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What’s the target problem?

Approximate a function f (x) by an elementary function p(x).

For example, p(x) could be a polynomial, a piecewise
polynomial, a trigonometric polynomial, a rational function, or
a linear combination of “nice” functions, which are easy to
use in numerical computation.

How to decide if an approximation is “good” or “bad”?

What are the features of different types of approximations?

Accuracy

..........
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Vector space

Definition (Subspace)

W is a subspace of a real vector space V if u ∈W , v ∈W implies
that αu + βv ∈W for all α, β ∈ R.

Definition (Span)

Let u1, u2, · · · , un ∈ V . The set of all linear combination of
u1, u2, · · · , un is called the span of u1, u2, · · · , un, which is denoted
by span{u1, u2, · · · , un}
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Vector space

Example

P1 is a subspace of P2 and P j (j = 0, 1, · · · , k is a subspace
of Pk .

Pk [a, b] is a subspace of C [a, b].

If W = span{u1, u2, · · · , un} and u1, u2, · · · , un ∈ V , then it
is easy to verify that W is a subspace of V .
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Vector space

Definition (Linearly independent/dependent)

Let V be a vector space. Then u1, u2, · · · , un ∈ V are linearly

independent if
n∑

i=1
αiui = 0 implies that αi = 0 (i = 1, 2, · · · , n).

Otherwise, u1, u2, · · · , un ∈ V are linearly dependent.

Example

Consider V = C [0, 1]. u1 = 1, u2 = x and u3 = x2 are linearly
independent, but u1 = 1, u2 = x and u3 = 2− 3x are linearly
dependent.
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Vector space

Definition (Basis)

Let V be a vector space. If u1, u2, · · · , un ∈ V are linearly
independent and V = span{u1, u2, · · · , un}, then u1, u2, · · · , un

forms a basis for V .

Definition (Dimension)

If V has a basis of n elements, Then, n is called the dimension of
V .

8 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Vector space

Definition (Basis)

Let V be a vector space. If u1, u2, · · · , un ∈ V are linearly
independent and V = span{u1, u2, · · · , un}, then u1, u2, · · · , un

forms a basis for V .

Definition (Dimension)

If V has a basis of n elements, Then, n is called the dimension of
V .

8 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Vector space

Lemma (I)

If V is a n-dimensional vector space and u1, u2, · · · , un ∈ V are
linearly independent, then V = span{u1, u2, · · · , un}. Moreover,
every basis of V has n elements and any collection of n + 1
elements in V is linearly dependent.

Example

P2 = span{1, x , x2}. Since 1, x , and x2 are linearly independent,
they form a basis of P2 and the dimension of P2 is 3.

9 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Vector space

Lemma (I)

If V is a n-dimensional vector space and u1, u2, · · · , un ∈ V are
linearly independent, then V = span{u1, u2, · · · , un}. Moreover,
every basis of V has n elements and any collection of n + 1
elements in V is linearly dependent.

Example

P2 = span{1, x , x2}. Since 1, x , and x2 are linearly independent,
they form a basis of P2 and the dimension of P2 is 3.

9 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Norm

Definition (Norm of a function)

Assume V is a vector space. For any function v ∈ V , a norm of v
is defined to be a number ‖v‖ satisfying

1 ‖v‖ ≥ 0.

2 ‖v‖ = 0 if and only if v = 0.

3 ‖λv‖ = |λ| ‖v‖ for λ ∈ R orC.

4 ‖u + v‖ ≤ ‖u‖+ ‖v‖ for any u, v ∈ V .

Definition (Normed vector space)

A vector space V is called a normed vector space if a norm ‖v‖
defined for each v ∈ V .
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Norm

Assume V = C [a, b]. Here are some examples of norm:

‖v‖∞ = max
x∈[a,b]

|v(x)| ρ(x) is called the max norm with weight

function ρ(x) > 0. When ρ(x) = 1, it is called the max norm.

‖v‖2 =
(∫ b

a |v(x)|2 ρ(x) dx
) 1

2
is called the L2 norm with

weight function ρ(x) > 0. When ρ(x) = 1, it is called the L2

norm.

‖v‖1 =
∫ b
a |v(x)| ρ(x) dx is called the L1 norm with weight

function ρ(x) > 0. When ρ(x) = 1, it is called the L1 norm.
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Definition of a best approximation

Definition (Best approximation)

Let W be a finite-dimensional subspace of a normed vector space
V . Given v ∈ V , a best approximation in W to v with respect to a
norm ‖·‖ is a w ∈W such that the distance ‖v − w‖ is the least
among all w ∈W . That is, ‖v − w‖ ≤ ‖v − u‖ for any u ∈W .

Remark

A geometric explanation of the best approximation: see Figure
4.1 on page 193 of the textbook.

Example: V = C [a, b],
W = {set of polynomials of degree ≤ n}, and ‖·‖ = ‖·‖∞.

