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What's the target problem?

Approximate a function f(x) by an elementary function p(x).

For example, p(x) could be a polynomial, a piecewise
polynomial, a trigonometric polynomial, a rational function, or
a linear combination of “nice” functions, which are easy to
use in numerical computation.

@ How to decide if an approximation is “good” or “bad"?

What are the features of different types of approximations?

Accuracy
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Vector space

Definition (Subspace)

W is a subspace of a real vector space V if u € W, v € W implies
that au + Bv € W for all a, 5 € R.

v

Definition (Span)

Let ug, up, -+ ,u, € V. The set of all linear combination of

Ui, Up, - -+ , Uy, is called the span of uy, up, -+ , u,, which is denoted
by span{ui, uz,--- ,up}
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Vector space

Example
e Plis a subspace of P? and P/ (J=0,1,---  k is a subspace

of Pk,
o PX[a, b] is a subspace of Cla, b].

o If W =span{ui,uz, -+ ,up} and ug,up, - ,u, € V, then it
is easy to verify that W is a subspace of V.

6 /80
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Vector space

Definition (Linearly independent/dependent)
Let V be a vector space. Then ui, up, - ,u, € V are linearly
n
independent if > aju; = 0 implies that o; =0 (i =1,2,--- , n).
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Otherwise, uq, up,--- ,u, € V are linearly dependent.
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Vector space

Definition (Linearly independent/dependent)

Let V be a vector space. Then ui, up, - ,u, € V are linearly

n
independent if > aju; = 0 implies that o; =0 (i =1,2,--- , n).

i=1
Otherwise, uq, up,--- ,u, € V are linearly dependent.

Example

Consider V = C[0,1]. u1 =1, up = x and u3 = x? are linearly

independent, but u; =1, up = x and uz = 2 — 3x are linearly
dependent.
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Vector space

Definition (Basis)

Let V be a vector space. If uy, up, -+ ,u, € V are linearly
independent and V = span{uy, u2,- -+ ,un}, then ug, un, -+, up,
forms a basis for V.

Definition (Dimension)

If V has a basis of n elements, Then, n is called the dimension of
V.
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Lemma (1)
If V' is a n-dimensional vector space and uy, us,--- ,u, € V are
linearly independent, then V = span{uy, ua,--- ,u,}. Moreover,

every basis of V has n elements and any collection of n+ 1
elements in V is linearly dependent.
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Vector space

Lemma (1)
If V' is a n-dimensional vector space and uy, us,--- ,u, € V are
linearly independent, then V = span{uy, ua,--- ,u,}. Moreover,

every basis of V has n elements and any collection of n+ 1
elements in V is linearly dependent.

Example

P2 = span{1, x,x?}. Since 1, x, and x? are linearly independent,
they form a basis of P2 and the dimension of P? is 3.
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Norm

Definition (Norm of a function)

Assume V is a vector space. For any function v € V, a norm of v
is defined to be a number ||v|| satisfying

Q |v| >0.

@ |lv|| =0 if and only if v = 0.

@ ||Av]| = |Al|lv] for A € R orC.

Q ||u+v| <|ul|+ ||v| for any u,v € V.
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Introduction

Norm

Definition (Norm of a function)

Assume V is a vector space. For any function v € V, a norm of v
is defined to be a number ||v|| satisfying

Q |v| >0.

@ |lv|| =0 if and only if v = 0.

@ ||Av]| = |Al|lv| for A € R orC.

Q ||u+v| <|ul|+ ||v| for any u,v € V.

