Symplectic Rational Homology Ball Fillings Smooth World:

Q: What 3 manifolds bound rational homology balls? i.e., what 3 manifolds are trivial in rational homology obordism group? - Long history: Lots of Constructions, lots of obstructions used to define rational blow downs and construct lots of exotic 4 manifolds, etc.

Note: let
$$\mathcal{R}^{c} \mathcal{Q}$$
 be the set $p|q > 1$ s.t. $(p_{1}q) = 1$, $p = m^{2}$,
and $q, p-q, or q^{*}$ is one of the following
(1) mh ± 1 (0 ch cm, $(m_{1}n) = 1$)
(2) mh ± 1 (0 ch cm, $(m_{1}n) = 1$)
(3) mh ± 1 (m, h) = 2 $q - q^{*}$
(3) h(m ± 1) (h > 1 and h(2m ± 1) homeomorphic
(4) h(m ± 1) (h > 1 and h(2m ± 1) homeomorphic
(4) h(m ± 1) $h(m \pm 1$ $L(p_{1}q)$
where $0 < q^{*} < p$ and $qq^{*} \equiv 1 \mod p$ changing $p - q$ and
a changes
lisca 2007

We are interested in the symp. Case Q: Which contact 3 manifolds are the convex 2 of symp. QHB4?

Lens Spaces:
(L(p,q), z) is fillable by a symp. QHB⁴

$$p=m^{2}$$
 and $q=mh-1$ and z is the unique universally tight
contact structure on L(p,q)
Recall: a lens space is a SFS ≤ 2 singular fibers
Jo, what about SFS with 3 singular fibers
i.e. small SFS
 $Y=Y[e_{0}; r_{1}, r_{2}; r_{3})$ $r_{1} \in (0,11)$, $e_{0} \in 7L$
Y given by surgery diagram:
 r_{3}
Lets start with a simple construction
 $S'XS^{2}$ has a lot of SF structures
 M
 $(1, 0, 1)$
 F that curve?
 M
 $(1, 0, 1)$
 $S'XS^{2}$
 $S'XD^{2}$
 $S'XD^{2}$
 $S'XD^{2}$

Conjecture: Yllo; r,,...,r,n) bounds a symplectic QHB⁴ if and only if n = 4 and either (1) lo = -2 and Y = link of a complex surface singularity (2) lo = -1 and contact structure comes from the previous construction and there are finitely many such contact structures

(3) lo = 0 " " and unique contact structure

Conjecture:

If Y, a SFS, is a closed, oriented 3 manifold and Y and -Y both bound symplectic QHB⁴, then $Y=S^3$