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Analytical Methods for Materials

Lesson 11
Crystallography and Crystal Structures, Part 3

Suggested Reading
• Chapter 6 in Waseda
• Chapter 1 in F.D. Bloss, Crystallography and Crystal Chemistry: An Introduction, (Holt, 

Rinehart and Winston, Inc., New York, 1971)



Point Groups

• Crystals possess symmetry in the arrangement 
of their external faces.

• Crystals also possess symmetry in the 
arrangement of lattice points and in the 
arrangement of objects placed on lattice points.

• When we put these two things together, we 
arrive at a new way to classify crystals in terms 
of symmetry.



Point Groups
►Relate internal symmetry to external symmetry 

of crystal.

• All symmetry elements intersect at a point.  
Symmetry operations are defined with respect to 
a point in space that does not move during the 
operation.

• There is no translational symmetry in a point 
group but there is always translational symmetry 
in a crystal.
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Symmetry Operators
• All motions that allow a pattern to be transformed from 

an initial position to a final position such that the initial 
and final patterns are indistinguishable.

1. Translation

2. Reflection*

3. Rotation*

4. Inversion (center of symmetry)*

5. Roto-inversion (inversion axis)*

6. Roto-reflection*

7. Glide (translation + reflection)

8. Screw (rotation + translation)

Point groups:

symmetry operations 
defined with respect to 
a point in space that 
remains stationary 

(i.e., does not move) 
during the operation.

Applies to objects 
occupying lattice 

points.



278
1. TRANSLATION

From Bloss, p. 141Inherent 
symmetry 
operation in 
crystals!
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2. REFLECTION = m

From Bloss, p. 2

3. ROTATION

α = 360°/n
n = fold of axis = 1,2,3,4 or 6

From Bloss, pp. 4, 5

4. INVERSION = i

From Bloss, p. 6



Fig. 6.9 Examples of symmetry operations.  (a) Generation of a pattern by rotation of a motif through an 
angle of 180°.  (b) Motifs as related by a mirror reflection.  (c) Motifs related by inversion through a 
center.  (d) Motifs related by 180° rotation an subsequent inversion; known as rotoinversion.  From C. 
Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & Sons, 2007)
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From Bloss, p. 7

Produce 
a change 
of hand

Produce 
replicas 
of same 

hand



Fig. 6.12 Illustration of rotations that allow the motif to coincide with an identical unit for one-, two-, 
three-, four-, or six-fold rotation axes.  The diagram for 2 represents a projection onto the xy plane of Fig. 
6.9a.  From C. Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & Sons, 2007)

α = 360°/n
n = fold of axis = 1,2,3,4 or 6



Name of rotation Notation Angle Symbol
Diad 2-fold 180°
Triad 3-fold 120°
Tetrad 4-fold 90°
Hexad 6-fold 60°

Rotation – Symbols and NotationRotation – Symbols and Notation



Inversion
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Inversion center = i

From Bloss, p. 6



Roto-Inversion
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α = 360°/n

n = fold of axis = 1,2,3,4 or 6

n From Bloss, p. 8

1 2

4 3 6

This one is the 
same is simple 
inversion (i)



Name of rotation Notation Angle Symbol
Diad 2-fold 180°
Triad 3-fold 120°
Tetrad 4-fold 90°
Hexad 6-fold 60°

Rotation – Symbols and NotationRotoinversion – Symbols and Notation



Fig. 6.14 (a) Illustration of an operation of rotoinversion, consisting of a 360° rotation and subsequent 
inversion through the center of the globe.  (b) Projection of the two motif units (A and B) from the outer 
skin of the globe to the equatorial plane.  (c) Location of the projected motifs on the equatorial plane.  
From C. Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & Sons, 2007)

Rotoinversion



Fig. 6.15 Illustration of operations of rotoinversion on motif units for all possible rotoinversion axes.   
From C. Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & Sons, 2007)

Rotoinversion



Combinations of Rotations

• Axes of rotation can only be combined in 
symmetrically consistent ways such that an infinite 
set of axes is not generated.

• All symmetry axes must intersect at a point that 
remains unchanged by the operations.
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Fig. 6.18 The location of 4-, 3-, and 2-fold symmetry 
axes with respect to a cubic outline for 432.  Note that the 
axes connect symbols on the opposite sides of the crystal 
and run through the center.   Adapted from C. Klein and B. 
Dutrow, Manual of Mineral Science, 23rd Edition (John 
Wiley & Sons, 2007)
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Axial
Combination α β γ w = AB u = BC v = AC

2 2 2 180° 180° 180° 90° 90° 90°

2 2 3 180° 180° 120° 60° 90° 90°

2 2 4 180° 180° 90° 45° 90° 90°

2 2 6 180° 180° 60° 30° 90° 90°

2 3 3 180° 120° 120° 54°44’ 70°32’ 54°44’

2 3 4 180° 120° 90° 35°16’ 54°44’ 45°

Permissible combinations of crystallographic rotation axes.

