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StrainStrain
• When a solid is subjected to a load, parts of the solid are 

displaced from their original positions.
• Think of it like this; the atoms making up the solid are displaced 

from their original positions.

• This displacement of points or particles under an applied stress
is termed strain.
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Where to beginWhere to begin
• Consider a point A in a solid located at position x,y,z.

• Apply force to the body and point A (x,y,z) is displaced to 
A′ (x+u,y+v,z+w).
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Displacement of pointsDisplacement of points
• Displacement vector:

uA = f(u,v,w)
where u, v, and w are units of translation along the x, y, z
axes.

• Solids are composed of 
many particles.

• If uA is constant for all 
particles, no deformation 
occurs (only translation).

• If uA varies from particle to 
particle, i.e., ui = f(xi), the 
solid deforms.

Displacement = Translation + Rotation + Shear
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11--D Linear StrainD Linear Strain

• Points A and B are displaced from their original positions

• The amount of displacement is a function of x.  Point B 
moves farther than Point A.
• Let distance A  A = u.

• Thus, distance B  B = u+(Δu/Δx)dx = u+(u/x)dx.
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• Strain is defined by the following relationship:

• Integrating yields the displacement.

• uo ≈ rigid body translation, which we can subtract, yielding:
xxu e x

11--D Linear Strain D Linear Strain –– contcont’’d.d.
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Generalization to 3Generalization to 3--DD
• Displacement is related to the initial coordinates of the 

point.

• Normal / Linear Strains:

xy xz

yx yz

xx

yy

zzzx zy

i ij j

u x e y e z

e x y e z

e x e y z

u e

e

e

e

xv

w






  

  

   


,  ,  

,  ,  

xx yy zz

xx yy zz

u v we e e
x y z
u v we e e
x y z

  
  
  

         

A (x,y,z)
A′ (x+u,y+v,z+w)

x

y

z

uA

If we orient the system such that the load 
is applied parallel to the x-axis.  The 
variables u, v, and w are displacements 
parallel to the x, y, and z axes.
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Shear Strains in 2Shear Strains in 2--D and 3D and 3--DD
• Consider a square or cubic element that is distorted by shear.

Incremental displacement in x-direction = u.

Incremental displacement in y-direction = v.

Incremental displacement in z-direction = w.
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• Displacement of AD increases with distance along the 
y-axis resulting in an angular distortion of y-axis.
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Strain in 3Strain in 3--DD
• The displacement strain is defined by nine strain components:

– exx, exy, exz, eyy, eyx, eyz, ezz, ezx, ezy

– The strains on the negative faces are equal to satisfy the requirements 
for equilibrium.

• Notation is similar to stress; 
subscripts reversed:

– eij:  i = direction of displacement
j = plane on which strain acts

• Convention
– (+)ive when both i & j are (+)ive
– (+)ive when both i & j are (-)ive
– (-)ive when both i & j are opposite

• Tension: eij = positive
• Compression: eij = negative
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3D Displacement Strain Matrix
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• The displacement strain matrix.

• Can produce pure shear strain and rigid-body rotation.
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exy = u/y 
eyx = 0

• We need to break the displacement matrix into strain 
and rotational components.

• We can decompose the total strain matrix into 
symmetric and anti-symmetric components.
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Decomposition of StrainDecomposition of Strain
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Displacement strain
[matrix]

Shear strain
[tensor]

Rotation
[tensor]
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Shear StrainShear Strain
• Total angular change from a right angle.
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Transformation of StrainsTransformation of Strains
• Equations for strain, analogous to those for stress, can be 

written by substituting  for  and /2 for .

• We can also define a coordinate system where there will 
be no shear strains.  These will be principal axes
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• The directions in which the principal strains act are determined by 
substituting 1, 2, and 3, each for  in:

and then solving the resulting equations simultaneously for l, m, and n
(using the relationship l2 + m2 + n2 = 1).

(a) Substitute 1 for  in & solve; (b) Substitute 2 for  in & solve; (c) 
Substitute 3 for  in & solve.
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Equations for Principal Shearing StrainsEquations for Principal Shearing Strains

• Deformation of a solid involves a combination of volume
change and shape change.

• We can separate strain into hydrostatic (volume change) 
and deviatoric (shape change) components.
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Hydrostatic ComponentHydrostatic Component

• The volume strain is:

• If we neglect the products of strains (i.e., εii×εjj), this becomes:

which is equal to the first invariant of the strain tensor

• Volume = dxdydz

• Volume of strained element 
=        1 1 1xx yy zz dxdydz
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• The hydrostatic component of strain, i.e., the mean strain, is:

The mean strain does not induce shape change.  It causes volume 
change.  It is the hydrostatic component.

• The part that causes shape change is called the strain deviator.
We get the strain deviator by subtracting the mean strain from the 
normal strain components.
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MohrMohr’’s Circle for Strains Circle for Strain

Intersection with 
the -axis is min=2

Intersection with
the -axis is
max = 1
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Allows us to determine the 
magnitude and directions of the 
principal strains.
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MAXIMUM & MINUMUM PRINCIPAL STRAINS IN 2-D STATE
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Strain MeasurementStrain Measurement
• Strain can be measured using a strain gauge.

• When an object is deformed, the wires in the strain 
gate are strained which changes their electrical 
resistance, which is proportional to strain.

• Strain gauges make only direct readings of linear 
strain.  Shear strain must be determined indirectly.
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State of stress at a point:

State of strain at a point:

There are many different systems of notation.
BE WARY!
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Matrix NotationMatrix Notation

• We often replace the indices with matrix notation for 
simplicity

• This will be particularly important when we discuss higher 
order tensors and tensor relationships (i.e., elastic properties)
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General forms for stress and strain in matrix notationGeneral forms for stress and strain in matrix notation
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