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Learning Objectives

• Upon completion of this module you will 
understand how to determine lattice parameters 
precisely for polycrystalline materials using X-ray 
diffraction methods. 
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Introduction
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• Many scientific/engineering applications require 
precise knowledge of lattice parameters for a 
material.

• The majority of these applications involve solid
solutions because the lattice parameter of a solid 
solution varies with concentration of the solute.

• Thus, one can use accurate and precise lattice 
parameter measurements to calculate 
composition.



Introduction
• One can also determine thermal expansion coefficients 

( ~ 10-6 °C-1) from accurate and precise lattice parameter 
measurements.
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Recall Morse curves.  
Thermal vibrations 
cause slight changes in 
interatomic spacing 
and corresponding 
changes in d-spacing. 

αAl = 23.6  10-6/C

• At 25C, a = 4.049 Å; at 50C, a = 4.051 Å

• An accuracy of at least 0.06% is required to detect 
such a small change in a



Precision Lattice Parameter Determination

• Accuracy
– How near the value is to the true result

• Precision / reproducibility
– how close the measurements in a series are to each other

• Systematic errors
– leads to inaccurate results
– “precision without accuracy”
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Accuracy is critical!

To determine the lattice parameter to within 

1  10-5 nm,

Must know the peak position to within

0.02º at 2 = 160º
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Curve fitting or similation to find:
Peak position, FWHM, intensity, etc…

Peak Position

• Methods for determination

– maximum intensity

– center of gravity

– projection

– Gaussian

– Lorentzian
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2

I Using peak 
maximum may 

not be best way



677

Pseudo-Voigt which lies 
between Lorentz and 

Gauss generally works 
well.  See pp. 170-178 in 
this text for more detail.  
It’s available for free to 

UA students through 
SpringerLink.



Lattice parameter measurement is a very 
indirect process

• For a cubic material:

• d-spacing is measured from Bragg’s law.

• Precision in measurement of a or d depends 
on precision in derivation of sinθ.
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Error in the measurement of sin θ decreases as the 
value of θ increases.



• Differentiation of the Bragg equation with respect 
to θ provides us with the same result.

• Take partial derivative of the Bragg equation:

• For a cubic system:
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• Therefore:

• The term Δa/a (or Δd/d) is the fractional error 
in a (or d) caused by a given error in θ.

• The fractional error approaches zero as θ
approaches 90°.
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The key to high precision in parameter 

measurements lies in the use of back 

reflected beams having 2θ values as near to 

180° as possible!

It is impossible to reach 180°!



• Values of a will approach the true value as we 
approach 2θ = 180° (i.e., θ = 90°).

• We can’t measure a values at 2θ = 180°

• We must plot measured values and extrapolate to 
2θ = 180° versus some function of θ.
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Make sure that the functions of θ
produce data that can be fit with a 

straight line.

This allows for extrapolation with 
higher confidence.
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Extrapolation Functions

• There are different types of extrapolation 
functions for different types of systematic 
error in a (or d).

• Naturally there are different types of 
systematic errors associated with 
different x-ray instruments.
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Systematic errors in diffractometers
1. Misalignment of the instrument.

The center of the diffracted beam must intersect the 
diffractometer axis at the 0° position of the detector slit.

2. Use of a flat specimen instead of a curved one to 
correspond to the diffractometer circle.
Minimized by reducing horizontal divergence of the incident 
beam.

3. Absorption of the specimen.
Select specimen thickness to get reflections with maximum 
intensity possible (little absorption).
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Diffractometers
4. Displacement of specimen from the diffractometer 

axis must be minimized.
This is generally the largest
source for error in d.

5. Vertical divergence of the incident beam.
This error is minimized by reducing the vertical width of the 
receiving slit. 688
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D = specimen displacement 
parallel to the reflecting 
plane normal

R = diffractometer radius.
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For error types (2) and (3):

For errors of type (4):

For errors of type (5):

Which Extrapolation Functions to Use



General Information
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At low 2, sin  0, which causes 

d
d  

(Bad idea to use low2) 

What can we do? 
USE HIGH ANGLES! 

If we want to know ao to 0.0001 Å, we need to know 2 to 
0.02º at 2º. 



How are precise lattice parameters measured?

• Carefully align the diffractometer;

• Make sure the specimen is flat and on axis;

• Use small slits (fixed in most instruments);

• Extrapolate peak positions to high 2θ using a 
method/function that minimizes the influence of 
systematic errors;

• Determine peak positions by maximum intensity or 
by proper curve fitting.
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Which extrapolation functions should be used

• Bradley-Jay function*
– Only valid when θ>60°.

• Nelson-Riley function**

• Specimen misalignment***
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* Greater range of linearity
** More appropriate for Debye-Scherrer cameras
*** Largest source of error in diffractometer data
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Procedure
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1. Carefully align instrument. 
2. Adjust specimen surface to coincide with diffractometer axis 
3. Extrapolate the calculated lattice parameter against 2cos and 




sin
cos2

 out to  = 90 and see which function yields the better

straight-line fit. 
 