They’re pictured on next page
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Spatial arrangements for the six permitted
combinations of rotation symmetry axes in crystals.

Here’s our friend symmetry again!
We’ll address this again a little later!

222 223 224 226

233 234
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Rotate through symmetry operations then reflect.
Mirrors can be parallel or perpendicular to rotation axis.

Mirror planes

2-fold rotation axis (180°)

ROTO-REFLECTION

A
A´

2 2 m

α = 360°/n
n = fold of axis = 1,2,3,4 or 6

n n m
2 2 2m mm mm 

nm
α = 360°/n

n = fold of axis = 1,2,3,4 or 6

Only 3m is 
unique



Fig. 6.19 (a) Combination of 4-fold symmetry axis with a perpendicular mirror plane.  (b) 6-fold rotation 
axis with a perpendicular mirror plane.  Motifs above and below the mirror can be represented by solid 
dots and small open circles.   From C. Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition
(John Wiley & Sons, 2007) 293



Fig. 6.21 Illustrations of intersecting parallel mirrors and the resultant lines of intersection, equivalent to 
rotation axes.  (a) and (b) Perspective and plan views of 2mm and 4mm.  In (c) and (d) horizontal mirrors 
are added.  The horizontal intersection lines become 2-fold rotation axes in both figures.  From C. Klein 
and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & Sons, 2007)
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Fig. 6.22 Crystal structure of Halite (NaCl).  This structure contains all symmetry elements that are 
present in a cube.   From C. Klein and B. Dutrow, Manual of Mineral Science, 23rd Edition (John Wiley & 
Sons, 2007)

4 23
m m

100 111 110
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Some compound symmetry
operators yield the same final results

►In crystallography 
rotoreflection and 
rotoinversion sometimes 
produce the same result.  

When that happens, we 
use rotoinversion
instead of rotoreflection.

R. Tilley, Crystals and Crystal Structures, 
John Wiley & Sons, Hoboken, NJ, 2006

 

 Correspondence of 
rotoreflection and rotoinversion axes.

Axis of Ax
ro

is of
rotoreflection

1 2
2 1
3

toinvers

6
4 4

3

ion

6

m

Table 4.1






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Crystallographers use standard 
graphical symbols and stereograms to 

depict crystal symmetry.



32 Point groups – the way you’ll see them in reference books

Figure 2.24 Stereograms of the poles of equivalent general directions and of the symmetry elements 
of each of the 32 point groups.  The z-axis is normal to the paper.  A. Kelly et al., Crystallography and 
crystal defects, Revised Edition (John Wiley & Sons, New York, NY, 2000) pp. 60, 61. 298
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Why only 1-, 2-, 3-, 4-, and 6-fold rotation?

• Crystal structures are built by the regular 
stacking of unit cells that are translated.

• All symmetry operations must be self-consistent 
(internally and externally).

• This limits combinations of symmetry elements 
that are compatible in a unit cell.
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Why only 1-, 2-, 3-, 4-, and 6-fold rotation?

• Rotation operators acting on points A and A´
produce points B and B′.

• For B and B′ to be valid lattice points, the distance 
between them, t′, must be an integral number, m, 
of translation vectors

t mt 

t´ = mt

t

A´A

B´B

α α

tt

tt



t´ = mt

t

A´A

B´B

α α

tt

tt
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Allowed Rotation Angles
• From the diagram:

Therefore:

• If m is an integer, m-1 must be 
an integer.

• The angle α must lie between0 
and 180° to obtain closure.  
Therefore: 

• Thus: m-1 = -2, -1, 0, 1, or 2.

• From this we find:

• Or, more succinctly:

2 cos
t mt

t t 
 
 

cos 1

1 2m

 



 

2
n
n

  

where order rotat. sym

 

 metry

180 ,120 ,90 ,60 , 0      or

2-fold 3-fold 4-fold 6-fold 1-fold

1cos
2

m 


cost  cost 

6

 2 3 2 3 0
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Why only 1-, 2-, 3-, 4-, and 6-fold rotation?

2 / 2cos(2 / ) Comments
1 360 2 integer, ALLOWED
2 180 2 integer, ALLOWED
3 120 1 integer, ALLOWED
4 90 0 integer, ALLOWED

6 60 1 i
5 72 0.618 NOT ALLOWED

7 51.4
nte

3 1.244 NOT A
ger, ALLOWED

n n n m 





 
 







Rotation Axes in Plane Space

LLOWED
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Symmetry Operators
• All motions that allow a pattern to be transformed from 

an initial position to a final position such that the initial 
and final patterns are indistinguishable.