Definition (Normed vector space)

A vector space V is called a normed vector space if a norm ||v/||
defined for each v € V.
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Norm
Assume V = CJa, b]. Here are some examples of norm:

o ||v| = max_|v(x)|p(x) is called the max norm with weight

)

function p(x) > 0. When p(x) =1, it is called the max norm.

o v, = (f [v( (x) dx)E is called the L? norm with
weight function p( ) > 0. When p(x) =1, it is called the L?
norm.

o |v|; = f [v(x)| p(x) dx is called the L' norm with weight

function p(x ) > O When p(x) = 1, it is called the L* norm.
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Best approximation

Definition of a best approximation

Definition (Best approximation)

Let W be a finite-dimensional subspace of a normed vector space
V. Given v € V, a best approximation in W to v with respect to a
norm ||-|| is a w € W such that the distance ||v — w|| is the least
among all w € W. That is, ||[v — w| < ||v — u|| for any u e W.
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Definition of a best approximation

Definition (Best approximation)

Let W be a finite-dimensional subspace of a normed vector space
V. Given v € V, a best approximation in W to v with respect to a
norm ||-|| is a w € W such that the distance ||v — w|| is the least
among all w € W. That is, ||[v — w| < ||v — u|| for any u e W.

Remark

@ A geometric explanation of the best approximation: see Figure
4.1 on page 193 of the textbook.

e Example: V = Cla, b],
W = {set of polynomials of degree < n}, and |-|| = ||-|| .-

@ Does such a best approximation w always exist?

@ Yes!




Best approximation

Existence of a best approximation

Theorem (1)

Let W be an n + 1-dimensional subspace of a normed linear space
V. Let up, us,--- ,up be linearly independent elements of W.
That is, W = span{ug, u1,--- ,un}. Then thereisape W, ie.,

n

p = > ajuj for a given f € V, such that
j=0

n n
If —pll = f*ZOﬁUj = f*Z%’Uj
j=0 j=0

That is, ||f — p|| < ||f — q|| for all g € W. Hence p is the best
approximation in W to f € V with respect to norm ||-||.
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Existence of a best approximation

Proof.

See pages 192-194 of the textbook. (Independent study
problem) O

15/80
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Example of a best approximation

@ Example 1: Find the best approximation p € P° to
e* € C[0,1] for the norm infinity norm ||| .

@ Solution: We need to find a p that minimizes max, |eX — p|.
<x<

Since f(x) = e* — p is a monotonic function of x,

X — p| is the | fle®—p|l=11- d
0?3%(1‘6 p| is the larger one o ‘e p‘ |1 — p| an
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Best approximation

Example of a best approximation

@ Example 1: Find the best approximation p € P° to
e* € C[0,1] for the norm infinity norm ||| .

@ Solution: We need to find a p that minimizes max |eX — p|.
<x<

Since f(x) = e* — p is a monotonic function of x,

X — p| is the | fle®—p|l=11- d
0?3%(1‘6 p| is the larger one o ‘e p‘ |1 — p| an

le = pl.
Given any p, |1 — p| is the distance from p to 1 and |e — p| is
the distance from p to e.

Which p can minimize the larger one of the two distances?
The middle point p = (e + 1).

16 /80
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Best approximation

Example of a best approximation

@ Verification:
It p= 1(e+1), then |e — p| = [1— p| = 3(e — 1)
If p> L(e+1), then |1 —p| > L(e—1

(e+1), then [e—p| > 3(e— 1

N[

If p<

);
).

NI N
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Best approximation

Example of a best approximation

@ Verification:
It p= 1(e+1), then |e — p| = [1— p| = 3(e — 1)
If p> L(e+1), then |1 —p| > L(e—1
If p< 3(e+1), then [e—p| > (e —1

N[

);
).

NI N

@ So the minimum value of the larger one of the two distances

is 1(e — 1). So is the minimum value of max_|eX — p|.
0<x<1

17 /80
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e* € C[0,1] for the L2 norm ||-||,.
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Best approximation
Example of a best approximation

o Example 2: Find the best approximation p € P to
e* € C[0,1] for the L2 norm ||-||,.

@ Solution: We need to find a p that minimizes
1
1 2 2
lex = pll, = [Jo (e = p)? o] .
Since ||| > 0, it's equivalent to find a p that minimizes
X 2 1 X 2
g(p) = lle* = pll; = [y (e¥ = p)” dx.

Then
Ld(eX—p)°
/ = —_— dX
g'(p) tA ap

1
= /—2(eX—p) dx
0
= —2e—p-—1).