Does such a best approximation w always exist?

Yes!
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Existence of a best approximation

Theorem (I)

Let W be an n + 1-dimensional subspace of a normed linear space
V . Let u0, u1, · · · , un be linearly independent elements of W .
That is, W = span{u0, u1, · · · , un}. Then there is a p ∈W , i.e.,

p =
n∑

j=0
αjuj for a given f ∈ V , such that

‖f − p‖ =

∥∥∥∥∥∥f −
n∑

j=0

αjuj

∥∥∥∥∥∥ = min
γ0,γ1,··· ,γn

∥∥∥∥∥∥f −
n∑

j=0

γjuj

∥∥∥∥∥∥
That is, ‖f − p‖ ≤ ‖f − q‖ for all q ∈W . Hence p is the best
approximation in W to f ∈ V with respect to norm ‖·‖.

14 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Existence of a best approximation

Proof.

See pages 192-194 of the textbook. (Independent study
problem)

15 / 80
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Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.
Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.
Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.

Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.
Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.
Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Example 1: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the norm infinity norm ‖·‖∞.

Solution: We need to find a p that minimizes max
0≤x≤1

|ex − p|.

Since f (x) = ex − p is a monotonic function of x ,
max

0≤x≤1
|ex − p| is the larger one of

∣∣e0 − p
∣∣ = |1− p| and

|e − p|.
Given any p, |1− p| is the distance from p to 1 and |e − p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?

The middle point p = 1
2 (e + 1).

16 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Example of a best approximation

Verification:

If p = 1
2 (e + 1), then |e − p| = |1− p| = 1

2 (e − 1);

If p > 1
2 (e + 1), then |1− p| > 1

2 (e − 1);

If p < 1
2 (e + 1), then |e − p| > 1

2 (e − 1).

So the minimum value of the larger one of the two distances
is 1

2 (e − 1). So is the minimum value of max
0≤x≤1

|ex − p|.

17 / 80
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Example of a best approximation

Example 2: Find the best approximation p ∈ P0 to
ex ∈ C [0, 1] for the L2 norm ‖·‖2.

Solution: We need to find a p that minimizes

‖ex − p‖2 =
[∫ 1

0 (ex − p)2 dx
] 1

2
.

Since ‖·‖ ≥ 0, it’s equivalent to find a p that minimizes

g(p) = ‖ex − p‖2
2 =

∫ 1
0 (ex − p)2 dx .

Then

g ′(p) =

∫ 1

0

d (ex − p)2

dp
dx

=

∫ 1

0
−2 (ex − p) dx

= −2(e − p − 1).

18 / 80
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Example of a best approximation

Then g ′(p) = 0⇒ p = e − 1.

Since g ′′(p) = −2
∫ 1

0 −1 dx = 2 > 0, then p = e − 1 is the
minimizer and the minimum value is
‖ex − p‖ = 1

2 (4e − e2 − 3)
1
2 .

Remark

Question: Is there a general framework to find the best
approximation?

Yes!The best approximation in inner product spaces.
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Preparation: Inner product space

Definition (Inner product)

Let V be a vector space. An inner product (u, v) for u, v ∈ V is a
real number such that

1 (u, u) ≥ 0 for u ∈ V .

2 (u, u) = 0 if and only if u = 0.

3 (u, v) = (v , u).

4 (αu + βv ,w) = α(u,w) + β(v ,w) for all u, v ,w ∈ V and
α, β ∈ R.

Definition (Inner product space)

A real vector space V is called a real inner product space if a inner
product is defined for each u, v ∈ V .
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Preparation: Inner product space

Example

V = C [a, b] with (f , g) =
∫ b
a ρ(x)f (x)g(x) dx for f , g ∈ V

where ρ ∈ V and ρ(x) > 0 for a ≤ x ≤ b.

Can you see any relationship between this inner product and
the L2 norm?

‖f ‖2
2 =

∫ b
a |f (x)|2 ρ(x) dx = (f , f ).

Theorem (II)

Any real inner product space V is a real normal linear space with

norm defined by ‖v‖ = (v , v)
1
2 .
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Preparation: more topics

Complex inner product spaces.

Hilbert and Banach spaces.

Cauchy-Schwarz inequality.

.....
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Definition of the best approximation in inner product
spaces

Definition

Let W = span{w1,w2, · · · ,wn} be a finite-dimensional subspace of
an inner product space V . Here {wi}ni=1 is a linearly independent
set. Given v ∈ V , a best approximation in W to v with respect to

the norm ‖v‖ = (v , v)
1
2 is a w ∈W such that the distance

‖v − w‖ is the least among all w ∈W . That is,
‖v − w‖ ≤ ‖v − u‖ for any u ∈W .

Remark

Can we use the specified W , V , and ‖v‖ to find a general
formulation of the best approximation?

