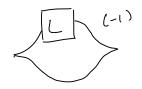
Legendrian surgeries, LOSS invariants and Contact invariants Lisca - Ozsvath-Stipsicz - Szabo



(-1) Question: Given leg. LC(Y, Z), to what extent could we know the contact Structure from doing legendrian surgery on L from L

More precisely, in (S³, Z)

I. Suppose we have L_1, L_2 in same (S^3, \tilde{z}) with same Knot type, tb, rot number but $L_1 \neq L_2$ when $(S^3, \tilde{z}_{L_1}) \neq (S^3, \tilde{z}_{L_2})$

2. Suppose we have non-loose L in (S³, Z^{ot}) when (S³, Z_L) tight (S^{ot}) complement is tight

Contact Invariant (LOSS invariant Given (Y, 2) => C(S) & AF(-Y) (OZSVAth-SZADÓ) Given L in (Y, 2)=> J(L) & HFE(-Y, L) (LOSS) Gigraded & alexander masselv

$$1.1(L_1) \neq 1(L_2)$$
 when $((S_1) \neq ((S_2))?$

$$2.(\mathcal{J}(\mathcal{L}) \neq 0 = 7 \text{ Lnon-loose}) \text{ when } (\mathcal{L}(\mathcal{L}) \neq 0 = 7 \text{ ftight})$$

Lemma: For a smooth knot KEY, I map

$$q: CFK^{-}(-Y, K) \rightarrow CF(-Y)$$

and for La legendrian rep. of K
 $G: HFK^{-}(-Y, K) \rightarrow HF(-Y)$
 $E(I(C)) = ((3)$

Theorem: Given L, S 2 disjoint leg. let S' be the corresponding
leg: in (V, Z,), we have
F: HFK-(Y, S')
$$\rightarrow$$
 HFK-(Y, S)
I. 1. 2.
When is G injective?
Theorem:
If L c (S³, S) is HF thin, tb(L) - rot(L) = 2g_{K}(L) - 1
then G is injective
A legendrian L is HF nice if it is thin, tb(L) - rot(L) =
 $2g_{-1}$, $L(L) \neq 0$
Corollary: $L(L_1) \neq L(L_2)$ and nice, then $c(Z_{L_1}) \neq c(Z_{L_2})$
(orollary: If L is nice in (S³, 3^{ot}), then $c(Z_{L_2}) \neq 0$
example. L is there are non-Simple pice. legendrian

- <u>txumple 1.</u>: there are non-Simple nice legendrian two-bridge Knots found by Ozsvath - Stipicz, Foldvari, Wan
- <u>example 2</u>: take T(p,-q), look at open book supported by T(p,-q), take legendrian push off the binding it is nice
- <u>Theorem</u>: If K is thin and T(K) = g(K), then K admits a nice legendrian nep. L in some (S³, 3^{ot}) with tb(L) = O.
- → Observation: If L is nice then the negative Stabilization (L) of L is also nice.

Corollary IF K is thin,
$$T(K) = g(K)$$

 $S_p^3(K)$
admits a tight contact structure for $p = 0$
Conjecture: tb could be any T_L
Theorem: IF L is thin and tb(L) - rot(L) = $2g - 1$ with
tb ≥ 0 , then
 $G_1: HFK^-(-S_L^3, S') \rightarrow HP(-S_L^3)$
is injective at $A(Z(S'))$
Proposition: (Smooth) IF K is thin and K' be the dual Knot
in $S_n^3(K)$, $n > 0$, then
 $G_1: HFK^-(S_n^3(K), K') \rightarrow HF(S_n^3(K))$
is injective at top grading.
(going back to tb)₂
lemma
 $L_1^{(-1)} = L_2^{(-1)}$
 $n \geq 2$

the naturality theorem of Contact invariant under positive contact surgenies $F: HF(1-S_{1}^{3}) \rightarrow HF(-S_{2}^{3}-n)$ $C(3_{1}) \rightarrow c(3_{1}-n)$ $tb(1^{-n}) < c$