Designing Appropriate AI for Organ Allocation and Acceptance

Casey Canfield, Associate Professor

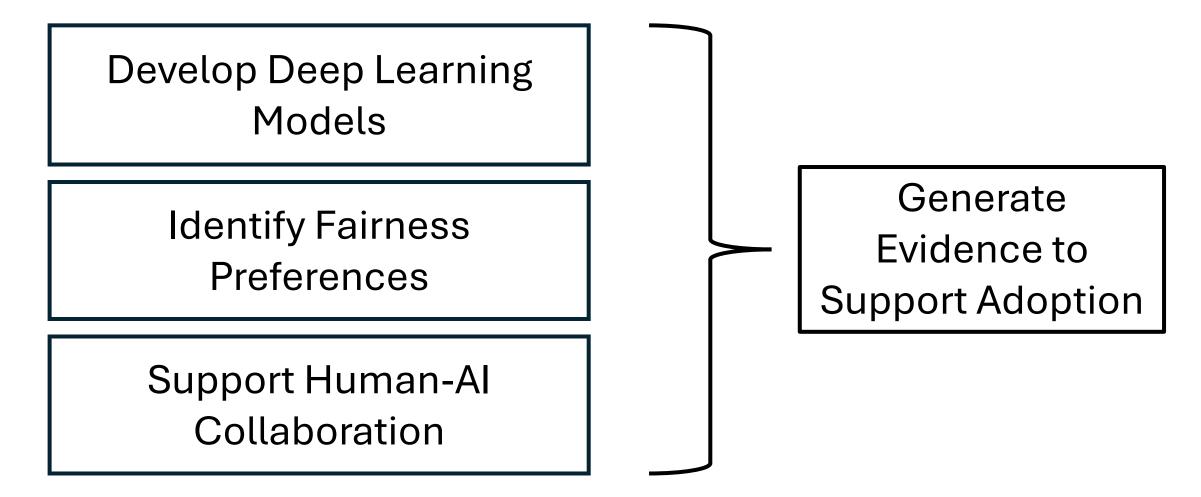
Engineering Management & Systems Engineering

Missouri S&T

Disclosure

• This work is supported by National Science Foundation (NSF) grants (#2222801 & #2026324).

Interdisciplinary research is needed to design <u>appropriate</u> AI systems.



We have developed 3 deep learning models.

	Deceased Donor Organ Allocation (Hard-to-Place)	Provisional Acceptance (Non-Primary Offer)	Final Acceptance (Primary Offer)
Predicts	Likelihood of non- utilization for deceased donor organ	Likelihood of provisional acceptance for candidate	Likelihood of final acceptance for candidate
Use Cases for OPO	Deciding whether to pursue out-of- sequence allocation	Making open offers	Making open offers
Use Cases for Transplant Center	N/A	Setting up filters	Second opinion, facilitate decision-
	Initial prototype available at https://ddoa.mst.hekademeia		making for late-night offers

Ashiku, Threlkeld, Dagli, Schnitzler, Canfield, Lentine, Randall. (2022). Donor Disposition AI Model to Predict Transplant for Recovered Deceased Donor Kidneys. American Journal of Transplantation, 22, 652-653.

Existing biases are perpetuated in AI and deep learning models.

Training Data/Model Development

• Observed biases related to gender, diabetes, hypertension

Human-Al Interaction

- People over or under-rely on AI for decision-making
- Need to preserve human autonomy

- How can we use fairness metrics to adjust Al outputs?
- How can explainable AI (XAI) support model interpretability?

Upcoming abstracts accepted at World Transplant Congress:

 Fadaiya, Akinola, Threlkeld, Dagli. (2025). Assessment of Potential Bias in Kidney Transplant Acceptance Decision using the Deceased Donor-Recipient Matching Al Model.

• Akinola, Fadaiya, Threlkeld, Dagli. (2025). Evaluating Potential Gender Bias in Kidney Discard prediction leveraging the Deceased Donor Allocation Model.

We can improve fairness, but we must choose **one** definition.

