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Fundamentals of strain
The strain deviator
Mohr’s circle for strain
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Strain

* When a solid is subjected to a load, parts of the solid are
displaced from their original positions.

* Think of it like this; the atoms making up the solid are displaced
from their original positions.

Load )

» This displacement of points or particles under an applied stress

is termed strain.
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Where to begin

 Consider a point A in a solid located at position X,Y,Z.
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* Apply force to the body and point A (X,Y,2) is displaced to
A’ (X+U,y+Vv,z+W).



Displacement of points

Displacement vector:

u, = f(u,v,w)
where u, v, and w are units of translation along the x, y, z
axes.

Solids are composed of 21
many particles.
A (X)y,2)
\A' (X+u,y+v,z+w)
If u, is constantforall T

particles, no deformation A
occurs (only translation).

Displacement = Translation + Rotation + Shear

If u, varies from particle to
particle, i.e., u, = f(x;), the
solid deforms.



1-D Linear Strain

T .
b

« Points A and B are displaced from their original positions

« The amount of displacement is a function of x. Point B
moves farther than Point A.

* Let distance A > A’ = u.
 Thus, distance B — B’ = u+(Au/Ax)dx = u+(ou/ox)dx.



1-D Linear Strain — cont'd.

 Strain 1s defined by the following relationship:

ou
] _AL_A'B’—AB_der@xdx_dx_éu (_Mj
L AB dx Ox Ax

 Integrating yields the displacement.
u=u +e_x

* u, =rigid body translation, which we can subtract, yielding:

u=e_x



Generalization to 3-D

Displacement is related to the initial coordinates of the
point.

.
u=e.x+e yte_z

=e,Xx+te, y+e z u =e.x,

w=e,x+e y+e_z

u L
 Normal/ Linear Strains: A
. ou _Ov ow X
X A2 Sw T AL 2z A~
Ox 5)/ 0z If we orient the system such that the load

Au AV AW is applied parallel to the x-axis. The
=-— e, =—,€_ =— variables u, v, and w are displacements
XX A_x yy Ay zz AZ

parallel to the x, y, and z axes.




Shear Strains in 2-D and 3-D

« Consider a square or cubic element that is distorted by shear.

B’

B
Incremental displacement in x-direction = u.

Incremental displacement in y-direction = v.

Incremental displacement in z-direction = w.



2D

* Displacement of AD increases with distance along the
y-axis resulting in an angular distortion of y-axis.
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shear distortion of the
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y-axis in the x-direction
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* An analogous event “ " h AB  ox

occurs along the
X-axis.

shear distortion of the

X-axis in the y-direction




Strain in 3-D

» The displacement strain is defined by nine strain components:
€., €. Euvs €y €5, €

_ exx’ Xy’ Xz Tyyr Tyxr Yyzr ¥zz) €
— The strains on the negative faces are equal to satisfy the requirements
for equilibrium.

e

zxr “zy

T * Notation is similar to stress;
j:e subscripts reversed:
e i e, — €, i=direction of displacement
L7 e 3 e, J = plane on which strain acts
% é}eyx ey
’ /érxx</}; _>y e Convention
/‘ '/ — (+)ive when both i & j are (+)ive

— (+)ive when both i & j are (-)ive

— (-)ive when both | & | are opposite
* Tension: e; = positive
» Compression: ;= negative



3D Displacement Strain Matrix

Au Au Au| |Oou oOu Ou
Ax Ay Az| |Ox Oy Oz
ov Av Av| |0ov 0Ov Ov
ij eyx eyy eyz

Ax Ay Az| |ox 0Oy Oz
e e e
=07 F= AW Aw Aw|] [Oow Oow Ow
Ax Ay Az| |Oox Oy Oz

XX exy Xz

* The displacement strain matrix.

« Can produce pure shear strain and rigid-body rotation.



yA e><y = eyx yA e><y = _eyx yA exy = AU/Ay

=0
—» Au -1 —>Au}<7 —>Au}<f Er
T = ll I~ ~ . T |
' ! ’ T / '
—> —>
ay |1 ! A I s |
I ! / I | I
I j | I I I
I B e B | I I I
- - R _ v iy
AX T X =~ -;i - Iav X
(1) (2) (3)
Pure Shear Rotation Simple Shear

w/o Rotation

 We need to break the displacement matrix into strain
and rotational components.

 We can decompose the total strain matrix into
symmetric and anti-symmetric components.

><V



Decomposition of Strain

el.j =€U+a)l.j

1 1
:2(817 +eﬁ)+2(eij _eji)

_1 8ul,+@uj _|_1 8ul,_5uj
2 8xj OX, 2 8xj OX,

l l

Symmetric Anti-symmetric

Shear Rotation



Displacement strain

[matrix]

8XX
Shear Strain - e & =&
[tensor] €y

_|_

ROtAtION eeeeereememessessennan, ;
[tensor]

............................................................................

0
€ €y )
ezx - exz )




Shear Strain

« Total angular change from a right angle.
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y; =2¢&, (engineering shear strain)
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Transformation of Strains

« Equations for strain, analogous to those for stress, can be
written by substituting ¢ for ocand y/2 for .

