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Abstract. In this paper we study the Kernack - MacKendrick model under telegraph noise.
The telegraph noise switches at random between two SIRS models. We give out conditions for
the persistence of the disease and the stability of a disease free equilibrium. We show that the
asymptotic behavior highly depends on the value of a threshold λ which is calculated from the
intensities of switching between environmental states, the total size of the population as well
as the parameters of both SIRS systems. According to the value of λ, the system can globally
tend towards an endemic state or a disease free state. The aim of this work is also to describe
completely the ω-limit set of all positive solutions to the model. Moreover, the attraction of the
ω-limit set and the stationary distribution of solutions will be shown.
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1. Introduction

The dynamics of disease spreading in a population have been investigated very widely in the frame of
deterministic models e.g. [5], [8], [20], [25]. In such deterministic models, the environment is assumed
to be constant. However, in most real situations, it is necessary to take into account random change of
environmental conditions and their effects on the spread of the disease. For instance, the disease is more
likely to spread in wet (cold) condition rather than in dry (hot) condition or any other characteristics of
the environment that may change randomly. Therefore, it is important to consider the disease dynamics
under the impact of randomness of environmental conditions. There are many papers about this topic in
recent years e.g. [1], [15], [18], [19].

Weather conditions can have important effects on the triggering of epidemics. Cold and flu are in-
fluenced by humidity and cold temperatures [21]. Viruses are more likely to survive in cold and dry
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conditions. Lack of sun also provokes a decrease of the level of D vitamin. We could also mention malaria
which is influenced by rain and humidity level of air. Weather and climate variability have in general
important effects on epidemics spread [30]. Weather conditions change according to seasons and also to
random variations. In the present model, we do not take into account periodic seasonal weather changes.
Therefore, we consider an environment which is assumed to be rather constant on average all along the
year. In this contribution, we only study the effects of random variations of weather conditions on the
spread of epidemics. To simplify our description, we also assume that only two states can occur, favorable
or unfavorable weather conditions for virus transmission. Favorable weather conditions corresponds to
a states where the epidemics is more likely to spread and inversely for unfavorable conditions. There-
fore, we consider that there exist two models associated with different parameters values corresponding
respectively to weather conditions and that the system switches randomly from the one to the other. For
disease models with noise, we also refer to recent contributions [4], [17].

The basic simplest epidemic model that we consider is the classical SIRS model introduced by Kernack-
MacKendrick of the form (see [20] for details)











Ṡ = −aSI + cR

İ = aSI − bI

Ṙ = bI − cR,

(1.1)

where the susceptible (S), infective (I) and removed (R) classes are three compartments of the total
population N . Transitions between these compartments are denoted respectively by a, b, and c. They
describe the course of the transmission, recovery and loss of immunity.

Figure 1. SIRS diagram.

In further studying the SIRS model, we note that the sum S + I + R = N and it is a constant of
population size. So that for convenience the removed class (R) can always be eliminated. The reduction
of the equation (1.1) is then

{

Ṡ = −aSI + c(N − S − I)

İ = aSI − bI.
(1.2)

It is easy to analyze the previous simple system (1.2) and to show that two situations can occur (see [16],
[20], [23]):

- If the basic reproduction number R0 = Na
b > 1 the disease spreads among the population and a

positive equilibrium (s∗, i∗) is globally asymptotically stable. It is therefore an endemic situation.
- If R0 = Na

b < 1 the disease is eradicated as a disease free equilibrium (N, 0), which is asymptotically
stable. This situation is the eradication of the disease among the population.

In this work, we shall concentrate on the switching two classical Kernack and MacKendrick SIRS
model, which will be chosen as the basic models for the epidemics. We shall assume that there are
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two environmental states in each of which the system evolves according to a deterministic differential
equation and that the system switches randomly between these two states. Thus, we can suppose there is
a telegraph noise affecting on the model in the form of switching between two-element set, E = {+,−}.
With different states, the disease dynamics are different. The stochastic displacement of environmental
conditions provokes model to change from the system in state + to the system in state − and vice versa.

Several questions naturally arise. For instance, in the case where the disease spreads in an environ-
mental condition, while it is vanished in the other one, what will be the global and asymptotic behavior
of the system? Using the basic reproduction number R0 of both models and the switching intensities, can
we make predictions about the asymptotic behavior of the global system, i.e., the existence of a global
endemic state or a disease free state?

The paper has 5 sections. Section 2 details the model and gives some properties of the boundary
equations. In Section 3, dynamic behavior of the solutions is studied and the ω-limit sets are completely
described for each case. It is shown that the threshold λ which will be given later plays an important role
to determine whether the disease will vanish or be persistent. We also prove the existence of a stationary
distribution and provide some of its nice properties. In Section 4, some simulation results illustrate the
behavior of the SIRS model under telegraph noise. The conclusion presents a summary of the results and
some perspectives of the work. The last section is the appendix where the proofs of some theorems are
given.

2. Preliminary analysis of the model

Let us consider a continuous-time Markov process ξt, t ∈ R+, defined on the probability space (Ω,F ,P),
with values in the set of two elements, say E = {+,−}. Suppose that (ξt) has the transition intensities

+
α
→ − and −

β
→ + with α > 0, β > 0. The process (ξt) has a unique stationary distribution

p = lim
t→∞

P{ξt = +} =
β

α+ β
; q = lim

t→∞
P{ξt = −} =

α

α+ β
.

The trajectory of (ξt) is piecewise constant, cadlag functions. Suppose that

0 = τ0 < τ1 < τ2 < ... < τn < ...

are its jump times. Put
σ1 = τ1 − τ0, σ2 = τ2 − τ1, ..., σn = τn − τn−1...

It is known that, if ξ0 is given, (σn) is a sequence of independent random variables. Moreover, if ξ0 = +
then σ2n+1 has the exponential density α1[0,∞) exp(−αt) and σ2n has the density β1[0,∞) exp(−βt).
Conversely, if ξ0 = − then σ2n has the exponential density α1[0,∞) exp(−αt) and σ2n+1 has the density
β1[0,∞) exp(−βt) (see [14, vol. 2, pp. 217]). Here 1[0,∞) = 1 for t ≥ 0 (= 0 for t < 0).

