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The Stress TensorThe Stress Tensor
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In three dimensions the state of stress is described by the 
stress tensor.

We can transform from one coordinate system to another in 
the same way that we did for two dimensions.



• Lets resolve an arbitrary 3D state of stress onto an 
oblique plane ABC (area A).

• To make the problem easier, let S be parallel to the 
plane normal (meaning that it is a principal stress acting 
on a principal plane (i.e., the plane w/o shear). 

MethodMethod

DIRECTION COSINES
l = cos θx
m = cos θy
n = cos θz
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• The components of S parallel to the original x-, y-, and z-
axes (i.e., Sx, Sy, Sz) are:

– Sx = Sl = σl Area COB = Al.
– Sy = Sm = σm Area AOC = Am.
– Sz = Sn = σn Area AOB = An.
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Recall:
l = cos θx
m = cos θy
n = cos θz

To balance force we need 
the areas that each stress 
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All forces must balance to meet the conditions for 
static equilibrium (i.e., ∑F=0):

When written 
in matrix 

form



• The solution of the determinant of the matrix on the left 
yields a cubic equation in terms of S.

• In this problem, S =.

• Thus, the three roots of this cubic equation represent the 
principal stresses, 1, 2, and 3.
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Method Method –– contcont’’dd



Method Method –– contcont’’dd
• The directions in which the principal stresses act are 

determined by substituting 1, 2, and 3, each for S in:

Then the resulting equations must be solved simultaneously 
for l, m, and n (using the relationship l2+m2+n2 = 1).

(a) Substitute 1 for S ; solve for l, m, and n;

(b) Substitute 2 for S ; solve for l, m, and n;

(c) Substitute 3 for S ; solve for l, m, and n.
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Invariants of the Stress TensorInvariants of the Stress Tensor

Whenever stresses are transformed from one coordinate 
system to another, these three quantities remain constant.
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• Determine the principal normal stresses for the following 
state of stress:

Example Problem #1Example Problem #1
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• This problem can be solved by substituting the known 
state of stress into the cubic equation:

where S = σ.

• This is detailed on the next page.

Example Problem #1 Example Problem #1 –– solutionsolution
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You can determine the principal stresses by plotting this equatiYou can determine the principal stresses by plotting this equation on 
OROR you can solve it using more traditional means.  you can solve it using more traditional means.  



• This problem is easier than most because there are no 
shear stresses along the z-axis. 

• It should have been obvious toyou that one of the 
principal stresses is  = -75 MPa (since zx = xz = 0 and 
zy = yz = 0).

• Can you determine the directions in which the principal 
stresses act?

Example Problem #1 Example Problem #1 –– solutionsolution

(I RECOMMEND THAT YOU TRY IT)



Resources on the WebResources on the Web

• There are many useful eigenvalue calculators on 
the world wide web.  Here are a few:

• http://portal.cs.umass.edu/projects/mohr/

• http://www.engapplets.vt.edu/Mohr/java/nsfapplets
/MohrCircles2-3D/Applets/applet.htm

H*



• Determine (a) the principal stresses, (b) maximum shear stress, and (c) the 
orientations of the principal planes for  the state of stress provided below:

Example Problem #2Example Problem #2
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1 2 3
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(80 ) 20 50 0
20 ( 40 ) 30 0

50 30 (60 ) 0

substitute , , and  in place of  and solve simultaneous equations 
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(3  [1]) + (5  [2]) yields:2
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1 2 3substitute , , and  in place of  and solve simultaneous equations   

123 60 150 0
100 60 122 0
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(3  [1]) + (-2  [3]) yields:3

Sample Problem #2
cont’d
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Sample Problem #2
cont’d



Orientations of 
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associated with 

1
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(3  [4]) + (5  [5]) yields:5

Sample Problem #2
cont’d

p. 6/11

1 2 3substitute , , and  in place of  and solve simultaneous equations   



132 60 150 0
100 60 48 0
232 0 198 0; 1.172
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(3  [4]) + (-2  [6]) yields:6

Sample Problem #2
cont’d

p. 7/11

1 2 3substitute , , and  in place of  and solve simultaneous equations   
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Sample Problem #2
cont’d



Orientations of 
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associated with 

2
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(3  [7]) + (5  [8]) yields:8

Sample Problem #2
cont’d

p. 9/11

1 2 3substitute , , and  in place of  and solve simultaneous equations   



(3  [7]) + (-2  [6]) yields:9
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Sample Problem #2
cont’d

p. 10/11

1 2 3substitute , , and  in place of  and solve simultaneous equations   
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Sample Problem #2
cont’d



Orientations of 
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5 minute break



• In previous example/method, we assumed that the stress 
on the inclined plane was a principal stress.

• What if the stress on the new plane is not a principal 
stress?

• The math is nearly
the same.

General Method for Triaxial States of StressGeneral Method for Triaxial States of Stress
[p. 29-30 in Dieter]
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Triaxial Stress States Triaxial Stress States –– contcont’’dd
From summation of forces parallel to the x, y, z axes, we find 

the components Sx, Sy, Sz:

The normal stress on the oblique plane equals the sum of the 
components Sx, Sy, Sz parallel to the plane normal.

x xx yx zx

y xy yy zy

z xz yz zz

S l m n

S l m n

S l m n

  

  

  

  

  

  

2 2 2 2 2 2
n x y z

xx yy zz xy yz zx

S l S m S n

l m n lm mn nl



     

  

     



Triaxial Stress States Triaxial Stress States –– contcont’’dd
From the expression S2 = σ2 + τ2 , the shear stress 
can be obtained.  

When written in terms of principal axes, it 
becomes:

The maximum shear stress occurs when:

     2 22 2 2 2 2 2 2
1 2 1 3 2 3
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1 3 max min
max 2 2
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MohrMohr’’s Circle in 3s Circle in 3--DD
• We can use a 3-D Mohr’s circle to visualize the state of 

stress and to determine principal stresses.

• Essentially three 2-D Mohr’s
circles corresponding to the 
x-y, x-z, and y-z faces of the 
elemental cubic element.
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Adapted from G.E. 
Dieter, Mechanical 
Metallurgy, 3rd ed., 
McGraw-Hill (1986) p. 37
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