

Analytical Methods for Materials

Lesson 20 Components in an X-ray Diffractometer

Suggested Reading

Chapter 6 in Cullity & Stock Chapter 2 in Brandon & Kaplan

Geometry of the X-ray Diffractometer

- Generically, diffractometers consist of:
 - X-ray source
 - X-ray detector
 - Specimen to be examined
 - Other things
 - Monochromators
 - Filters
 - Slits
 - D.J. Dyson, X-ray and Electron
 Diffraction Studies in Materials Science,
 Maney Publishing, London (2004)

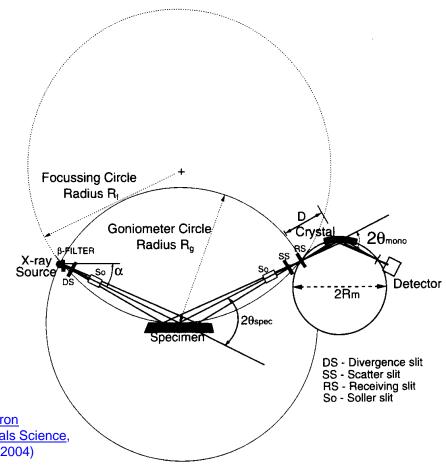
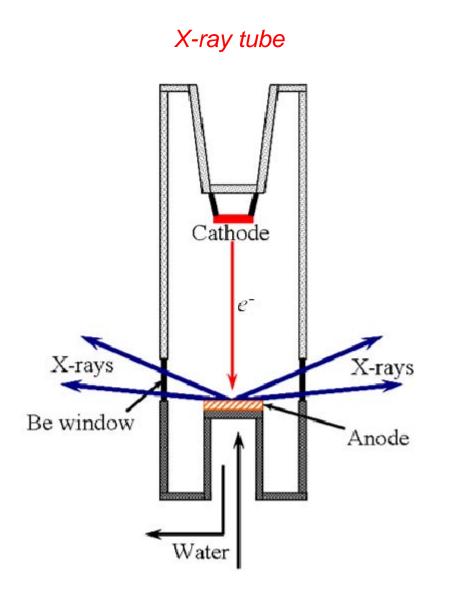
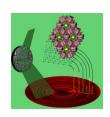
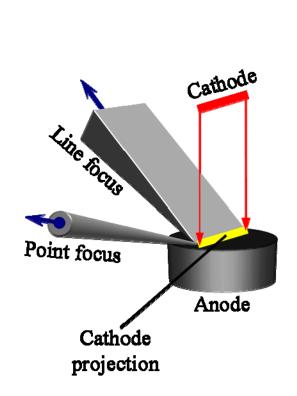
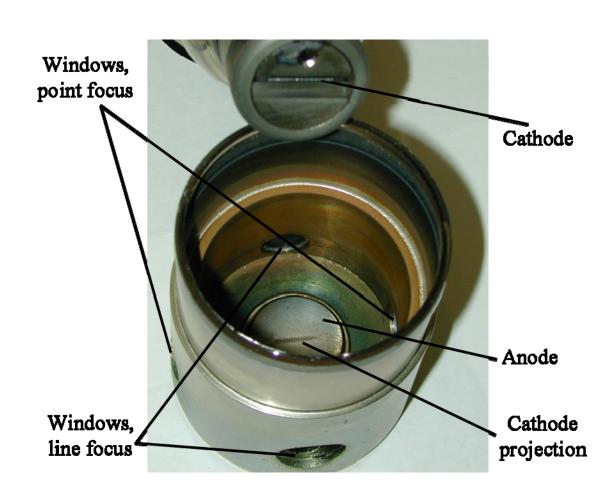