Yes!

But how?
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Derivation of the best approximation in inner product
spaces

Since W = span{w1,w2, · · · ,wn}, then w =
n∑

j=1
αjwj for

some αj (j = 1, 2, · · · , n).

Question: how to find these αj (j = 1, 2, · · · , n)?
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Derivation of the best approximation in inner product
spaces

By ‖v‖ = (v , v)
1
2 , we have

‖w − v‖2 = (w − v ,w − v)

=

 n∑
j=1

αjwj − v ,
n∑

k=1

αkwk − v


=

n∑
j=1

n∑
k=1

αjαk(wj ,wk)−
n∑

j=1

αj(v ,wj)

−
n∑

k=1

αk(v ,wk) + (v , v)

= F (α1, α2, · · · , αn).

25 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Derivation of the best approximation in inner product
spaces

Thus, the problem reduces to finding the minimum of F as a
function of α1, α2, · · · , αn.

In order to find the minimum of F , we need to compute ∂F
∂αi

.

It is not hard to get

∂

(
n∑

j=1
αj(v ,wj)

)
∂αi

= (v ,wi )

∂

(
n∑

k=1

αk(v ,wk)

)
∂αi

= (v ,wi )

∂(v , v)

∂αi
= 0.
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Derivation of the best approximation in inner product
spaces

As for
n∑

j=1

n∑
k=1

αjαk(wj ,wk), we have

n∑
j=1

n∑
k=1

αjαk(wj ,wk)

=
n∑

j=1,j 6=i

n∑
k=1,k 6=i

αjαk(wj ,wk) +
n∑

k=1,k 6=i

αiαk(wi ,wk)

+
n∑

j=1,j 6=i

αjαi (wj ,wi ) + α2
i (wi ,wi ).

27 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Derivation of the best approximation in inner product
spaces

Hence

∂

(
n∑

j=1

n∑
k=1

αjαk(wj ,wk)

)
∂αi

= 0 +
n∑

k=1,k 6=i

αk(wi ,wk) +
n∑

j=1,j 6=i

αj(wj ,wi ) + 2αi (wi ,wi )

= 2
n∑

j=1

αj(wj ,wi ).
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Derivation of the best approximation in inner product
spaces

Then

∂F

∂αi
= 2

n∑
j=1

αj(wj ,wi )− 2(v ,wi ).

Setting ∂F
∂αi

= 0, then

n∑
j=1

αj(wj ,wi ) = (v ,wi ), for i = 1, 2, · · · , n.

Given v and wi (i = 1, 2, · · · , n), we can solve the above linear

system to obtain αj (j = 1, 2, · · · , n), hence w =
n∑

j=1
αjwj .
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Another way to understand the best approximation in inner
product spaces

Definition (Projection)

Let W be a finite-dimensional subspace of an inner product space
V . An operator P that maps V into W such that P2 = P is called
a projection operator form V into W.
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Another way to understand the best approximation in inner
product spaces

Remark

Assume W = span{w1,w2, · · · ,wn} where {wi}ni=1 is a linearly

independent set. Then define P : V →W as Pv =
n∑

j=1
αjwj where

the coefficients αj (j = 1, 2, · · · , n) satisfy

n∑
j=1

αj(wj ,wi ) = (v ,wi ), for i = 1, 2, · · · , n.

Then the projection Pv of v is actually the best approximation in

W to v with respect to the norm ‖v‖ = (v , v)
1
2 .
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Further topics of the best approximation in inner product
spaces

Remark

How to solve the above linear system?

Chapter 3!

Is it possible to find some special basis wi (i = 1, 2, · · · , n) to
dramatically simplify the above linear system?

Yes! Orthogonal basis wi (i = 1, 2, · · · , n)!
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Orthogonal basis

Definition (Orthogonal/orthonormal)

Let V be an inner product space. Two vectors u and v in V are
called orthogonal if (u, v) = 0. A set of such vectors that are
pairwise orthogonal is called orthonormal if (u, u) = 1 for each u in
that set.

Definition (Orthogonal/orthonormal basis)

Let W = span{w1,w2, · · · ,wn} be a finite-dimensional subspace of
an inner product space V . If w1,w2, · · · ,wn are orthogonal (or
orthonormal), then they form an orthogonal (or orthonormal) basis
of W .
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Orthogonal basis

Remark

If w1,w2, · · · ,wn are pairwise orthogonal, then

(wj ,wi ) = δji =

{
0, if j 6= i ,
1, if j = i .