In this paper, we consider the Kernack-MacKendrick model under the telegraph noise ξt of the form:
{

Ṡ = −a(ξt)SI + c(ξt)(N − S − I)

İ = a(ξt)SI − b(ξt)I
, (2.1)

where g : E = {+,−} → R+ for g = a, b, c. The noise (ξt) carries out a switching between two
deterministic systems

{

Ṡ = −a(+)SI + c(+)(N − S − I)

İ = a(+)SI − b(+)I,
(2.2)

and
{

Ṡ = −a(−)SI + c(−)(N − S − I)

İ = a(−)SI − b(−)I.
(2.3)

58



“DuMmnp” — 2015/4/3 — 21:23 — page 59 — #4
✐

✐

✐

✐

✐

✐

✐

✐

N. T. Hieu, N. H. Du, P. Auger, N. H. Dang Dynamical behavior of a stochastic SIRS epidemic model

Since (ξt) takes values in a two-element set E, if the solution of (2.1) satisfies equation (2.2) on the
interval (τn−1, τn), then it must satisfy equation (2.3) on the interval (τn, τn+1) and vice versa. Therefore,
(S(τn), I(τn)) is the switching point, that is the terminal point of one state and simultaneously the initial
condition of the other. It is known that with positive initial values, solutions to both (2.2) and (2.3)
remain nonnegative for all t ≥ 0. Thus, any solution to (2.1) starting in intR2

+ exists for all t ≥ 0 and
remain nonnegative.

It is easily verified that the systems (2.2) and (2.3) respectively have the equilibrium points

(s±∗ , i
±
∗ ) =

( b(±)

a(±)
,
c(±)(N − b(±)

a(±) )

b(±) + c(±)

)

, (2.4)

and their global dynamics depend on these equilibriums. Concretely, if i±∗ > 0 then these positive

equilibriums are asymptotically stable, i.e., when N > b(±)
a(±) , limt→∞(S±(t), I±(t)) = (s±∗ , i

±
∗ ). This

is the endemic state, both susceptible and infective classes are together present. On the contrary, if
N ≤ b(±)

a(±) then limt→∞(S±(t), I±(t)) = (N, 0) and the infective class will disappear. It is called the free
state

Figure 2. An example of
endemic state

Figure 3. An example of
disease free state.

3. Dynamical behavior of solutions

In this section, we introduce a threshold value λ whose sign determines whether the system (2.1) is
persistent or the number of infective individuals goes to 0. Moreover, the asymptotic behavior of the
solution is described in details.

For any (s0, i0) ∈ intR2
+ with s0 + i0 ≤ N , we denote by (S(t, s0, i0, ω), I(t, s0, i0, ω)) the solution

of (2.1) satisfying the initial condition (S(0, s0, i0, ω), I(0, s0, i0, ω)) = (s0, i0). For the sake of simplic-
ity, we write (S(t), I(t)) for (S(t, s0, i0, ω), I(t, s0, i0, ω)) if there is no confusion. A function f defined
on [0,∞) is said to be ultimately bounded above (respectively, ultimately bounded below) by m if
lim supt→∞ f(t) < m (respectively, lim inft→∞ f(t) > m). We also have the following definitions for
persistence and permanence
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Definition 3.1.
1) System (2.1) is said to be persistent if lim supt→∞ S(t) > 0, lim supt→∞ I(t) > 0 for all solutions of

(2.1).
2) In case there exists a positive ǫ such that

ǫ ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤ 1/ǫ,

ǫ ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 1/ǫ,

we call the system (2.1) is permanent.

It is easy to see that the triangle ∇ := {(s, i) : s ≥ 0, i ≥ 0; s+ i ≤ N} is invariant for the system (2.1).

In the future, without loss of generality, suppose that b(+)
a(+) ≤

b(−)
a(−) .

We here define the threshold value which play a key role of determining the persistence of the system
(2.1).

λ = p
(

a(+)N − b(+)
)

+ q
(

a(−)N − b(−)
)

. (3.1)

In the first part of this section, we show that the sign of λ determines whether the system is persistent or
disease-free. To obtain this result, we need several propositions. Firstly, we have the following proposition
whose proof is given in Appendix.

Proposition 3.2.

a) If λ > 0 then there is a δ1 > 0 such that lim supt→∞ I(t) > δ1.
b) If λ < 0 then limt→∞ I(t) = 0 and limt→∞ S(t) = N .

By definition of λ in (3.1) we have the following corollary.

Corollary 3.3. If b(+)
a(+) ≥ N then limt→∞ I(t) = 0 and limt→∞ S(t) = N .

In view of Corollary 3.3, in the following we suppose that b(+)
a(+) < N .

Proposition 3.4. S(t) is ultimately bounded below by Smin > 0 and there is an invariant set for the
system (2.1), which absorbs all positive solutions.

Proof. Let Smin be chosen such that

−Na(±)Smin + c(±)
( b(+)

2a(+)
− Smin

)

> m > 0, (3.2)

and let A = (Smin, 0), B = (Smin, N − b(+)
2a(+) ), C = ( b(+)

2a(+) , N − b(+)
2a(+) ), D = (N, 0). In the interior of the

triangle ∇ we have İ(t) = a(ξt)(S(t) −
b(ξt)
a(ξt)

)I(t) ≤ a(ξt)(S(t) −
b(+)
a(+) )I(t) ≤ a(ξt)(

b(+)
2a(+) −

b(+)
a(+) )I(t) =

−a(ξt)
b(+)
2a(+)I(t) < 0 for all points lying above the line BC, whereas Ṡ > m for all points that are below

the line BC and on the left of AB by (3.2) (see the figure 4). Therefore, it is easy to see that the the
quadrangle ABCD is invariant under system (2.1) and all positive solutions ultimately go there. �

Corollary 3.5. If λ > 0 then the system (2.1) is persistent.