		Table 1: Classification of fairness notions.		
Fairness Notion	Reference	Formulation	Classification	Type
Statistical Parity	[15]	$P(\hat{Y} \mid A = 0) = P(\hat{Y} \mid A = 1)$	Independence	
Conditional Statistical Parity	[10]	$P(\hat{Y} = 1 \mid E = e, A = 0) = P(\hat{Y} = 1 \mid E = e, A = 1) \forall e$	$\hat{Y} \perp A$	
Equalized Odds	[23]	$P(\hat{Y} = 1 \mid Y = y, \ A = 0) = P(\hat{Y} = 1 \mid Y = y, \ A = 1) \forall y \in \{0, 1\}$		
Equal Opportunity	[=0]	$P(\hat{Y} = 1 \mid Y = 1, A = 0) = P(\hat{Y} = 1 \mid Y = 1, A = 1)$	Separation	
Predictive Equality	[10]	$P(\hat{Y} = 1 \mid Y = 0, A = 0) = P(\hat{Y} = 1 \mid Y = 0, A = 1)$	$\hat{Y} \perp A \mid Y$	
Balance for Positive Class	[29]	$E[S \mid Y - 1, A - 0)] - E[S \mid Y - 1, A - 1]$		
Balance for Negative Class	[20]	$E[S \mid Y = 0, A = 0] = E[S \mid Y = 0, A = 1]$		Fair Fair
Conditional Use Accuracy Equality	[6]	$P(Y = y \mid \hat{Y} = y, A = 0) = P(Y = y \mid \hat{Y} = y, A = 1) \forall y \in \{0, 1\}$	Sufficiency	Group Fairness
Predictive Parity	[8]	$P(Y = 1 \mid \hat{Y} = 1, A = 0) = P(Y = 1 \mid \hat{Y} = 1, A = 1)$	$Y \perp A \mid \hat{Y}$	
Calibration	[~]	$P(Y = 1 \mid S = s, A = 0) = P(Y = 1 \mid S = s, A = 1) \forall s \in [0, 1]$		
Well-calibration	[29]	$P(Y = 1 \mid S = s, A = 0) = P(Y = 1 \mid S = s, A = 1) = s \forall \ s \in [0, 1]$		
Overall Accuracy Equality		$P(\hat{Y} = Y A = 0) = P(\hat{Y} = Y A = 1)$	Other metrics	
Treatment Equality	[6]	$\frac{FN}{FP}(a=0) = \frac{FN}{FP}(a=1)$	from confusion matrix	
Total Fairness		-	Independence, Separation and Sufficiency	
No unresolved discrimination	[27]	-		
No proxy discrimination	[=.]	$P(\hat{Y} \mid do(P_x = p)) = P(\hat{Y} \mid do(P_x = p')) \forall P_x and \forall \ p, p'$	Causality	
Counterfactual Fairness	[30]	$P(\hat{Y}_{A\leftarrow a}(U)=y\mid X=x, A=a)=P(\hat{Y}_{A\leftarrow a'}(U)=y\mid X=x, A=a)$		Ind Fa
Causal Discrimination	[20]	$X_{(a=0)} = X_{(a=1)} \ \land \ A_{(a=0)} \ \neq A_{(a=1)} \ \Rightarrow \hat{y}_{(a=0)} = \hat{y}_{(a=1)}$	- Similarity Metric	Individual Fairness
Fairness Through Awareness	[15]	$D(M(v_i), M(v_j)) \le d(v_i, v_j)$		1al ^{3S}

Makhlouf, Zhioua, Palamidessi. (2021). On the Applicability of Machine Learning Fairness Notions. SIGKDD Explor. Newsl., 23(1), 14–23.

	Disa	greement feedback ca				
DONOR		measure fairness	ore	ferei	nces	
Age 28						•
Race White						
Gender Male						
Kidney Quality 18		Next Step:				
Recipient	# 1		7	8	9	10
Aş	je 19		67	71	73	38
Rad	White	Collect input from	White	White	White	Multi-Racial
Gend	er Male	tropoplopt stakeholdere	Male	Male	Male	Female
Est. Post Transplant Surviv	al 3	transplant stakeholders	67	61	65	17
Distance from Transplant Cent	er 0.0 miles	² (patients, donors, OPOs,	65.0 miles	0.0 miles	0.0 miles	199.0 miles
Acceptance Ra	te 59%		78%	78%	78%	59%
Surgeon's Decisio	n No Transplant No	r transplant centers)	Fransplant	No Transplant	No Transplant	Transplant

a a dua a continua alla a alla a continua de

7

Given the surgeon's decision (highlighted in purple), what is the fairness of the Acceptance Rates from the AI recommender system?

Completely Unfair	Moderately Unfair	Slightly Unfair	Neither Fair nor Unfair	Slightly Fair	Moderately Fair	Completely Fair
0	0	0	0	0	0	0

Telukunta, Nadendla. (2023). Towards Inclusive Fairness Evaluation via Eliciting Disagreement Feedback from Non-expert Stakeholders. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 245-260.