Hence

n∑
j=1

αj(wj ,wi ) = (v ,wi ), i = 1, 2, · · · , n,

⇒ αi =
(v ,wi )

(wi ,wi )
, i = 1, 2, · · · , n,

⇒ w = Pv =
n∑

j=1

(v ,wj)

(wj ,wj)
wj .
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Orthogonal basis

Remark

If w1,w2, · · · ,wn are orthonormal, then

(wi ,wi ) = 1, i = 1, 2, · · · , n,
⇒ αi = (v ,wi ), i = 1, 2, · · · , n,

⇒ w = Pv =
n∑

j=1

(v ,wj)wj .
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Orthogonal basis

Theorem (III)

Let W = span{w1,w2, · · · ,wn} be a finite-dimensional subspace of
an inner product space V . If w1,w2, · · · ,wn are orthonormal, then

w = Pv =
n∑

j=1
(v ,wj)wj is the best approximation in W to v with

respect to the norm ‖v‖ = (v , v)
1
2 . That is, ‖v − Pv‖ ≤ ‖v − u‖

for any u ∈W .

Proof.

See pages 199-201 of the textbook for the proof and the related
materials, such as orthogonal complement and the orthogonal
decomposition. (Independent study problem)
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Orthogonal basis

Remark

Usually we can easily obtain a basis {u1, u2, · · · , un} which
are linearly independent.

Question: how do we find an orthonormal (or at least
orthogonal) basis {w1,w2, · · · ,wn}?

Answer: Gram-Schmidt process!
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Orthogonal basis

Gram-Schmidt process:

1 v1 = u1

2 vj = uj −
j−1∑
k=1

(uj ,vk )
(vk ,vk ) vk for j = 2, 3, · · · ,m.

3 wj =
vj

‖vj‖ for j = 1, 2, 3, · · · ,m.
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Orthogonal basis

Theorem (IV)

{v1, v2, · · · , vn} is an orthogonal basis and {w1,w2, · · · ,wn} is an
orthonormal basis. Moreover, span{u1, u2, · · · , un} =
span{v1, v2, · · · , vn} = span{w1,w2, · · · ,wn}.

Proof.

See page 202 of the textbook. (Independent study problem)
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Orthogonal basis

Example 3: Let V = C [−1, 1], W = span{1, x , x2},
(f , g) =

∫ 1
−1 f (x)g(x) dx for f , g ∈ V , and ‖f ‖ = (f , f )

1
2 .

What are the orthonormal basis {w1,w2,w3} of W ? Find the
best approximation in W to f (x) = ex ∈ V .

Solution:

v1 = u1 = 1,

‖v1‖2 = (v1, v1) =

∫ 1

−1
1 dx = 2,

w1 =
v1

‖v1‖
=

1√
2
,

v2 = u2 −
(u2, v1)

(v1, v1)
v1 = x − 1

2

∫ 1

−1
x dx = x ,

‖v2‖2 = (v2, v2) =

∫ 1

−1
x2 dx = 2/3,
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Orthogonal basis

Continued solution:

w2 =
v2

‖v2‖
=

x√
2/3

,

v3 = u3 −
(u3, v1)

(v1, v1)
v1 −

(u3, v2)

(v2, v2)
v2

= x2 − 1

2

∫ 1

−1
x2 dx − x

2/3

∫ 1

−1
x3 dx

= x2 − 1

2
· 2

3
− x

2/3
· 0 = x2 − 1

3

‖v3‖2 = (v3, v3) =

∫ 1

−1

(
x2 − 1

3

)2

dx = 8/45,

w3 =
v3

‖v3‖
=

x2 − 1
3√

8/45
.
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Orthogonal basis

Continued solution: Thus, { 1√
2
, x√

2/3
,

x2− 1
3√

8/45
} is an

orthonormal basis of W .

And the best approximation in W to f (x) = ex ∈ V is

Pf =
3∑

j=1

(f ,wj)wj

=
1√
2

∫ 1

−1

1√
2

ex dx +
x√
2/3

∫ 1

−1

x√
2/3

ex dx

+
x2 − 1

3√
8/45

∫ 1

−1

x2 − 1
3√

8/45
ex dx

≈ 1.1752 + 1.1036x + 0.5367x2.
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Outline

1 Introduction

2 Best approximation

3 Polynomial Approximation

4 Piecewise polynomial approximation

5 Other topics
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Basic idea of polynomial approximation

A simple choice for the subspace W of the best
approximation: a set of polynomials!

Question: can polynomials always provide good
approximation?

Answer: Yes! But we need to be careful about the choices of
polynomials.
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Basic idea of polynomial approximation

Theorem (I: Weierstrass Approximation Theorem)

Given a function f ∈ C [a, b] and ε > 0, there exists a polynomial
p(x) such that

‖p − f ‖∞ = max
a≤x≤b

|p(x)− f (x)| ≤ ε.

Proof.