Proof. This result follows immediately from Propositions 3.2 and 3.4. �

Proposition 3.6. I(t) is ultimately bounded below by Imin > 0 if b(−)
a(−) < N . As a result, the system

(2.1) is permanent.
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Figure 4. An example of in-
variant set. The invariant set
is defined by 4 dash dot lines.

Figure 5. An example of ex-

istence of Imin when b(+)
a(+) <

b(−)
a(−) < N .

Proof. Since b(−)
a(−) < N , we can find an 0 < ε0 < δ1 such that min

{

− a(±)si + c(±)(N − s − i) >

0 : 0 < s ≤ b(−)
a(−) , 0 < i ≤ ε0

}

> 0. Then, while I(t) ≤ ε0 and S(t) ≤ b(−)
a(−) we have Ṡ > 0 and

İ

Ṡ
=

(a(ξt)S − b(ξt))I

−a(ξt)SI + c(ξt)(N − S − I)
> −kI where k is some positive number. Denote by γ the piece of

the solution curve to the equation
dI

dS
= −kI starting at (Smin, ε0) and ending at the intersection point

( b(−)
a(−) , ε1) of this solution curve with the line s = b(−)

a(−) (see the figure 5). Let G be the subdomain of

quadrangle ABCD consisting of all (s, i) ∈ ABCD lying above the curve γ if s ≤ b(−)
a(−) and lying above the

line i = ε1 if b(−)
a(−) ≤ s ≤ N . Obviously, G is invariant domain because

İ

Ṡ
> −kI, Ṡ > 0 on γ and İ > 0

on the segment I = ε1,
b(−)
a(−) ≤ S ≤ N . Since lim sup

t→∞
I(t) > δ1 > ε0 and (S(t), I(t)) must eventually enter

the quadrangle ABCD, (S(t), I(t)) also eventually enters G which implies that I(t) ultimately bounded
below by Imin = ε1. �

To sum up we have

Theorem 3.7.

1. If λ < 0 then limt→∞ I(t) = 0 and limt→∞ S(t) = N .

2. If λ > 0 the the system (2.1) is persistent. Moreover, if b(+)
a(+) ,

b(−)
a(−) < N then the system is permanent.

Our task in the next part is to describe the ω-limit sets of the system (2.1). Adapted from the concept
in [7], we define the (random) ω−limit set of the trajectory starting from an initial value (s0, i0) by

Ω(s0, i0, ω) =
⋂

T>0

⋃

t>T

(

S(t, s0, i0, ω), I(t, s0, i0, ω)
)

.

This concept is different from the one in [9] but it is closest to that of an ω−limit set for a deterministic
dynamical system. In the case where Ω(s0, i0, ω) is a.s. constant, it is similar to the concept of weak
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attractor and attractor given in [22,31]. Although, in general, the ω-limit set in this sense does not have
the invariant property, this concept is appropriate for our purpose of describing the pathwise asymptotic
behavior of the solution with a given initial value.

Let π+
t (s, i) = (S+(t, s, i), I+(t, s, i)), (resp. π−

t (s, i) = (S−(t, s, i), I−(t, s, i))) be the solution of (2.2)
(resp. (2.3)) starting in the point (s, i) ∈ R

2
+.

From now on, let us fix an (s0, i0) ∈ R
2
+ and suppose λ > 0. This implies that at least one of the systems

(2.2), (2.3) has a globally asymptotically stable positive equilibrium. Without loss of generality, we assume
the equilibrium point of the system (2.2) has this property, i.e., limt→∞ π+

t (s, i) = (s+∗ , i
+
∗ ) ∈ intR2

+ for
any (s, i) ∈ intR2

+. Also, suppose that ξ0 = + with probability 1.
For ε > 0 small enough, denote by Uε(s, i) the ε-neighborhood of (s, i) and by Hε ⊂ R

2
+ the compact

set surrounded by AB,BC,CD and the line i = ε. Set

Sn(ω) = S(τn, s0, i0, ω); In(ω) = I(τn, s0, i0, ω), F
n
0 = σ(τk : k ≤ n); F∞

n = σ(τk − τn : k > n).

We see that (Sn, In) is Fn
0 − adapted. Moreover, given ξ0, then Fn

0 is independent of F∞
n . To depict

the ω-limit set, we need to obtain a key result that (Sn, In) belongs to a suitable compact set infinitely
often. In addition, we need to estimate the time a solution to (2.2) starting in a compact set enters a
neighborhood of the equilibrium (s+∗ , i

+
∗ ). These results are stated in the following lemmas (see Appendix

for the proofs).

Lemma 3.8. Let J ⊂ ∇∩{S > 0, I > 0} be a compact set and (s+∗ , i
+
∗ ) ∈ J . Then, for any δ2 > 0, there

is a T1 = T1(δ2) > 0 such that π+
t (s, i) ∈ Uδ2(s

+
∗ , i

+
∗ ) for any t ≥ T1 and (s, i) ∈ J .

Lemma 3.9. There is a compact set K ∈ intR2
+ such that, with probability 1, there are infinitely many

k = k(ω) ∈ N satisfying (S2k+1, I2k+1) ∈ K.

Having the above lemmas, we now in the position to describe the pathwise dynamic behavior of the
solutions of the system (2.1). Put

Γ =
{

(s, i) = π
̺(n)
tn ◦ · · · ◦ π+

t2 ◦ π
−
t1(s

+
∗ , i

+
∗ ) : 0 ≤ t1, t2, · · · , tn; n ∈ N

}

. (3.3)

where ̺(k) = (−1)k.We state the following theorem which is proved in Appendix.

Theorem 3.10. If λ > 0 then for almost all ω, the closure Γ of Γ is a subset of Ω(s0, i0, ω).

The following theorem provide a complete description of the ω-limit set of the solution to (2.1) in the
case λ > 0.

Theorem 3.11. Suppose λ > 0,

a) If
a(+)

a(−)
=

b(+)

b(−)
=

c(+)

c(−)
, (3.4)

the systems (2.2) and (2.3) have the same equilibrium. Moreover, all positive solutions to the system
(2.1) converge to this equilibrium with probability 1.

b) If (3.4) is not satisfied then, with probability 1, the Γ = Ω(s0, i0, ω). Moreover, Γ absorbs all pos-
itive solutions in the sense that for any initial value (s0, i0) ∈ intR2

+, the value γ(ω) = inf{t > 0 :
(S(t̄, s0, i0, ω), I(t̄, s0, i0, ω)) ∈ Γ̄ ∀ t̄ > t} is finite outside a P-null set.