18 /80
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Example of a best approximation

@ Theng'(p)=0=p=e—1.

e Since g’(p) = —2f01 —1dx=2>0,then p=-e—1isthe
minimizer and the minimum1 value is
le* — pll = 4(4e - &~ 3)5.

Remark

@ Question: Is there a general framework to find the best
approximation?

@ Yes!The best approximation in inner product spaces.
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Best approximation

Preparation: Inner product space

Definition (Inner product)

Let V be a vector space. An inner product (u,v) for u,v € Vis a
real number such that

Q (v,u) >0foruecV.
@ (u,u) =0 if and only if u = 0.
Q (u,v)=(v,u).

Q (au+ pv,w)=a(u,w)+ B(v,w) for all u,v,w € V and
a, B eR.

Definition (Inner product space)

A real vector space V is called a real inner product space if a inner
product is defined for each u,v € V.

20/80
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Preparation: Inner product space

Example

e V = (Cla, b] with (f,g) = f p(x)f(x)g(x) dx for f,g € V
where p € V and p(x) > 0 for a < x < b.
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Preparation: Inner product space

Example

e V = (Cla, b] with (f,g) = f p(x)f(x)g(x) dx for f,g € V
where p € V and p(x) > 0 for a < x < b.

@ Can you see any relationship between this inner product and
the L2 norm?

o |If3 = [P IF(x)]? p(x) dx = (f,F).

Theorem (1)

Any real inner product space V' is a real normal linear space with
o 1
norm defined by ||v| = (v, v)2.

21
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Best approximation

Preparation: more topics

@ Complex inner product spaces.
@ Hilbert and Banach spaces.

o Cauchy-Schwarz inequality.



Best approximation

Definition of the best approximation in inner product

spaces

Definition

Let W = span{wsy, wa,--- , w,} be a finite-dimensional subspace of
an inner product space V. Here {w;}?_; is a linearly independent
set. Given v € V, a best approximation in W to v with respect to
the norm ||v|| = (v, v)% is a w € W such that the distance

|lv — w|| is the least among all w € W. That is,

lv—w| <|v—ul forany ue W.
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Best approximation

Definition of the best approximation in inner product

spaces

Definition

Let W = span{wsy, wa,--- , w,} be a finite-dimensional subspace of
an inner product space V. Here {w;}?_; is a linearly independent
set. Given v € V, a best approximation in W to v with respect to
the norm ||v|| = (v, v)% is a w € W such that the distance

|lv — w|| is the least among all w € W. That is,

lv—w| <|v—ul forany ue W.

Remark

e Can we use the specified W, V, and ||v|| to find a general
formulation of the best approximation?

@ Yes!

@ But how?
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Derivation of the best approximation in inner product

spaces

n
@ Since W = span{wy, wo,--- ,wp}, then w = )" a;w; for
Jj=1
some aj (j=1,2,---,n).
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Best approximation

Derivation of the best approximation in inner product

spaces

n
@ Since W = span{wy, wo,--- ,wp}, then w = )" a;w; for
j=1
some aj (j=1,2,---,n).
@ Question: how to find these o; (j =1,2,---,n)?
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Best approximation

Derivation of the best approximation in inner product

spaces

e By |lv] = (v, v)% we have
2
w—v[" = (w=v,w—-v)
n n
= ZO(J'WJ'—V,ZO(/(W/(—V
j=1 k=1
n n n
= > ajonwywie) = > aj(v, wy)
j=1 k=1 j=1
n
=S ok, ) + (v, )
k=1
= F(a17a27"' 7an)-

25 /80
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Derivation of the best approximation in inner product

spaces

@ Thus, the problem reduces to finding the minimum of F as a
function of ay,ap, -, ap.
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Best approximation

Derivation of the best approximation in inner product

spaces

@ Thus, the problem reduces to finding the minimum of F as a

function of ay,ap, -, ap.

@ In order to find the minimum of F, we need to compute %.