See pages 205-209 of the textbooks for the proof and the related
materials for the Bernstein polynomials. (Independent study
problem)
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Taylor polynomial approximation

Theorem (II: Taylor’s expansion)

Suppose that f ∈ Cn+1[a, b] and x0 ∈ [a, b]. Then for any
x ∈ [a, b], we have the following Taylor’s expansion of f (x) at x0:

f (x) = Pn(x) + Rn(x),

where

Pn(x) =
n∑

k=0

1

k!
f (k)(x0)(x − x0)k

= f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)2 + · · ·

+
1

n!
f (n)(x0)(x − x0)n,
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Taylor polynomial approximation

Theorem (Continued)

Rn =
1

(n + 1)!
f (n+1)(ξ)(x − x0)n+1

for some ξ ∈ [x0, x ] (Lagrange form of the remainder) ,

or

Rn =
1

n!

∫ x

x0

f (n+1)(s)(x − s)n ds

for some ξ ∈ [x0, x ] (Integral form of the remainder) .
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Lagrange polynomial approximation/interpolation

What if we don’t know f (x) explicitly, but just the values
yj (j = 0, 1, 2, · · · , n) of f (x) at some points
xj (j = 0, 1, 2, · · · , n) due to the measurement limitation or
the information availability?

Basic idea: Given n + 1 distinct real numbers x0, x1, x2, · · · , xn
and n + 1 arbitrary numbers y0, y1, · · · , yn, find an
interpolating polynomial p(x) of degree at most n such that
yj = p(xj) (j = 0, 1, 2, · · · , n).

Questions: Does such an interpolating polynomial p(x) exist?
If it does, then is it unique?

Yes!
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Lagrange polynomial approximation/interpolation

Theorem (III)

For any n + 1 distinct real numbers x0, x1, x2, · · · , xn and for n + 1
arbitrary numbers y0, y1, y2, · · · , yn, let

Lk(x) =
n∏

i=0,i 6=k

x − xi
xk − xi

.

Then there exists a unique interpolating polynomial

p(x) =
n∑

k=0

ykLk(x)

of degree at most n such that yj = p(xj) (j = 0, 1, 2, · · · , n).
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Lagrange polynomial approximation/interpolation

Proof:

First, since each Lk(x) is of degree n, then p(x) is of degree n.

Second, it is easy to verify that

Lk(xj) = δjk =

{
0, if j 6= k ,
1, if j = k .

Then

p(xj) =
n∑

k=0

ykLk(xj) =
n∑

k=0

ykδjk = yj .

Hence we complete the proof of the existence of p(x).
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Lagrange polynomial approximation/interpolation

Continued proof:

Now let’s turn to the uniqueness of p(x).

Assume there are two such polynomials p(x) and q(x) of
degree at most n that their values at xj (j = 0, 1, 2, · · · , n) are
yj (j = 0, 1, 2, · · · , n). That is,

yj = p(xj) = q(xj), j = 0, 1, 2, · · · , n.
Since p(x) and q(x) are polynomials of degree at most n,
then we may let

p(x) =
n∑

k=0

αkxk ,

q(x) =
n∑

k=0

βkxk

for some constants αk and βk (k = 0, 1, 2, · · · , n).
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Assume there are two such polynomials p(x) and q(x) of
degree at most n that their values at xj (j = 0, 1, 2, · · · , n) are
yj (j = 0, 1, 2, · · · , n). That is,

yj = p(xj) = q(xj), j = 0, 1, 2, · · · , n.
Since p(x) and q(x) are polynomials of degree at most n,
then we may let

p(x) =
n∑

k=0

αkxk ,

q(x) =
n∑

k=0

βkxk

for some constants αk and βk (k = 0, 1, 2, · · · , n).
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Lagrange polynomial approximation/interpolation

Continued proof:

Let γk = αk − βk . Then

p(x)− q(x) =
n∑

k=0

(αk − βk)xk =
n∑

k=0

γkxk .

Since yj = p(xj) = q(xj) (j = 0, 1, 2, · · · , n), then
p(xj)− q(xj) = 0 (j = 0, 1, 2, · · · , n).

Hence

n∑
k=0

γkxk
j = 0, j = 0, 1, 2, · · · , n.
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Lagrange polynomial approximation/interpolation

Continued proof:

The above linear system can be rewritten as

A


γ0

γ1
...
γn

 =


1 x0 x2

0 x3
0 · · · xn

0

1 x1 x2
1 x3

1 · · · xn
1

...
. . .

1 xn x2
n x3

n · · · xn
n




γ0

γ1
...
γn

 =


0
0
...
0

 .

The above matrix A is a Vandermonde matrix and the
determinant of the matrxi A is

det(A) =
n∏

k=1

k−1∏
j=0

(xk − xj).

Since x0, x1, x2, · · · , xn are distinct real numbers, then
det(A) 6= 0.

53 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Continued proof:

The above linear system can be rewritten as

A


γ0

γ1
...
γn

 =


1 x0 x2

0 x3
0 · · · xn

0

1 x1 x2
1 x3

1 · · · xn
1

...
. . .

