

Analytical Methods for Materials

Lesson 3

Components in an Optical Microscope

Suggested Reading

•Y. Leng, *Materials Characterization, 2nd Edition*, (2013), Wiley, Hoboken, NJ – Chapter 1.

Reference

•Goodhew, Humphreys and Beanland, Chapter 1

•Brandon and Kaplan, Chapter 3, pp. 123-177

•K. Geels, D.B. Fowler, W-U. Kopp, and M. Rückert, <u>Metallographic and Materialographic Specimen</u> <u>Preparation, Light Microscopy, Image Analysis and Hardness Testing</u>, (2007) ASTM International, West Conshohocken, PA.

•G.F. Vander Voort, Metallography Principles and Practice, (1999) ASM International, Materials Park, OH. 74

Components in an optical microscope

- Primary components:
 - 1. Illumination system
 - 2. Objective: single or multiple lenses close to specimen.
 - 3. Eyepiece: single or multiple lenses closest to eye.
 - 4. Data collection system: camera, eyepiece, etc...
 - 5. Specimen stage
 - 6. Also has various diaphragms, reflectors, prisms

Microscope Components:

The Illumination System

- Lamps
 - -Light source
 - Tungsten-filament
 - Quartz/tungsten-halogen bulbs
 - Xenon lamp
 - D.C. carbon arc

Intensity and \$\$\$

Lenses

-Focus light at the desired point in the optical path (details will come in a moment)

Microscope Components: The Illumination System

- Filters
 - Used to modify light for ease of observation, improved photos, and/or to alter contrast
 - <u>Green filter</u>* used in black and white photography to reduce the effect of lens defects on image quality
 - <u>Polarizing filters</u> used to examine non-cubic materials and materials that are optically anisotropic.

Diaphragm

–Used to minimize internal glare and reflections or to alter the amount of light and the angle of the light cone.

Microscope Components: The Optical System

- Objective Lens (the most important part of microscope)
 - Collects reflected light and <u>forms</u> the <u>first/primary image</u> of the sample.
 - It is the <u>closest lens to the sample</u> and the lens that is <u>changed to</u> <u>switch magnifications</u>.
 - It is rated by a value called the numerical aperture (*N.A.*) which is a measure of the light collecting ability.

$$N.A. = \mu \sin \alpha$$

- $\mu =$ index of refraction
- α = half angle of the light
 - cone entering the lens

Microscope Components: The Optical System

• Projector Lens

- Converges the beam of light to form the final magnified image.

- Eyepiece (ocular)
 - Further magnifies the primary image produced by the objective lens. Transmits image to eye.

Our eyepieces provide 10× magnification

http://biology.clc.uc.edu/fankhauser/Labs/Microscope/adjustable_ocular_P7030359.JPG

Contrast and Imaging

- We want to reveal microstructural features.
- We want an optimum balance between resolution, contrast and brightness.
- We <u>must</u> have contrast and brightness to see and identify features (e.g., phases, defects, etc.) in a material.

Some ways to increase contrast

- 1. Staining,
- 2. Use of color filters,
- 3. Oblique illumination,
- 4. Dark-field illumination,
- 5. Phase contrast illumination,
- 6. Polarized light microscopy,
- 7. Interference contrast,
- 8. Fluorescence microscopy,
- 9. Heat tinting,

10.Use of a hot stage.

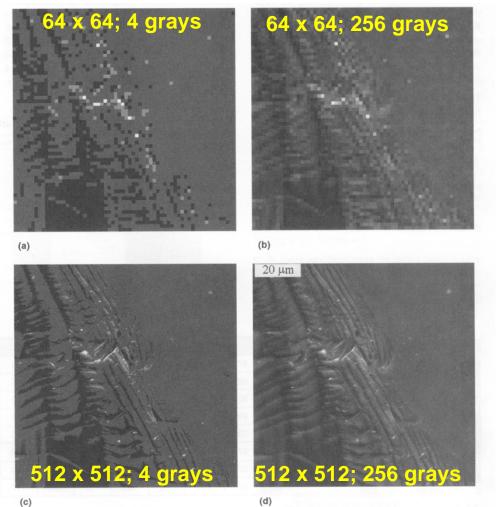
There are other ways

Practical steps to optimize OM resolution

- 1. Use objective lens with highest N.A.;
- 2. Use higher magnifications;
- 3. Use eyepiece compatible with the selected objective lens;
- 4. Use the shortest possible wavelength λ ;
- 5. Keep the light system properly aligned;
- 6. Use an oil immersion lens if available (*WHY*?);
- 7. Adjust the field diaphragm for maximum contrast and the aperture diaphragm for maximum resolution and contrast.
- 8. Use dark-field or interference-contrast to get additional contrast.
- 9. Adjust brightness for best resolution.

Capabilities of different types of microscopes used to characterize microstructures.

	Light optical microscopy	X-ray diffraction microscopy / tomography	Scanning electron microscopy	Transmission electron microscopy	Field ion microscopy
Illumination source	Visible light	X-rays	Electrons	Electrons	lons
Maximum useful magnification	1000 – 2000×	>5000 – 100,000×+	~1 00,000×	500,000 – 1,000,000×	>1,000,000×
Resolution limit (r _I)	~200 nm	~1 10 nm	1 – 2.5 nm	~0.2 – 0.3 nm	Atomic
Information obtained	Phases Reflectivity	3-D imaging of internal structures	Topography Composition Crystal orientation	Crystal structure Crystal orientation Defects Composition	Microstructure Composition
Depth of field	<0.5 µm	High	5 – 500 µm		


Recording The Image Film

- The best method for capturing an image is film.
- Fine grain film yields the best resolution although they require longer exposure time.
- Detail are preserved upon enlarging.
- Does require a steady stage to eliminate vibrations.

Recording The Image Digital

- The use of digital photography has become a popular choice because it saves a lot of time.
- Even so digital imaging if done improperly can ruin the quality of an image.
- Care must be taken to ensure the resolution and quantization of a digital image is high enough that it adequately show all of the features of the sample.

Recording The Image Digital

ASM Handbook ,Vol. 9, *Metallography and Microstructures*, ASM International, Materials Park, OH (2004), pg. 369

Fig. 3 The effect of resolution and quantization on a digital image. The same image as Fig. 2 in different levels of resolution and quantization. (a) 64×64 pixels and four gray levels. (b) 64×64 pixels and 256 gray levels. (c) 512×512 pixels and four gray levels. (d) 512×512 pixels and 256 gray levels.