Proof. a) It is easy to see that the systems (2.2) and (2.3) have the same equilibrium, (s+∗ , i
+
∗ ) =

(s−∗ , i
−
∗ ) =: (s∗, i∗) if and only if the condition (3.4) is satisfied. Let ε > 0 be arbitrary. Since (s∗, i∗)

is globally asymptotically stable, there is a neighborhood Vε ⊂ Uε(s∗, i∗), invariant under the system
(2.2) (see The Stable Manifold Theorem, [26, pp 107]). Under the condition (3.4), the vector fields of
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both systems (2.2) and (2.3) have the same direction at every point (s, i). As a result, Vε is also in-
variant under the system (2.3), which implies that Vε is invariant under the system (2.1). By Theorem
3.10, (s∗, i∗) ∈ Ω(s0, i0, ω) for almost all ω. Therefore, TVε

= inf
{

t > 0 : (S(t), I(t)) ∈ Vε

}

< ∞ a.s.
Consequently, (S(t), I(t)) ∈ Vε ∀t > TVε

. This property says that (S(t), I(t)) converges to (s∗, i∗) with
probability 1 if S(0) > 0, I(0) > 0.

b) We will show that if there exists a t0 > 0 such that the point (s̄0, ī0) = π−
t0(s

+
∗ , i

+
∗ ) satisfies the

following condition

det

(

Ṡ+(s̄0, ī0) Ṡ
−(s̄0, ī0)

İ+(s̄0, ī0) İ−(s̄0, ī0)

)

6= 0, (3.5)

then, with probability 1, the closure Γ of Γ coincides Ω(s0, i0, ω) and Γ absorbs all positive solutions.
Indeed, let (s̄0, ī0) = π−

t0(s
+
∗ , i

+
∗ ) be a point in intR2

+ satisfying the condition (3.5). By the existence and
continuous dependence on the initial values of the solutions, there exist two numbers d > 0 and e > 0 such
that the function ϕ(t1, t2) = π+

t2π
−
t1(s̄0, ī0) is defined and continuously differentiable in (−d, d)× (−e, e).

We note that

det

(

∂ϕ

∂t1
,
∂ϕ

∂t2

)

∣

∣

∣

(0,0)
=

det

(

−a(+)s̄0ī0 + c(+)(N − s̄0 − ī0) −a(−)s̄0ī0 + c(−)(N − s̄0 − ī0)
a(+)s̄0ī0 − b(+)̄i0 a(−)s̄0ī0 − b(−)̄i0

)

6= 0.

Therefore, by the Inverse Function Theorem, there exist 0 < d1 < d, 0 < e1 < e such that ϕ(t1, t2) is
a diffeomorphism between V = (0, d1) × (0, e1) and U = ϕ(V ). As a consequence, U is an open set.
Moreover, for every (s, i) ∈ U , there exists a (t∗1, t

∗
2) ∈ (0, d1)× (0, e1) such that (s, i) = π+

t∗
2
π−
t∗
1
(s̄0, ī0) ∈ S.

Hence, U ⊂ Γ ⊂ Ω(s0, i0, ω). Thus, there is a stopping time γ < ∞ a.s. such that (S(γ), I(γ)) ∈ U .
Since Γ is a forward invariant set and U ⊂ Γ , it follows that (S(t), I(t)) ∈ Γ ∀t > γ with probability 1.
The fact (S(t), I(t)) ∈ Γ for all t > γ implies that Ω(s0, i0, ω) ⊂ Γ . By combining with Theorem 3.10 we
get Γ = Ω(s0, i0, ω) a.s.

Finally, we need to show that when condition (3.4) does not happen, it ensures the existence of t0
satisfying (3.5). Indeed, consider the set of all (s, i) ∈ intR2

+ satisfying

det

(

Ṡ+(s, i) Ṡ−(s, i)

İ+(s, i) İ−(s, i)

)

= 0, (3.6)

or

[

− a(+)si+ c(+)(N − s− i)
][

a(−)s− b(−)
]

− [−a(−)si+ c(−)(N − s− i)
][

a(+)s− b(+)
]

= 0. (3.7)

The equation (3.7) describes a quadratic curve. However, it is easy to prove that any quadratic curve
is not the integral curve of the system (2.3). This means that we can find a t0 such that the point
(s̄0, ī0) = π−

t0(s
+
∗ , i

+
∗ ) satisfies the condition (3.5). The proof is complete. �

It is well-known that the triplet (ξt, S(t), I(t)) is a homogeneous Markov process with the state space
V := E × intR2

+. In the rest of this section, we prove the existence of a stationary distribution for the
process (ξt, S(t), I(t)). Moreover, some nice properties of the stationary distribution and the convergence
in total variation are given. These properites of the system can help us to predict how likely a state of the
epidemic is in the future. Moreover, it is also very important in terms of statistical inference. Note that, if
λ > 0 and (3.4) holds, all positive solutions converge almost surely to the equilibrium (s+∗ , i

+
∗ ) = (s−∗ , i

−
∗ ).

Otherwise, we have the following theorem whose proof is given in Appendix.

Theorem 3.12. If λ > 0 and (3.4) does not hold, then (ξt, S(t), I(t)) has a stationary distribution ν∗,
concentrated on E× (∇∩ intR2

+). In addition, ν∗ is the unique stationary distribution having the density
f∗, and for any initial distribution, the distribution of (ξt, S(t), I(t) converges to ν∗ in total variation.
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4. Simulation and discussion

We illustrate the above model by following numerical examples.
Example I: λ > 0 and the endemic is present in both states (see figure 6, 7, 8). It corresponds to

α = 15, β = 18, a(+) = 1.2, b(+) = 432, c(+) = 265, a(−) = 1.5, b(−) = 139, c(−) = 428, N = 500, the
initial condition (S(0), I(0)) = (250, 10) and number of switches n = 500. In this example, λ ≈ 369.36,
the solution of (2.1) switches between two asymptotically stable positive equilibriums of the systems (2.2)
and (2.3).