1 xn x2
n x3

n · · · xn
n




γ0

γ1
...
γn

 =


0
0
...
0

 .

The above matrix A is a Vandermonde matrix and the
determinant of the matrxi A is

det(A) =
n∏

k=1

k−1∏
j=0

(xk − xj).

Since x0, x1, x2, · · · , xn are distinct real numbers, then
det(A) 6= 0.

53 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Continued proof:

The above linear system can be rewritten as

A


γ0

γ1
...
γn

 =


1 x0 x2

0 x3
0 · · · xn

0

1 x1 x2
1 x3

1 · · · xn
1

...
. . .

1 xn x2
n x3

n · · · xn
n




γ0

γ1
...
γn

 =


0
0
...
0

 .

The above matrix A is a Vandermonde matrix and the
determinant of the matrxi A is

det(A) =
n∏

k=1

k−1∏
j=0

(xk − xj).

Since x0, x1, x2, · · · , xn are distinct real numbers, then
det(A) 6= 0.

53 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Continued proof: Recall

Theorem

Let A be an n × n matrix. Then the following are equivalent:

A is nonsingular/invertible.

det(A) 6= 0.

−→x = 0 is the unique solution of A−→x = 0.

A−→x =
−→
b has a unique solution.

The columns (and rows) of A are linearly independent.
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Lagrange polynomial approximation/interpolation

Continued proof:

Hence the above linear system has a unique solution
γk = 0 (k = 1, 2, · · · , n), which implies
αk = βk (k = 0, 1, 2, · · · , n).

Then p(x) = q(x). This completes the proof.

Remark

In fact, the above theory from linear algebra can be used to prove
the existence and uniqueness at the same time. (Homework)
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Lagrange polynomial approximation/interpolation

Definition (Lagrange basis)

The set of functions {Lk(x)}nk=0 is called the Lagrange basis for
the space of polynomials of degree n associated with the set of
points {xk}nk=0. And Lk (k = 0, 1, 2, · · · , n) are called the
Lagrange basis functions.

Definition (Lagrange form)

p(x) =
n∑

k=0

ykLk(x) is called the Lagrange form of the interpolating

polynomial p(x), which satisfies yk = p(xk) (j = 0, 1, 2, · · · , n).
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Lagrange polynomial approximation/interpolation

Remark

What if pick up yk = f (xk) (k = 0, 1, 2, · · · , n) for a given
function f (x)?

Definition (Lagrange polynomial approximation)

p(x) =
n∑

k=0

f (xk)Lk(x) is called the Lagrange polynomial

approximation/interpolation of a given function f (x).
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Lagrange polynomial approximation/interpolation

The error of the Lagrange polynomial approximation:

Theorem (IV)

If x0, x1, x2, · · · , xn are n + 1 distinct points in [a, b] and
f ∈ Cn+1[a, b], then for each x ∈ [a, b], there exists a number
ξ = ξ(x) ∈ (a, b) such that

f (x)− p(x) = R(x) =
f (n+1)(ξ(x))W (x)

(n + 1)!

where W (x) =
∏n

i=0(x − xi ) and p(x) is the Lagrange polynomial
approximation/interpolation.

Proof.

See pages 215-216 of the textbook. (Independent study
problem)
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Lagrange polynomial approximation/interpolation

Remark

What happen if f is a n-th order polynomial?

f (n+1)(ξ(x)) = 0 since f (n+1) ≡ 0.

The error f (x)− p(x) = 0.

Hence the n-th order Lagrange polynomial approximation is
exact for n-th order polynomial.

59 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Remark

What happen if f is a n-th order polynomial?

f (n+1)(ξ(x)) = 0 since f (n+1) ≡ 0.

The error f (x)− p(x) = 0.

Hence the n-th order Lagrange polynomial approximation is
exact for n-th order polynomial.

59 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Remark

What happen if f is a n-th order polynomial?

f (n+1)(ξ(x)) = 0 since f (n+1) ≡ 0.

The error f (x)− p(x) = 0.

Hence the n-th order Lagrange polynomial approximation is
exact for n-th order polynomial.

59 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Remark

What happen if f is a n-th order polynomial?

f (n+1)(ξ(x)) = 0 since f (n+1) ≡ 0.

The error f (x)− p(x) = 0.

Hence the n-th order Lagrange polynomial approximation is
exact for n-th order polynomial.

59 / 80



Introduction Best approximation Polynomial Approximation Piecewise polynomial approximation Other topics

Lagrange polynomial approximation/interpolation

Remark

Define ‖f ‖∞ = max
a≤x≤b

|f (x)|. Then the error bound is

‖f − p‖∞ = max
a≤x≤b

|f (x)− p(x)|

≤ 1

(n + 1)!

∥∥∥f (n+1)
∥∥∥
∞
‖W ‖∞

≤ 1

(n + 1)!