. . 2 2 2
o=0 =o " +o, m +o_n +t 2m+7 2mn+zt, 2nl

normal

"

_ _ . 2 2 2
E=¢& =e " +e,m +e n"+y Im+y mn+y_ nl

normal

* We can also define a coordinate system where there will
be no shear strains. These will be principal axes



1
3 2
g - <5xx +e,+ gzz)g + (gxxgyy +&,6., TELE, -Z(yxy V" 7xz) g

1 1
_(gxxgyygzz + Zj/xyj/yz)/xz B Z(gxxyiz + gyyj/jz " gzzj/iy )j =0

or

g -l +1Le-1,=0

The directions in which the principal strains act are determined by
substituting &, &,, and &;, each for gin:

(n-€)2+y, m+y n=0
yol+(€,-)2m+y n=0
v+ y,.m+ (6.-¢)2n=0

and then solving the resulting equations simultaneously for /, m, and n
(using the relationship >+ m?+ n?> = 1).

(a) Substitute ¢, for £in & solve; (b) Substitute ¢, for £in & solve; (c)
Substitute &, for £in & solve.



Equations for Principal Shearing Strains

)1 =&, — &
Vinax — V2 = & — &5
)3 =& — &,

 Deformation of a solid involves a combination of volume
change and shape change.

« We can separate strain into hydrostatic (volume change)
and deviatoric (shape change) components.



Hydrostatic Component

éj * Volume = dxdydz

dz

Z .
T _______________ * Volume of strained element
A dx = (1+&,)(1+¢,, )(1+ ¢, ) dxdydz

e The volume strain is:

(1+ ¢, )(1+¢,, )(1+¢,, ) dxdydz — dxdydz
dxdydz

A =

:(1+5xx)(1+5yy)(1+5zz)—1

* If we neglect the products of strains (i.e., ¢;*¢;), this becomes:
A=¢ +é&, +&,

which is equal to the first invariant of the strain tensor



* The hydrostatic component of strain, i.e., the mean strain, is:

; CExtEytE, g A
mean 3 3 3
The mean strain does not induce shape change. It causes volume

change. ltis the hydrostatic component.

 The part that causes shape change is called the strain deviator.
We get the strain deviator by subtracting the mean strain from the
normal strain components.

€xx ~ €mean gxy Exz

gij = ny gyy ~ €mean gyz

€ 2x gzy €22~ €mean




The Strain Deviator

€xx ~ €mean gxy Evz
/ —_— —
gij - ny gyy gmean gyz
Ex gzy €22~ €mean

26, — &, — €

2z

3 Xy Xz
B ; 28yy —&,, — &, ;
- yX 3 yz
28, — &, — Eyy
gzx gzy 3




Mohr’s Circle for Strain

CW

Allows us to determine the

n magnitude and directions of the
N\

principal strains.

H(e
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N C , 0
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MAXIMUM & MINUMUM PRINCIPAL STRAINS IN 2-D STATE

2 2
é;nmxx . é;l . é;xx + é;yy _+_\V/(:é:xx - é;yy:J _+_[:7/xy:J
E . & 2 2 2

Vmax = 73 :\/(gxx_gyy)z_I_(yxy)2

7/xy
normal ~—

gxx o 8yy

tan 26 =

£
tan28, =-—-—— %

shear




Strain Measurement

« Strain can be measured using a strain gauge.

 When an object is deformed, the wires in the strain
gate are strained which changes their electrical
resistance, which is proportional to strain.

« Strain gauges make only direct readings of linear
strain. Shear strain must be determined indirectly.

450
> 60
€, m”ﬂ \ g% &%0
45°
Eys X/
= - /60° _ S 60
& /

Rectangular Delta



State of stress at a point:

( w On Oy Y[ o, O, Oy )
O, 0O, 0, |F[0y 0y Oy
\Ox O, O, ) \O3; O3 O3 )

(0, o, O3 )
=| 01y Oy Oy
\O13 O O3
State of strain at a point:
/511 € €3 \ /‘911 € €3 \
&y by En |F|épn &n &
\&1 én &3/ \b3 &y &)

There are many different systems of notation.
BE WARY!



Matrix Notation
« We often replace the indices with matrix notation for

simplicity

x—>11->1 yy—>11->2 zz—>33->3
yz—>23—>4 xz—>13->5 xy—>12->6

(11 12<-13) (1 6<5)
N TR N A
22 23|=| 2 4

N A N A

\ 33) \ 3,

* This will be particularly important when we discuss higher
order tensors and tensor relationships (i.e., elastic properties)



General forms for stress and strain in matrix notation

[ P
g o0&
(o, o, O,) 2 2
& g,
(76 62 0'4 E 52 E
O O O
\ 5 4 3/ ﬁ i
&y
2 2 J
NOTE

E4 = &€y = Exp,E3 = &3

£, = 28,5 = Vg

>E5 = 28,3 = Vi3

Special definitions<
Es =281, = Vi