Example II: λ > 0 and one state is endemic, the other is disease free. The system (2.2) with
coefficients a(+) = 1.6, b(+) = 169, c(+) = 486 has a asymptotically stable positive equilibrium and the
system (2.3) with coefficients a(−) = 0.7, b(−) = 375, c(−) = 328 tends to the quantity of population
N = 500, the number of switches n = 700, transition intensities α = 8, β = 15 and initial condition
(S(0), I(0)) = (104, 336). Since λ ≈ 402.83, the system (2.1) is persistent (see figure 9, 10, 11).

Example III: λ < 0 and the system (2.2) has an endemic, the other has a disease-free equilibrium
(figure 12, 13, 14). The parameters of the model are α = 20, β = 5, a(+) = 1.9, b(+) = 176, c(+) =
465, a(−) = 0.5, b(−) = 455, c(−) = 347, N = 500, (S(0), I(0)) = (64, 362), n = 100. Although the
positive equilibrium of the system (2.2) is asymptotically stable, the system (2.1) is not persistent because
λ = −9.2.

Figure 6. Orbit of the system (2.1) in example I. The red line corresponds to the model
in state (+) and blue ones to the model in state (-).

The basic reproduction number R0 is an important concept in epidemiology. R0 is the threshold
parameter for many epidemiological models, it informs whether the disease becomes extinct or whether
the disease is endemic. For example, there are many recent papers about periodic epidemic models that
concentrate on defining and computing R0 (see [2], [3], [13], [29] [32]). In the classic SIRS model (1.1), R0

is valued by ratio Na
b , it represents the rate of increase of new infections generated by a single infectious

individual in a total sane population. Based on this R0, we give out the key parameter λ for our stochastic
SIRS model.

This is the average of two terms associated with each system + or − weighted by the switching
intensities. Therefore, in the stochastic model, λ can be interpreted as the average number of infective
individuals generated by a single infectious individual in a totally sane population for the total system with
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random switches. We can, therefore, understand that when λ is positive, it signifies that asymptotically
the total system will go towards an endemic state while the disease will vanish provided that it is negative.
Hence, for the stochastic model, λ is a very important parameter that enables us to obtain important
informations about the asymptotic behavior of the total system. It should also be mentioned that in
[15], when studying the simpler SIS model with Markov switching, the authors also provided a similar
threshold value TS

0 for almost sure extinction or persistence. In case of persistence, using the ergodicity
of the Markov chain, some ultimate estimates for the solution were given. However, in order to study the
SIRS model, we need to consider a system of two differential equations rather than only one differential
equation as for the SIS model, so the method used in [15] may not appropriate for the SISR model with
Markovian switching. Moreover, that method does not provide a complete description of the asymptotic
behavior of the solution. For this reason, we treat our model in another way. More precisely, we analyzed
the pathwise solution and obtained a better result. Moreover, some nice properties of the stationary
distribution and the convergence of the transition probability were given.

In this work, we have shown that the asymptotic behavior of the system depends on the sign of the
parameter λ. We have shown that when λ < 0, the epidemics always vanishes and that when λ > 0, the
system is persistent leading to an endemic state. Furthermore, under some supplementary constraint on
parameters, the system is permanent, theorem 3.7. When λ > 0, we also have shown the convergence in
total variation of the distribution of the process at time t to a stationary distribution which has a density.
We also illustrated our results by numerical simulations.

We illustrate different situations in the following numerical simulations. Examples I and II show cases
where λ is positive, the first one illustrates the switching between two endemic systems + and −, whilst
the second one depicts a system composed of an endemic state + and a state − for which the disease
free equilibrium is stable. In both examples, the simulations show that asymptotically the total system
persists leading to an endemic situation.

Figure 7. Trajectory S(t)
in example I

Figure 8. Trajectory I(t) in
example I.

At the figures 7 and 8 we see that there are positive constants Smin and Imin such that
S(t) ≥ Smin and I(t) ≥ Imin when t large as is claimed in Propositions 3.4 and 3.6.

The last example III considers the case of λ < 0, with an endemic system + and for the other one − a
stable disease free equilibrium. As expected, the simulation shows that after several switches, the disease
is globally eradicated.
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Figure 9. Orbit of the system (2.1) in example II. The red line corresponds to the
endemic model and blue ones to the disease free model.

Figure 10. Trajectory S(t)
in example II

Figure 11. Trajectory I(t)
in example II.

At the figures 10 and 11 we see that S(t) ≥ Smin when t large; I(t) oscillates between 0
and Imax meanwhile there exists an invariant measure whose support is in R

2
+ as is

claimed in Proposition 3.4 and Theorem 3.12

Examples II and III are interesting because they illustrate a similar case, i.e. when systems + and
− have opposite trends, system + being endemic and system − being disease free. In those examples,
it is thus questionable to predict what will be the global evolution of the complete system switching at
random between these two different situations. The answer is given by looking at the sign of parameter
λ which allow us to predict if the disease will globally invade or vanish in the long term.
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Figure 12. Orbit of the system (2.1) in example III. The red orbits correspond to the
endemic model and blue ones to the disease free model.

Figure 13. Trajectory S(t)
in example III

Figure 14. Trajectory I(t)
in example III.

At the figures 13 and 14 we see that limt→∞ S(t)=N and limt→∞ I(t) = 0
(disease free state as is claimed in Proposition 3.2)

Global changes may have important consequences on the spreading of emergent diseases and epidemics.
Therefore, it is important to provide pertinent tools that allow us to make suitable predictions about the
possibility of emergence of a disease in a changing environment undergoing climatic and environmental
changes. The aim of this paper was to provide such efficient tools.