∥∥∥f (n+1)
∥∥∥
∞

(b − a)n+1.

In fact, we have

‖f − p‖∞ ≤ Chn+1
∥∥∥f (n+1)

∥∥∥
∞
.

where h = max
0≤j≤n−1

(xj+1 − xj).
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Lagrange polynomial approximation/interpolation

Remark

The error bound depends on the nodes {xi}ni=0 since
W (x) =

∏n
i=0(x − xi ).

Can we choose {xi}ni=0 suitably to minimize the error bound?

Yes! Chebyshev Polynomials!
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Chebyshev Polynomials approximation/interpolation

Theorem (V)

The uniform norm of W (x) =
∏n

i=0(x − xi ) is minimized on [a, b]
when

xi =
1

2

[
(b − a)cos

(
2i + 1

n + 1
· π

2

)
+ a + b

]
, i = 0, 1, 2, · · · , n,

and the minimum value of the norm is

‖W ‖∞ =
1

22n+1
(b − a)n+1.

Proof.

See pages 217-219 of the textbook for the proof and the related
materials on Chebyshev polynomials. (Independent study
problem)
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Chebyshev polynomials approximation/interpolation

Definition

If the Lagrange polynomial approximation/interpolation of a
function f (x) on [a, b] uses the following roots of Chebyshev
polynomials

xi =
1

2

[
(b − a)cos

(
2i + 1

n + 1
· π

2

)
+ a + b

]
, i = 0, 1, 2, · · · , n,

then it is called the Chebyshev polynomials
approximation/interpolation of the function f (x) on [a, b].
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Chebyshev polynomials approximation/interpolation

Remark

Compared with the error bound of the regular Lagrange polynomial
approximation

‖f − p‖∞ ≤
1

(n + 1)!

∥∥∥f (n+1)
∥∥∥
∞

(b − a)n+1,

the error bound of the Chebyshev polynomial approximation is

‖f − p‖∞ ≤
1

(n + 1)!

∥∥∥f (n+1)
∥∥∥
∞

(b − a)n+1 1

22n+1
.
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Hermit polynomial approximation/interpolation

Definition

For any n distinct real numbers x1, x2, · · · , xn, the Hermit
polynomial approximation/interpolation of a given function f (x) is
a polynomial p(x) of degree at most 2n − 1 such that

p(xi ) = f (xi ), p′(xi ) = f ′(xi ), i = 1, 2, · · · , n.
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Hermit polynomials approximation/interpolation

Theorem (VI)

If x1, x2, · · · , xn are n + 1 distinct real numbers in [a, b] and
f ∈ C 1[a, b]. Then there exists a unique Hermit polynomial
approximation/interpolation Hn(x) of f (x). And it is given by

Hn(x) =
n∑

k=1

f (xk)hk(x) +
n∑

k=1

f ′(xk)h̃k(x),

where

hk(x) =
[
1− 2L′k(xk)(x − xk)

]
(Lk(x))2 ,

h̃k(x) = (x − xk) (Lk(x))2 .
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Hermit polynomials approximation/interpolation

Theorem (VI: Continued)

Moreover, if f ∈ C 2n[a, b], then there exists a ξ = ξ(x) ∈ [a, b]
such that

f (x)− Hn(x) =
(
∏n

k=1(x − xk))2

(2n)!
f 2n(ξ),

Proof.

See page 221 of the textbook. (Independent study problem)
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Some thoughts for the polynomial approximation

Remark

In order to obtain a desired accuracy from the polynomial
approximation, enough number of interpolating nodes {xi}ni=0

need to be selected.

When n is large, the corresponding polynomial has very hight
order.

Can we use lower order polynomial to achieve high accuracy?

Yes! Piecewise polynomials!
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Basic idea of piecewise polynomial approximation

Divide the interval [a, b] into many sub-intervals.

On each sub-interval, a lower order polynomial is used to
approximate the given function f (x). Then we assemble all of
the pieces on all of the sub-intervals together to obtain the
piecewise polynomial approximation of f (x) on [a, b].

Continuous piecewise polynomial approximation requires that
the piecewise polynomial approximation to be continuous.
That is, the polynomial on each sub-interval must match the
polynomials on the neighboring sub-intervals.

Many numerical methods use piecewise polynomial
approximation, such as the finite element method.
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Continuous piecewise linear approximation

Definition (continuous piecewise linear polynomial)

Given a partition

∆ : a = x0 < x1 < x2 · · · < xn−1 < xN = b

of [a, b], the set L∆ of all continuous piecewise linear polynomials
on [a, b] with respect to ∆ is

L∆ = {ϕ ∈ C [a, b] : ϕ(x) is linear on each [xi , xi+1]

(i = 0, 1, 2, · · · ,N − 1) of ∆}.
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Continuous piecewise linear approximation

Theorem (I)

L∆ is an (N + 1)−dimensional subspace of C [a, b].