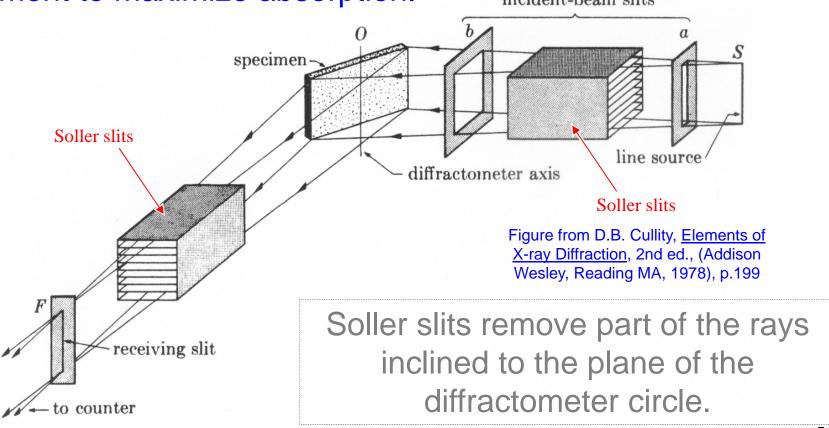
Fig. 5.5 The geometry of the diffractometer arrangement: DS is the divergence slit, SS is the scatter slit, RS is the receiving slit, So is the soller slit.





Adapted from Vitalij K. Pecharsky and Peter Y. Zavalij, <u>Fundamentals of Powder Diffraction</u> and <u>Structural Characterization of Materials</u>, Kluwer Academic Publishers, 1999.

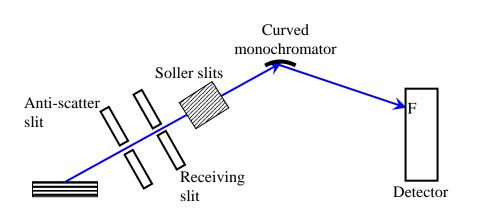
Vitalij K. Pecharsky and Peter Y. Zavalij © Kluwer Academic Publishers Fundamentals of Powder Diffraction and Structural Characterization of Materials



X-ray tubes will have line focus and point focus windows

Soller Slits

Divergence Slits


 Closely spaced parallel metal planes parallel to the plane of the diffractometer circle that collimate the incident beam.
 They are usually constructed of a high atomic number element to maximize absorption.

Monochromator

Source

A device in neutron and X-ray optics to select a defined wavelength of the radiation for further purpose

They re-focus the diffracted beam just as a parabolic mirror is used to focus light.

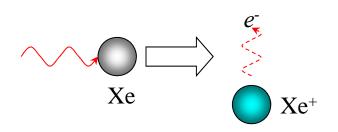
Eliminates Fluorescence!

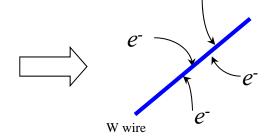
Focusing

Circle

X-ray Detectors

Table i7.1 Properties of different detector types.


	Proportional counter	Scintillation counter	Solid-state detector
Working principle	Electron–ion pair cascade	Conversion to light and electron multiplication	Generation and separation of electron-hole pairs
Transducing medium	Xe	NaI:Tl	Si, Ge
Noise rate (cps)	1	0.1-10	< 0.1
Maximum count rate (cps)	$10^5 - 10^6$	$10^5 - 10^6$	104
Resolution $\Delta E/E$ (%)	18-20	40-50	depends on type
Costs	Low	Medium	High


From M. Birkholz, Thin Film Analysis by X-ray Scattering, Wiley-VCH, Weinheim, 2006, p. 254

Proportional Detector

 Most common type of detector in powder diffraction. $\begin{array}{c} \text{cathode} \\ \text{anode} \\ \text{insulator} \\ \\ \text{R}_1 \\ \text{counting} \\ \text{circuit} \\ \end{array}$

Adapted from B.D. Cullity and S.R. Stock, <u>Elements of X-ray Diffraction</u>, 3rd Edition, Prentice-Hall, Upper Saddle River, NJ (2001) page 203.

Xe gas filled tube

The way proportional detectors work

- X-rays enter the tube and are absorbed by gas atoms.
 - Results in the emission of a photoelectron (i.e., an electron produced by ionization of an atom by a photon).
- Released electrons are attracted to the W wire, resulting in a charge pulse.
 - The charge the collects on the W wire is "proportional" to the energy of the incident x-ray photon. This allows us to distinguish between photons with different E and λ .