 

This is the best way to decide which error is more significant 



Additional Notes
• Regardless, you need to have as many peaks as possible 

in the high-angle region of the diffraction pattern. 

• If peaks can be resolved into α1 and α2 components, there 
will be more lattice parameter points for each hkl value.

• Increased resolution can be achieved by enlarging the 2θ
scale.

• Decreasing λ increases the number of peaks.

694



Cohen’s Method
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Analytical method that minimizes random errors. 
 

For cubic systems, recall the Bragg equation:  sin2d  
 

Square the equation, rearrange it, and take logarithms of both sides:
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Differentiate 
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where D = constant. 

 
 This equation only works when the cos2 extrapolation function is valid. 
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Recall that for any diffraction peak: 
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ao is the true lattice parameter that we wish to find 
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C = D/10 and  = 10sin22 

Drift constant.  Fixed for 
every diffraction pattern.  
Best precision when D is 
small. 
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sin2 and  are known from indexing the diffraction pattern and 
from . 

 
A and C are determined by solving two simultaneous equations 

for the observed reflections.  The true value of the lattice 
parameter can then be calculated. 

 
We combine Cohen’s method with the least square method to 

minimize observational errors. 
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Rewriting: 
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we find that 
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IMPLEMENTING THE LEAST SQUARES METHOD: 
 

   222 )(sin  observedCAe   
 

The best values of the coefficients A and C are those for which 
the sum of the squares of the random observational errors is a 

minimum. 
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By solving these two equations, we determine A from which we 

can determine ao. 
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XRD Pattern for Al
Intensity (%)
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Intensity (%)
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Kα1 Kα2

1.54056 1.54439

Peak 2θ θ sin2 θ adjusted h k l a cos2θ /sin θ cos2 θ

1 111.83 55.92 0.68593 0.68593 3 3 1 4.05403 0.379220 0.314073

2 112.25 56.13 0.68932 0.68591 3 3 1 4.05408 0.374193 0.310676

3 116.36 58.18 0.72200 0.72200 4 2 0 4.05409 0.327165 0.277995

4 116.82 58.41 0.72559 0.72200 4 2 0 4.05410 0.322141 0.274405

5 137.13 68.57 0.86645 0.86645 4 2 2 4.05399 0.143474 0.133550

6 137.86 68.93 0.87075 0.86644 4 2 2 4.05401 0.138506 0.129246

2
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From the plotted data, the 
second correlation function 
(i.e., cos2θ) provides a 
better fit (i.e., R2 is greater) 
suggesting a lattice 
parameter of 4.05396 Å.

y = 0.00030x + 4.05397
R2 = 0.47912

y = 0.00039x + 4.05396
R2 = 0.49788

y = mx + b

b = 4.05396 Å
Actual lattice parameter was 4.054 Å.
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adjusted

Peak  sin2 sin2() h k l   2  2 sin2() sin2()

1 55.92 0.68593 0.68593 3 3 1 19 8.6 361 163.7 74.26 13.03261 5.91080

2 56.13 0.68932 0.68591 3 3 1 19 8.6 361 162.8 73.38 13.03228 5.87567

3 58.18 0.72200 0.72200 4 2 0 20 8.0 400 160.6 64.46 14.44010 5.79665

4 58.41 0.72559 0.72200 4 2 0 20 8.0 400 159.3 63.43 14.44000 5.75021

5 68.57 0.86645 0.86645 4 2 2 24 4.6 576 111.1 21.42 20.79479 4.01044

6 68.93 0.87075 0.86644 4 2 2 24 4.5 576 108.0 20.26 20.79457 3.90042

 2674 865.5 317.21 96.53435 31.24421
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Example – cont’d
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COHEN'S METHOD adjusted
Peak  sin2 sin2() h k l   2

 2 sin2() sin2()
1 111.83 55.92 0.6859 0.68593 3 3 1 19 8.6 361 163.7 74.26 13.03261 5.91080
2 112.25 56.13 0.6893 0.68591 3 3 1 19 8.6 361 162.8 73.38 13.03228 5.87567
3 116.36 58.18 0.7220 0.72200 4 2 0 20 8.0 400 160.6 64.46 14.44010 5.79665
4 116.82 58.41 0.7256 0.72200 4 2 0 20 8.0 400 159.3 63.43 14.44000 5.75021
5 137.13 68.57 0.8664 0.86645 4 2 2 24 4.6 576 111.1 21.42 20.79479 4.01044
6 137.86 68.93 0.8708 0.86644 4 2 2 24 4.5 576 108.0 20.26 20.79457 3.90042

 2674 865.5 317.21 96.534353 31.24421

Substituting values into equation:
2674*A + 865.5*C=96.53435
865.5*A + 317.21C=31.24421

Solve equations:
C = -6.66E-05
A = 0.03612

a  = /(2*sqrt(A))
a  = 4.0530



Final Comments

• Need to have as many peaks in the high-angle region 
of the diffraction pattern.

• This will yield many points and will allow you to draw 
the best straight line.

• Helps if 1 and 2 peaks can be resolved.
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