Proof:

First, it is easy to verify that L∆ is a subspace of C [a, b].

If we can find a continuous piecewise linear basis of N + 1
functions for L∆, then the proof is completed.

Consider ϕi (x) ∈ L∆ (i = 0, · · · ,N) such that

ϕi (xj) = δij =

{
0, if j 6= i ,
1, if j = i .

Linear independence: consider
∑N

i=0 ciϕi (x) = 0 for any
x ∈ [a, b].

Let x = xj , then cj = 0 (j = 0, · · · ,N).

So ϕi (x) (i = 0, · · · ,N) are linearly independent.
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Continuous piecewise linear approximation

Continued proof:

Span: Given any f ∈ L∆, let ci = f (xi ) and consider
g(x) =

∑N
i=0 ciϕi (x).

First, g(xj) = cj = f (xj) (j = 0, · · · ,N).

Second, both f (x) and g(x) are linear in each piece
[xj , xj+1] (j = 0, · · · ,N − 1).

Hence f (x) = g(x) in each piece [xj , xj+1] (j = 0, · · · ,N − 1).

Then f (x) = g(x) =
∑N

i=0 ciϕi (x).

This implies L∆ = span{ϕ0(x), · · · , ϕN(x)}.

Therefore ϕi (x) (i = 0, · · · ,N) form a basis of L∆ if they
exist.
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Continuous piecewise linear approximation

Continued proof:

The existence of ϕi (x) (i = 0, · · · ,N):

ϕ0(x) =

{ x1−x
x1−x0

, if x0 ≤ x ≤ x1,

0, otherwise,

ϕN(x) =

{
x−xN−1

xN−xN−1
, if xN−1 ≤ x ≤ xN ,

0, otherwise,

ϕi (x) =


x−xi−1

xi−xi−1
, if xi−1 ≤ x ≤ xi ,

xi+1−x
xi+1−xi , if xi ≤ x ≤ xi+1,

0, otherwise.

(i = 1, · · · ,N − 1)

A geometric illustration of ϕi (x) (i = 0, · · · ,N): see Figure
4.8 on page 240 of the textbook.
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Continuous piecewise linear approximation

Remark

The continuous piecewise linear basis functions
ϕi (x) (i = 0, 1, 2, · · · ,N) are the well-known hat functions.

They are actually the linear finite element basis functions for
the finite element method in 1D!
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Continuous piecewise linear approximation

Theorem (II)

Given an f ∈ C [a, b], there is a unique Φ ∈ L∆ which satisfies
Φ(xi ) = f (xi ) (i = 0, 1, 2, · · · ,N).

Proof:

Existence: Define Φ(x) =
N∑
i=0

f (xi )ϕi (x).

Then Φ ∈ L∆ and Φ(xj) = f (xj) (j = 0, · · · ,N) since
ϕi (xj) = δij .

Uniqueness: assume there are two such Φ′s, say Φ1 and Φ2.

Then Φ1(xj)− Φ2(xj) = f (xj)− f (xj) = 0 (j = 0, · · · ,N).

Also, Φ1 − Φ2 is linear in [xj , xj+1] (j = 0, · · · ,N − 1).

Then Φ1 − Φ2 = 0 in [xj , xj+1] (j = 0, · · · ,N − 1).

Hence Φ1(x) = Φ2(x)⇒ uniqueness of Φ.
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Continuous piecewise linear approximation

Definition (Interpolation)

Φ(x) =
N∑
i=0

f (xi )ϕi (x) is called the L∆ interpolation of f , which is

denoted by IN f (x).

Remark

IN : C [a, b]→ L∆ is a linear operator, i.e.,

IN(a1f1(x) + a2f2(x)) = a1IN f1(x) + a2IN f2(x).
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Continuous piecewise linear approximation

Theorem (III)

If f ∈ C 2[a, b], then

‖f − IN f ‖∞ ≤ 1

8
h2 ‖f ′′‖∞ ,

‖(f − IN f )′‖∞ ≤ 1

2
h ‖f ′′‖∞ .

If f ∈ C 1[a, b], then

‖f − IN f ‖∞ ≤ 1

2
h ‖f ′‖∞ .

If f ∈ C [a, b], then

‖f − IN f ‖∞ → 0.

Proof: See pages 241-242 of textbook (Independent study problem).
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Topics: Independent study problems

Newton form of the Lagrange polynomials (section 4.3.4)

Least square approximation (section 4.3.6 and 4.3.7)

Minmax approximation (section 4.3.8)

Interval bounds on the errors (section 4.3.9)

Cubic spline interpolation and B-splines (section 4.4.2 and
4.4.3).

Trigonometric Approximation (section 4.5)

Rational approximation (section 4.6)

Wavelet (section 4.7)

......
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