@ It is not hard to get

(904,' - (V7 Wi)
8a,- .
d(v,v) _ o

26 /80



Best approximation

Derivation of the best approximation in inner product

spaces

o Asfor > > ajax(wj, wk), we have

j=1k=1
n n
ajou(wj, wi)
j=1 k=1
n n n
= Z ajak(wj,wk)+ Z aiak(Wi,Wk)
J=1jA0 k=1,ki k=1,ki
n
+ Z ajai(wj, wy) + o? (w;, w;).
J=1i#i

27 /80



Best approximation

Derivation of the best approximation in inner product

spaces

= 0+ ag(wi, wy) + Z aj(wj, wi) + 20 (wi, wi)
k=1,k#i j=1,j#i
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Best approximation

Derivation of the best approximation in inner product

spaces
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Best approximation

Derivation of the best approximation in inner product

spaces

@ Then

804, = 2204] wj, w;) — 2(v, w;).

@ Setting % =0, then

n
Zaj(Wj,W;) = (v,w;), fori=1,2,---.n
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Best approximation

Derivation of the best approximation in inner product

spaces

@ Then

304, = 22041 wj, w;) — 2(v, w;).
@ Setting gT’Z =0, then

n
Zaj(VVj,w,') = (v,w;), fori=1,2,---.n

e Given v and w; (i =1,2,---,n), we can solve the above linear
n
system to obtain aj (j =1,2,---,n), hence w = )~ ajw;.
j=1
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Best approximation

Another way to understand the best approximation in inner

product spaces

Definition (Projection)

Let W be a finite-dimensional subspace of an inner product space
V. An operator P that maps V into W such that P?> = P is called
a projection operator form V into W.
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Best approximation

Another way to understand the best approximation in inner

product spaces

Remark
Assume W = span{wy, wo, - - - , w,} where {w;}"_; is a linearly
n
independent set. Then define P:V — W as Pv = ) ajw; where
j=1
the coefficients oj (j = 1,2,--- , n) satisfy

n
Zaj(Wj,Wf) = (v,w;), fori=1,2,---,n.
j=1

Then the projection Pv of v is actually the best approximation in
o 1
W to v with respect to the norm ||v| = (v, v)2.
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Best approximation

Further topics of the best approximation in inner product

spaces

Remark
@ How to solve the above linear system?
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@ How to solve the above linear system?

@ Chapter 3!

@ Is it possible to find some special basis w; (i =1,2,--- ,n) to
dramatically simplify the above linear system?
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Best approximation

Further topics of the best approximation in inner product

spaces

Remark

@ How to solve the above linear system?
@ Chapter 3!

@ Is it possible to find some special basis w; (i =1,2,--- ,n) to
dramatically simplify the above linear system?

@ Yes! Orthogonal basis w; (i =1,2,--- ,n)!
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Best approximation

Orthogonal basis

Definition (Orthogonal/orthonormal)

Let V be an inner product space. Two vectors u and v in V are
called orthogonal if (u,v) = 0. A set of such vectors that are
pairwise orthogonal is called orthonormal if (u, u) =1 for each u in
that set.

V.

Definition (Orthogonal/orthonormal basis)

Let W = span{wy, wy,--- , w,} be a finite-dimensional subspace of
an inner product space V. If wy, wa, -, w, are orthogonal (or
orthonormal), then they form an orthogonal (or orthonormal) basis
of W.
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Best approximation

Orthogonal basis

Remark
o Ifwy,ws, -, w, are pairwise orthogonal, then
o |0, ifj#i,
(wj, wi) = O { 1, ifj=1i.
Hence

v, W;
= o = ((W7 Vl:)), / 1727’ > My
iy Wi
= w=PFPv= - ()
= (W, w)
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Best approximation

Orthogonal basis

Remark

o If wi,ws, .-, wp, are orthonormal, then

(Wi7Wi):17 I:1727 , N,

= ai=(v,w), i=1,2,---n,
n

= w=Pv=> (v,w)w
j=1
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Best approximation

Orthogonal basis

Theorem (lII)
Let W = span{wi,ws,--- ,wy} be a finite-dimensional subspace of
an inner product space V. If wi,wy, -, w, are orthonormal, then
n

w = Pv = ) (v, wj)w; is the best approximation in W to v with

j=1

1 .

respect to the norm ||v|| = (v,v)2. Thatis, |v— Pv|| < |v — u
for any u e W.