Scintillation Detector

 Uses a Nal single crystal doped with Thallium ions (Tl+) attached to a photocathode and photomultiplier tube.

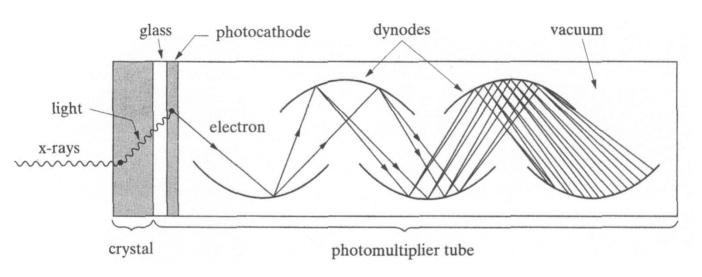
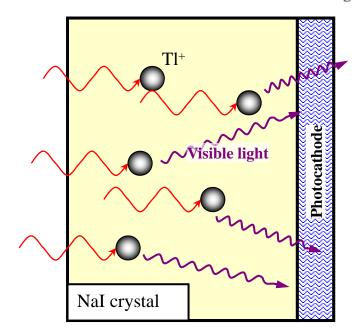
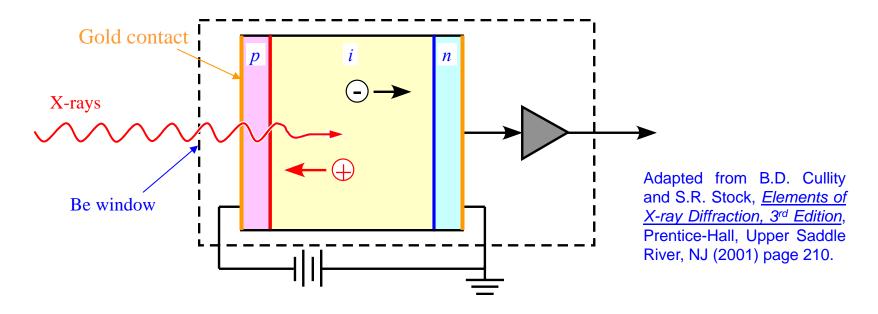



Figure 6-21 Scintillation detector (schematic). Electrical connections not shown.


Adapted from B.D. Cullity and S.R. Stock, *Elements of X-ray Diffraction, 3rd Edition*, Prentice-Hall, Upper Saddle River, NJ (2001) page 207.

The way scintillation detectors work

- 1. Incident x-rays cause the crystal to fluoresce in the violet part of the EM spectrum.
- 2. A flash of light (*scintillation*) occurs for every X-ray photon absorbed.
- 3. Light is measured with a photomultiplier attached to the photocathode.
- Amount of light emitted is proportional to the X-ray intensity.
- 5. The magnitude of the light pulses is proportional to the energy of the X-rays.

Has lower resolution than proportional or solid state detectors.

Solid State Detector

Schematic of a Si(Li) detector and a field effect transistor (FET) preamplifier. Both are in a cooled evacuated space. X-rays enter through a beryllium window. The detector is operated at around 1000 V.

- Based on the PIN diode
- Allows separation of CuK_α and CuK_β
- Eliminates the need for a β -filter or a monochromator to select K_{α} wavelengths.
- If it's advantageous one can record the XRD pattern using K_{β} radiation as opposed to K_{α} .
- Lower background signal which leads to improved signal to noise ratios.

The way solid state detectors work

- X-rays excite electrons from the valence band into the conduction band creating an electron hole pair.
- Application of a reverse bias potential causes the electrons and holes to separate, which allows a charge pulse of electrons to be measured.
- The number of electrons or holes is directly proportional to the energy of the x-ray photon.
- Solid state detectors offer the highest levels of efficiency and the highest resolution.