As a perspective, the system would be extended to the case of a system switching randomly between
n states, n > 2. It would also be interesting to test the model on real situations, like malaria, switching
between wet and dry periods. Otherwise, for further study on the epidemic models under the effect of
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random environmental conditions, we could add some more other stochastic factors as in [6] to this SIRS
model. An interesting perspective would also be to combine in the same model, periodic seasonal [2],[3]
and random changes of weather conditions.

5. Appendix

The proof of Proposition 3.2. a) The second equation of the system (2.1) follows

ln I(t)− ln I(0)

t
=

1

t

∫ t

0

(a(ξt̄)S(t̄)− b(ξt̄))dt̄.

Since I(t) ≤ N , lim supt→∞
ln I(t)−ln I(0)

t ≤ 0. Therefore,

lim sup
t→∞

(1

t

∫ t

0

(a(ξt̄)N − b(ξt̄))dt̄−
1

t

∫ t

0

a(ξt̄)(N − S(t̄))dt̄
)

=

lim sup
t→∞

1

t

∫ t

0

(a(ξt̄)S(t̄)− b(ξt̄))dt̄ ≤ 0.

Thus,

lim inf
t→∞

1

t

∫ t

0

(a(ξt̄)N − b(ξt̄))dt̄ ≤ lim inf
t→∞

1

t

∫ t

0

a(ξt̄)(N − S(t̄))dt̄.

Because the process (ξt) has a unique stationary distribution limt→∞ P{ξt = +} = p and limt→∞ P{ξt =
−} = q, then by the law of large numbers

lim
t→∞

1

t

∫ t

0

(a(ξt̄)N − b(ξt̄))dt̄ = p
(

a(+)N − b(+)
)

+ q
(

a(−)N − b(−)
)

= λ.

Denote gmin = min(g(+), g(−)), gmax = max(g(+), g(−)) for g = a, b, c. We have

lim inf
t→∞

1

t

∫ t

0

amax(N − S(t̄))dt̄ ≥ lim inf
t→∞

1

t

∫ t

0

a(ξt̄)(N − S(t̄))dt̄

≥ lim inf
t→∞

1

t

∫ t

0

a(ξt̄)(N − b(ξt̄))dt̄ = λ. (5.1)

On the other hand, from

Ṡ(t) = −(a(ξt)S(t) + c(ξt))I(t) + c(ξt)(N − S(t)) ≥ −(a(ξt)N + c(ξt))I(t) + c(ξt)(N − S(t)),

it follows
S(t)− S(0)

t
≥

1

t

∫ t

0

−(a(ξt̄)N + c(ξt̄))I(t̄)dt̄+
1

t

∫ t

0

c(ξt̄)(N − S(t̄))dt̄.

Since limt→∞
S(t)−S(0)

t = 0,

lim sup
t→∞

(1

t

∫ t

0

−(a(ξt̄)N + c(ξt̄))I(t̄)dt̄+
1

t

∫ t

0

c(ξt̄)(N − S(t̄))dt̄
)

≤ 0.

Hence,

lim inf
t→∞

1

t

∫ t

0

(amaxN + cmax)I(t̄)dt̄ ≥ lim inf
t→∞

1

t

∫ t

0

(a(ξt̄)N + c(ξt̄))I(t̄)dt̄

≥ lim inf
t→∞

1

t

∫ t

0

c(ξt̄)(N − S(t̄))dt̄ ≥ lim inf
t→∞

1

t

∫ t

0

cmin(N − S(t̄))dt̄. (5.2)
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Combining (5.1) and (5.2), we obtain

lim inf
t→∞

1

t

∫ t

0

I(t̄)dt̄ ≥ lim inf
t→∞

1

t

∫ t

0

cmin

amaxN + cmax
(N − S(t̄))dt̄

≥
cmin

(amaxN + cmax)amax
λ > 0.

This inequality implies that there exists δ1 > 0 such that lim supt→∞ I(t) > δ1.

b) From the inequality

İ(t)

I(t)
= a(ξt)S(t)− b(ξt) ≤ a(ξt)N − b(ξt),

we have

lim sup
t→∞

ln I(t)− ln I(0)

t
≤ lim sup

t→∞

1

t

∫ t

0

(a(ξt̄)S(t̄)− b(ξt̄))dt̄ ≤ λ < 0,

which implies that lim
t→∞

I(t) = 0. On the other hand,

Ṡ(t) = −a(ξt)S(t)I(t) + c(ξt)(N − S(t)− I(t)) ≥ −amaxNI(t) + cmin(N − S(t)− I(t)).

Thus,

S(t) ≥

∫ t

0

e−cmin(t−t̄)(−amaxN + cmin)I(t̄)dt̄+ S(0)e−cmint + cminN

∫ t

0

e−cmin(t−t̄)dt̄.

We see that lim
t→∞

∫ t

0
e−cmin(t−t̄)dt̄ = 1

cmin
. Further, by paying attention that lim

t→∞
I(t) = 0 we also obtain

lim
t→∞

∫ t

0

e−cmin(t−t̄)(−amaxN + cmin)I(t̄)dt̄ = 0.

Hence, lim inft→∞ S(t) ≥ N . Combining S(t) ≤ N for all t > 0 gets limt→∞ S(t) = N. The proof is
complete. �

The proof of Lemma 3.8. Consider the system (2.2). Since (s+∗ , i
+
∗ ) is asymptotically stable, we can find

a δ̄2 = δ̄2(δ2) > 0 such that

π+
t

(

Uδ̄2(s
+
∗ , i

+
∗ )

)

⊂ Uδ2(s
+
∗ , i

+
∗ ) ∀t ≥ 0.

On the one hand, for (s, i) ∈ J , limt→∞ π+
t (s, i) = (s+∗ , i

+
∗ ) which implies that there exists a Tsi satisfying

π+
t (s, i) ∈ Uδ̄2/2(s

+
∗ , i

+
∗ ) for all t ≥ Tsi.

By the continuous dependence of the solutions on the initial conditions, there is a neighborhood Usi of
(s, i) such that for any (u, v) ∈ Usi we have

π+
Tsi

(u, v) ∈ Uδ̄2(s
+
∗ , i

+
∗ ).

