

We can describe anisotropy 
in terms of the Zener ratio:

When A = 1, the material is 
isotropic.  As A deviates, the 
material becomes more 
anisotropic.

 
 

11 12 44

44 11 12

2 2S S CA
S C C


 


(a) Titanium carbide
A = 0.88

(b) Tungsten, A = 1.00 (c) Aluminum, A = 1.23

(d) Silicon, A = 1.57 (b) Gold, A = 1.89 (f) Iron, A = 2.13

(g) Nickel, A = 2.50 (h) Copper, A = 3.22 (i) Zinc
E(0001) / E(1010) = 2.13



Elastic properties of polycrystalsElastic properties of polycrystals

• In single crystals elastic constants are determined by 
bonding between atoms.  As such, most single crystals are 
mechanically anisotropic.

• In polycrystals, the anisotropic behavior of each grain 
“averages out” because: (a) grain orientations tend to be 
random; and (b) the deformation of one grain is dependent 
on the deformation of its neighbor.

• Exceptions occur when the material is textured (i.e., the 
grains exhibit a preferred orientation).

• Page 34 in Hosford lists some possibilities.



Temperature dependence of elastic moduliTemperature dependence of elastic moduli

• Young’s modulus does vary with temperature.

• For metals and ceramics there are some general 
rules of thumb for temperatures lower than half of the 
melting temperature.

• Different rules apply for polymers.

Metals:  ( ) (0 K) 1 0.5

Ceramics:  ( ) (0 K) 1 0.3

mp

mp

TE T E
T

TE T E
T

 
   

 
 

   
 



Repulsion

Attraction

ro

r

U

tU
To = 0 K

T1 > 0 K

Origin of Origin of TT dependencedependence
• Raising T increases the energy of 

the atoms by an amount Ut
causing them to oscillate about 
their equilibrium positions.

• The repulsive interaction is short 
range in comparison to the 
attractive interaction.

• The mean distance between 
atoms thus grows when 
temperature is increased due to 
oscillation.

• Thermal expansion increases and 
E decreases with increasing T.

1Tr



0

100

200

300

400

500

5000 1000 1500 2000 2500 3000 3500

Re
W

Mo
Be

Fe

NiMn
Cu

Au
Al

Ag
MgPb

Zn
Sn

Na

Ti
Cr

Zr
Nb

Ta

Ru

Ir

Tmp (K)

E (GPa)

Young’s modulus also tends to scale with Tmp for similar reasons.



Influence of alloyingInfluence of alloying

• Alloying generally has little 
influence on the stiffness of 
materials.  This is because the 
solubility of alloying elements is 
generally very small (<10%).

• As noted by Roesler et al., the 
elastic modulus for Al alloys 
varies by roughly 10% while 
their strengths can be 
significantly altered by alloying.

• The Cu-Ni system is an 
exception to the rule.  Ni is 
100% soluble in Ni.
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[Roesler, p. 41]