1. Translation*

2. Reflection

3. Rotation

4. Inversion (center of symmetry)

5. Roto-inversion (inversion axis)

6. Roto-reflection

7. Glide (translation + reflection)

8. Screw (rotation + translation)

• All crystals exhibit 
translational symmetry. 

• Any other symmetry elements 
must be consistent with 
translational symmetry of the 
lattice

These are compound 
symmetry operators 
(combinations of 1-4)



Other Symmetry Operators
Translations “interact” with symmetry operators 1-6.

Results in the final two symmetry operators.

Screw Axis = Rotation Axis + Translation 
21

31, 32

41, 42, 43

61, 62, 63, 64, 65

Glide Plane = Mirror Plane + Translation 
a b c n d

304
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7. Glide Planes

Combine reflection and translation

AA

A´

Mirror plane
(Glide plane)

Nomenclature for glide planes
 

Glide Direction Glide Magnitude Designation 
<100> ½ axis length a, b, or c 
<110> ½ face diagonal n 
<110> ¼ face diagonal d 

 
When going from a space group to the parent point group, 
all a’s, b’s, c’s, n’s, and d’s are converted back into m’s. 

Glide direction
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8. Screw Axes

Adapted from L.V. Azaroff, Introduction to Solids, 
McGraw-Hill, New York, 1960, p. 22.

fold of rotation (2, 3, 4, or 6); each rotation = 2 /

 unit translation (i.e., the shortest lattice vector) 
parallel to screw axis

 # of cells/steps back to starting position

 pitch of sc

m

nt mP

n n

P

m

t













n

 rew axis /t m n P  

P

P

P

P

n-fold rotation followed by a translation parallel to 
the rotation axis P by a vector t = mP/n.

Combine rotation 
and translation
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These can be difficult to visualize.

Let’s step through one:

42 screw axis
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   
2

2 4

m

mt P Pn



 

n 4

Object A at z = 0 is rotated counter clockwise by 90°

z = 0 

+z

The objective is to 
repeat object A at 

position A′.  

A

A′
24

P
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   
2

2 4

m

mt P Pn



 

n 4

Object A at z = 0 is rotated counter clockwise by 90° followed by translation parallel to z by a 
distance of t = 2P/4, i.e. P/2, to create object B

t

A′

A

24

B 1

90°
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   
2

2 4

m

mt P Pn



 

n 4

Object B is rotated counter clockwise by 90° and translated parallel to z by a distance of t = P/2, 
producing object C

90°
t

A′
24

A

B

C2
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   
2

2 4

m

mt P Pn



 

n 4

Object C is at now at z = P, the lattice repeat distance; 
thus we repeat it at z =0 (i.e., position C′)

A′
24

B

C

A
C′2… cont’d
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   
2

2 4

m

mt P Pn



 

n 4

Repeat of the symmetry operation produces object D at z =P/2. 

A′
24

A

t

C

C′

D

B

3

90°
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   
2

2 4

m

mt P Pn



 

n 4

Repeat of the symmetry operation on object D brings everything back into coincidence

A′
24

A

C

C′

D

B

4
t

90°



+

+

½ +

½ +

   
2

2 4

m

mt P Pn



 

n 4

1
2 P

Standard crystallographic 
representation of a 42 screw axis 

viewed normal to the axis
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Do you see things like this in real 
materials?



316

DNA double helix consisting of 2 anti-parallel 
screws

http://www.nature.com/scitable/nated/content/24263/sadava_11_8_large_2.jpg



317

Atomic structure around a screw dislocation

Figure 7.1 A screw dislocation in a 
primitive cubic lattice Figure 7.6 Screw dislocation in a simple 

cubic crystal (a) looking along the 
dislocation and (b) looking normal to the 
dislocation which lies along S1S′1.

S′1

1
2

3 4

S1

Adapted from Kelly, Groves and Kidd, Crystallography and Crystal 
Defects, Revised Edition, John Wiley & Sons, 2000

1s

1s



http://www.flickr.com/photos/l2xy2/4644933597/sizes/o/in/photostream/
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The chains in the crystal structure of tellurium along the 31-screw axis.  The chain is highlighted in 
blue colors where the dark blue atom is situated on c = 1/3, middle blue on c = 2/3 and light blue on 
c = 0.  Thick red bonds represent covalent bonds between atoms in the chain (d = 284 pm), dashed 
green bonds secondary contacts between chains (d = 349 pm) and dashed purple bonds represent the 
hexagonal surrounding within a "layer" of tellurium (d = 446 pm).

http://www.periodictable.com/Elements/052/index.html
http://en.wikipedia.org/wiki/File:Te_chains.png