As a result,

π+
t (u, v) ∈ π+

t−Tsi

(

Uδ̄2(s
+
∗ , i

+
∗ )

)

⊂ Uδ2(s
+
∗ , i

+
∗ ) ∀t ≥ Tsi.

Since J is compact and the family {Usi : (s, i) ∈ J} is an open covering of J , by Heine-Borel lemma,
there is a finite subfamily, namely {Usiii , i = 1, 2, ..., n}, which covers J . Let T1 = max1≤i≤n{Tsiii}. We
see that if (s, i) ∈ J then π+

t (s, i) ∈ Uδ2(s
+
∗ , i

+
∗ ) for any t ≥ T1. �
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The proof of Lemma 3.9. In the case b(−)
a(−) < N , we can choose K ≡ G, that was established in Proposi-

tion 3.6 and see that (S2k+1, I2k+1) ∈ K for every k > k0.

Suppose that b(+)
a(+) < N < b(−)

a(−) . With δ1 is shown in Proposition 3.2, by a similar way to the

construction of the set G in the proof of Proposition 3.6, we construct a curve γ+ for the system (2.2),

with the initial point (Smin, δ1) and the end point ( b(+)
a(+) , I

+
min); then define the subdomain K of quadrangle

ABCD consisting of every (s, i) ∈ ABCD lying above the curve γ+ if s ≤ b(+)
a(+) and lying above the line

i = I+min if b(+)
a(+) ≤ s ≤ N . It is seen that K is an invariant set for the system (2.2). By Proposition

3.2, there is a sequence (µn) ↑ ∞ such that I(µn) ≥ δ1 for all n ∈ N. Further, since I(t) is decreasing

whenever S(t) ≤ b(+)
a(+) , we can chose (µn) such that S(µn) >

b(+)
a(+) . If τ2k ≤ µn < τ2k+1, i.e. ξµn

= +,

we have (S2k+1, I2k+1) ∈ K because (S(µn), T (µn)) ∈ K and K is invariant set for the system (2.2). For
τ2k−1 ≤ µn < τ2k, if supτ2k≤t<τ2k+1

I(t) ≥ δ1 we return to the above case. Otherwise, I(t) < δ1 for any
τ2k ≤ t < τ2k+2 since I(t) is decreasing on [τ2k+1, τ2k+2)... Continuing this process, we can either find
an odd number 2m + 1 > k such that (S2m+1, I2m+1) ∈ K or see that I(t) < δ1 ∀t > τ2k. The latter
contradicts to Proposition 3.2. The proof is complete. �

The proof of Theorem 3.10. With K is mentioned in Lemma 3.9, we construct a sequence

η1 = inf{2k + 1 : (S2k+1, I2k+1) ∈ K}

η2 = inf{2k + 1 > η1 : (S2k+1, I2k+1) ∈ K}

· · ·

ηn = inf{2k + 1 > ηn−1 : (S2k+1, I2k+1) ∈ K} . . .

It is easy to see that {ηk = n} ∈ Fn
0 for any k, n. Thus the event {ηk = n} is independent of F∞

n if ξ0 is
given. By Lemma 3.9, ηn < ∞ a.s. for all n.

Let T2 > 0, T 2 > 0. For any k ∈ N, put Ak = {σηk+1 < T2, σηk+2 > T 2}. We have

P(Ak) = P{σηk+1 < T2, σηk+2 > T 2}

=
∞
∑

n=0

P{σηk+1 < T2, σηk+2 > T 2 | ηk = 2n+ 1}P{ηk = 2n+ 1}

=

∞
∑

n=0

P{σ2n+2 < T2, σ2n+3 > T 2 | ηk = 2n+ 1}P{ηk = 2n+ 1}

=

∞
∑

n=0

P{σ2n+2 < T2, σ2n+3 > T 2}P{ηk = 2n+ 1}

=

∞
∑

n=0

P{σ2 < T2, σ3 > T 2}P{ηk = 2n+ 1} = P{σ2 < T2, σ3 > T 2} > 0.

Similarly,

P(Ak ∩Ak+1) = P{σηk+1 < T2, σηk+2 > T 2, σηk+1+1 < T2, σηk+1+2 > T 2}

=
∑

0≤l<n<∞

P{σηk+1 < T2, σηk+2 > T 2, σηk+1+1 < T2, σηk+1+2 > T 2 |

ηk = 2l + 1, ηk+1 = 2n+ 1}P{ηk = 2l + 1, ηk+1 = 2n+ 1}

=
∑

0≤l<n<∞

P{σ2l+2 < T2, σ2l+3 > T 2, σ2n+2 < T2, σ2n+3 > T 2 | ηk = 2l + 1,

ηk+1 = 2n+ 1} × P{ηk = 2l + 1, ηk+1 = 2n+ 1}
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=
∑

0≤l<n<∞

P{σ2n+2 < T2, σ2n+3 > T 2}P{σ2l+2 < T2, σ2l+3 > T 2 |

ηk = 2l + 1, ηk+1 = 2n+ 1} × P{ηk = 2l + 1, ηk+1 = 2n+ 1}

=
∑

0≤l<n<∞

P{σ2 < T2, σ3 > T 2}P{σ2l+2 < T2, σ2l+3 > T 2 |

ηk = 2l + 1, ηk+1 = 2n+ 1} × P{η = 2l + 1, ηk+1 = 2n+ 1}

= P{σ2 < T2, σ3 > T 2}
∑

0≤l<n<∞

P{σ2l+2 < T2, σ2l+3 > T 2 |

ηk = 2l + 1, ηk+1 = 2n+ 1} × P{ηk = 2l + 1, ηk+1 = 2n+ 1}

= P{σ2 < T2, σ3 > T 2}

∞
∑

l=0

P{σ2l+2 < T2, σ2l+3 > T 2 | ηk = 2l + 1}P{ηk = 2l + 1}

= P{σ2 < T2, σ3 > T 2}
2.

Therefore,
P(Ak ∪Ak+1) = 1− (1− P{σ2 < T2, σ3 > T 2})

2.

Continuing this way we obtain

P

( n
⋃

i=k

Ai

)

= 1− (1− P{σ2 < T2, σ3 > T 2})
n−k+1.