For human-AI collaboration, the value of AI varies by person and by case.

OPOs

 Desired an immediate intervention to screen for a hard-to-place kidney.

Transplant Centers

• Transplant centers framed the AI as a **second opinion** to accept or deny a kidney offer.

- Preference for XAI information to always be reviewed
- Value of AI depends on the difficulty of case

Subramanian, Canfield, Shank. (2024). Designing explainable AI to improve human-AI team performance: a medical stakeholder-driven scoping review. Artificial Intelligence in Medicine, 149, 102780.
Shank. (2025). The Machine Penalty: The Consequences of Seeing Artificial Intelligence as Less Than Human. Springer Nature.

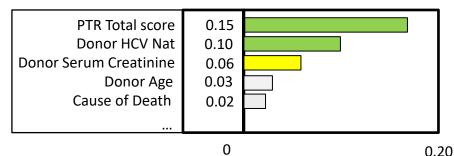
System-level XAI helps users build a mental model of how the AI works.

Examples of System-level XAI

Training Dataset InformationDataset Timeline2016-2021No. of observations1,300,000No. of features29......

Model Card

Feature Importance



Initial Experimental Findings

- People can use AI limitations
- But they are still inclined to believe an AI is capable outside of the training boundary

HomeVise AI

- Model Metrics
 - Accuracy = 83%
- Limitations
 - The Al's training data underrepresents buyers aged 45 and below.
 - The Al's training data underrepresents Black and Asian buyers.

Subramanian, Canfield, Shank. (in prep).

Prediction-level XAI is influenced by both the interface and decision context.

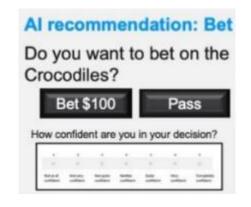
Uncertainty Information

 People can appropriately leverage uncertainty information based on their domain knowledge

Leopard	75%	
Jaguar	20%	_
Cheetah	4%	
Snow Leopard	1%	
Egyptian Cat	<1%	
Puma	<1%	

Risky Context

- Recommendations to not act (pass) matter more
- People trust reliable AIs more



- Subramanian, Canfield, Shank, Kinnison. (2023). Combining uncertainty information with AI recommendations supports calibration with domain knowledge. *Journal of Risk Research*, *26*(10), 1137-1152.
- Elder, Canfield, Shank, Rieger, Hines. (2024). Knowing when to pass: the effect of AI reliability in risky decision contexts. *Human Factors*, *66*(2), 10 348-362.

AI has potential ... if developed appropriately.

- Interviews with OPO leaders suggest:
 - There is hope AI will alleviate bias concerns
 - "[The transplant system is] loaded with bias. [...] Ideally, the algorithms will not be loaded up with so much of that bias."
 - Al benefits may extend beyond performance/accuracy
 - "It would ideally reduce that amount of time."
 - "I think it'll save on staff fatigue."
- Al developers need to be addressing issues related to bias directly by:
 - Evaluating observed bias in AI outputs
 - Conducting field trials to evaluate human-AI interaction effects

This is all building towards a field trial of our AI tool.

- SimUNet is a behavioral science platform developed by UNOS
- Mimics the real DonorNet mobile platform
- In 2026, we will conduct a Randomized Controlled Trial of the AI tool to evaluate effect on:
 - Task performance
 - Efficiency

Stewart, Shepard, Rosendale, McGehee, Hall, Gupta, ... Klassen. (2020). Can behavioral research improve transplant decision-making? A mock offer study on the role of kidney procurement biopsies. *Kidney360*, *1*(1), 36-47.

Thank you!

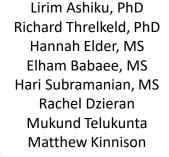
For more information: https://sites.mst.edu/aifortransplant/

Casey Canfield (PI) Eng Mgt & Sys Eng

Cihan Dagli (Co-PI) Eng Mgt & Sys Eng

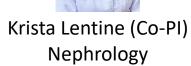
Daniel Shank (Co-PI) Psych

Sid Nadendla **Computer Science**



Sukruth Rao Gabriella Stickney Grace Hall Aiden Pickett Stephanie Rose Donna Murphey Charles Love

Mark Schnitzler (Co-PI) Health Economics



Henry Randall Transplant Surgery

Health Care Ethics

Michael Miller Health Care Ethics

Laura Cartwright **Behavioral Science**

Samantha Noreen **Research Science**

Brendon Cummiskey Behavioral Science

Join our Mailing List to stay updated!