Hence,

P

( ∞
⋂

k=1

∞
⋃

i=k

Ai

)

= P{ω : σηn+1 < T2, σηn+2 > T 2 i.o. of n} = 1. (5.3)

Fix T2 > 0. From İ(t) = a(ξt)S(t)I(t) − b(ξt)I(t) ≥ −bmaxI(t) and I(τηk
) ≥ Imin, it follows that

I(t+ τηk
) ≥ Imine

−bmaxt for all t > 0. As a result, with σηk+1 < T2, Iηk+1 > ∆ := Imine
−bmaxT2 .

Let δ2 > 0, we choose T̄2 = T1(δ2) as in Lemma 3.8 for the set J = H∆. Because Iηk
≥ δ1, it follows

Iηk+1 ∈ H∆ and (Sηk+2, Iηk+2) ∈ Uδ2(s
+
∗ , i

+
∗ ) provided σηk+1 < T2, σηk+2 > T̄2. From (5.3)we see that

(Sηk+2, Iηk+2) ∈ Uδ2(s
+
∗ , i

+
∗ ) for infinitely many k. This means that (s+∗ , i

+
∗ ) ∈ Ω(s0, i0, ω) for almost all

ω.
Next, we show that {π−

t (s
+
∗ , i

+
∗ ) : t ≥ 0} ⊂ Ω(s0, i0, ω) a.s. Consider a point (s̄, ī) = π−

T3
(s+∗ , i

+
∗ ). By

the continuous dependence of solutions on the initial values, for any δ4 > 0, there are δ3, T 3 such that
if (u, v) ∈ Uδ3(s

+
∗ , i

+
∗ ) then π−

t (u, v) ∈ Uδ4(s̄, ī) for all T3 − T 3 < t < T3 + T 3. We now construct the
sequence of stopping times

ζ1 = inf{2k + 1 : (S2k+1, I2k+1) ∈ Uδ3(s
+
∗ , i

+
∗ )},

ζ2 = inf{2k + 1 > ζ1 : (S2k+1, I2k+1) ∈ Uδ3(s
+
∗ , i

+
∗ )},

· · ·

ζn = inf{2k + 1 > ζn−1 : (S2k+1, I2k+1) ∈ Uδ3(s
+
∗ , i

+
∗ )} . . .

For (s+∗ , i
+
∗ ) ∈ Ω(s0, i0, ω), it follows that ζn < ∞ and lim

n→∞
ζn = ∞ a.s. Since {ζk = n} ∈ Fn

0 , {ζk} is

independent of F∞
n . Put

Bk = {σζk+1 ∈ [T3 − T 3, T3 + T 3]}, k = 1, 2, ...

By the same argument as above we obtain P{ω : σζn+1 ∈ [T3 − T 3, T3 + T 3] i.o. of n} = 1. This implies
(Sζk+1, Iζk+1) ∈ Uδ4(s̄, ī) for infinitely many times and (s̄, ī) ∈ Ω(s0, i0, ω) a.s. Thus, {π−

t (s
+
∗ , i

+
∗ ) : t ≥

0} ⊂ Ω(s0, i0, ω).
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Based on the continuous dependence of solutions on the initial values and using a similar argument,
we see that {π+

t2 ◦ π
−
t1(s

+
∗ , i

+
∗ ) : t1 ≥ 0, t2 ≥ 0} ⊂ Ω(s0, i0, ω). By induction, we conclude Γ ⊂ Ω(s0, i0, ω).

Moreover, Γ ⊂ Ω(s0, i0, ω) since Ω(s0, i0, ω) is a closed set. �

The proof of Theorem 3.12. We firstly point out the existence of a stationary distribution of the process
(ξt, S(t), I(t)). From the proof of Proposition 3.2, we have

lim inf
t→∞

1

t

∫ t

0

I(t̄)dt̄ ≥
cmin

(amaxN + cmax)amax
λ =: ρ > 0.

Denote by 1A the indicator function of the set A. By using the relations

1

t

∫ t

0

I(t̄)dt̄ =
1

t

∫ t

0

I(t̄)1{I(t̄)< ρ
2
}dt̄+

1

t

∫ t

0

I(t̄)1{I(t̄)≥ ρ
2
}dt̄

≤
ρ

2
+

N

t

∫ t

0

1{I(t̄)≥ ρ
2
}dt̄,

it follows, with probability 1, that

lim inf
t→∞

1

t

∫ t

0

1{I(t̄)≥ ρ
2
}dt̄ ≥

ρ

2N
.

Applying Fatou lemma yields

lim inf
t→∞

1

t

∫ t

0

P
{

I(t̄) ≥
ρ

2

}

dt̄ ≥
ρ

2N
. (5.4)

Consider the process (ξt, S(t), I(t)) on a larger state space E×
(

∇\{(s, i) : s = 0, 0 ≤ i ≤ N}
)

. it is easy
to prove that (ξt, S(t), I(t)) is a Feller process. Therefore, by using [24, Theorem 4.5] (or [28]) the above
estimate (5.4) implies the existence of an invariant probability measure ν for the process (ξt, S(t), I(t))
on E×

(

∇\{(s, i) : s = 0, 0 ≤ i ≤ N}
)

. Since {(s, i) : i = 0, 0 ≤ s ≤ N} is invariant and limt→∞ I(t) = 0
if S(0) = 0, it follows that ν({(s, i) : i = 0, 0 ≤ s ≤ N}) = 0. Thus, ν(E × (∇ ∩ intR2

+)) > 0. By virtue

of the invariant property of E×intR2
+, the measure ν∗ defined by ν∗(A) =

ν
(

A ∩ E × (∇∩ intR2
+)

)

ν(E × (∇∩ intR2
+))

for

any measurable A ∈ B(V) is a stationary distribution on E × (∇ ∩ intR2
+) of the process (ξt, S(t), I(t)).

The absolute continuity of ν∗ is proved as in the proof of [12, Proposition 3.1] while the convergence in
total variation of the distribution of (ξt, S(t), I(t)) can be referred to [10, Theorem 4.2]. �
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