Proof.

See pages 199-201 of the textbook for the proof and the related
materials, such as orthogonal complement and the orthogonal
decomposition. (Independent study problem) O
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Best approximation

Orthogonal basis

Remark

e Usually we can easily obtain a basis {u1, ua, - -

are linearly independent.

, Un} which
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Best approximation

Orthogonal basis

Remark

e Usually we can easily obtain a basis {uy, ua,- -, u,} which
are linearly independent.

@ Question: how do we find an orthonormal (or at least
orthogonal) basis {wy, wa, -, wp}?
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Best approximation

Orthogonal basis

Remark

e Usually we can easily obtain a basis {uy, ua,- -, u,} which
are linearly independent.

@ Question: how do we find an orthonormal (or at least
orthogonal) basis {wy, wa, -, wp}?

@ Answer: Gram-Schmidt process!
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Best approximation

Orthogonal basis

Gram-Schmidt process:

Q vi=u
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Best approximation

Orthogonal basis

Gram-Schmidt process:

Q vi=u

Qv = Z UJ”‘)V for j=2,3,---,m.

(Vi vk)
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Best approximation

Orthogonal basis

Gram-Schmidt process:

Q vi=u
Qv= Z(\Z’V’;)v forj=2,3,---,m.
QO w = forj=1,2,3,-

HVJH
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Best approximation

Orthogonal basis

Theorem (1V)

{v1,va, -+ ,vp} is an orthogonal basis and {wy, wa,--- ,wp} is an
orthonormal basis. Moreover, span{u1, uz, - ,up} =

span{vi, va, -, Vp} = span{wi, wa, -, Wy}.

Proof.

See page 202 of the textbook. (Independent study problem) Ol

v
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Best approximation
Orthogonal basis

° Example 3: Let V C[ 1,1], W = span{1, x, x?},
f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.
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f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.

@ Solution:

Vi = U1:1,
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Best approximation
Orthogonal basis

° Example 3: Let V C[—l 1], W = span{1, x, x*},
f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.

@ Solution:

Vi = U1:1,

1
vl? = (u,w) :/ Ldx = 2,

-1
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Best approximation
Orthogonal basis

° Example 3: Let V C[—l 1], W = span{1, x, x*},
f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.

@ Solution:
Vi = U1:1,
) 1
vl? = (u,w) :/ 1 dx = 2,
1
Vi 1
W]_ = _— = —,
[[vall V2
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Best approximation
Orthogonal basis

° Example 3: Let V C[—l 1], W = span{1, x, x*},
f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.

@ Solution:
Vi = U1:1,
) 1
vl = (u.w) :/ Ldx = 2,
—1
Vi 1
W]_ = _— = —,
[[vall V2
1 1
v = u2—(u2’vl)v1 = X—/ x dx = x,
(vi,v1) 2 /4

40 /80



Best approximation
Orthogonal basis

° Example 3: Let V C[—l 1], W = span{1, x, x*},
f f(x)g(x) dx for f,g € V, and ||f|| = (f, f)2.
What are the orthonormal basis {wi, wa, w3} of W? Find the
best approximation in W to f(x) = e* € V.

@ Solution:
vi = u =1,
) 1
vl? = (u,w) :/ 1 dx = 2,
1
%1 1
W]_ = _— = —,
[[vall 2
1 1
2 = uz—(u27V1)V1 = X—/ x dx = x,
(vi,v1) 2 /4

1
el = (wv) = / 2 dx = 23,

40 /80



Best approximation

Orthogonal basis

@ Continued solution:
Vo X

vl /2/3

Wy =

)
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Best approximation

Orthogonal basis

@ Continued solution:

Vo X
W2 g e 5
[ val] 2/3

v = u3_(u3,V1) (u3, v2)

(vi,v1) (v2, )
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Best approximation

Orthogonal basis

@ Continued solution:

” Vo X
2 - — )
[ vall 2/3
(us, v1) (u3, v2)
V: = u V
’ (7 )" (2] ’
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Best approximation

Orthogonal basis

@ Continued solution:

" Vo X
2 - — )
[ val] 2/3
v o= s (U3,V1)V1 (u3, v2)
(vi,v1) (v2, )
1 1
= x2—1/ x2d—X/ x3 dx
2/, 2/3 J_,
1 2 X 1
2 2
— 2 _ .5 X0 = x2_=
X T2'37 23 3
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Best approximation
Orthogonal basis

@ Continued solution:

" Vo X
2 - — )
[ val] 2/3
v o= s (u3,v1) (u3, v2)
(vi,v1) (v2, )
1 1
= x2—1/ x2dx—x/ x3 dx
2/, 2/3 J_,
1 2 X 1
2 2
— 2 _ .5 X0 = x2_=
X T2'37 23 3

1 1 2
half = () = | <x2—3> dx — 8/45,
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Best approximation
Orthogonal basis

@ Continued solution:

" Vo X
2 - — )
[ val] 2/3
v = u3_(u3,V1) (u3, v2)
(vi,v1) (v2, v2)
1 1
= x2—1/ x2dx—x/ x3 dx
2/, 2/3 J_,
1 2 X 1
2 2
— 2 _ .5 X0 = x2_=
X T2'37 23 3
1 1 2
half = () = | <x2—3> dx — 8/45,
-1
1
W3 = V3 f X2_§
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Best approximation

Orthogonal basis

. - T
e Continued solution: Thus, {ﬁ’ Tk \/%} is an
orthonormal basis of W.



Best approximation
Orthogonal basis

X**

e Continued solution: Thus, {f \ﬁ \/8/74} is an
orthonormal basis of W.

And the best approximation in W to f(x) =e* € Vis

3
Pf = ZfWJ

) f/ o 75,
x2—l

\/8/45 /1 \/8/45

1.1752 + 1.1036x + 0.5367x°.

X

Q
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Polynomial Approximation

Outline

© Polynomial Approximation
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Polynomial Approximation

Basic idea of polynomial approximation

@ A simple choice for the subspace W of the best
approximation: a set of polynomials!
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Polynomial Approximation

Basic idea of polynomial approximation

@ A simple choice for the subspace W of the best
approximation: a set of polynomials!

@ Question: can polynomials always provide good
approximation?

@ Answer: Yes! But we need to be careful about the choices of
polynomials.
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Polynomial Approximation

Basic idea of polynomial approximation

Theorem (I: Weierstrass Approximation Theorem)

Given a function f € Cla, b] and € > 0, there exists a polynomial
p(x) such that

_ — = < e.
lp—fllo afgjgb\p(X) f(x)] < e

Proof.

See pages 205-209 of the textbooks for the proof and the related
materials for the Bernstein polynomials. (Independent study
problem)

Ol
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Polynomial Approximation

Taylor polynomial approximation

Theorem (lI: Taylor's expansion)
Suppose that f € C"1[a, b] and xo € [a, b]. Then for any

x € [a, b], we have the following Taylor's expansion of f(x) at xp:

f(x) = Pa(x)+ Ra(x),

21 000)(x — o)
k=0
= F(x0) + F(x0)(x — x0) %f”(xo)(x o)

1
—i—mf(")(xo)(x —xp)",
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Polynomial Approximation

Taylor polynomial approximation

Theorem (Continued)

1 n n
R, = m’c( H)(f)(X_XO) i

for some & € [xp, x| (Lagrange form of the remainder) ,
or
1 X (n+1) n
R, = — f (s)(x—s)" ds

Tl

for some £ € [xo,x] (Integral form of the remainder) .

v
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

e What if we don't know f(x) explicitly, but just the values
yi (=0,1,2,---,n) of f(x) at some points
xj (j=0,1,2,---,n) due to the measurement limitation or
the information availability?
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e What if we don't know f(x) explicitly, but just the values
yi (=0,1,2,---,n) of f(x) at some points
xj (j=0,1,2,---,n) due to the measurement limitation or
the information availability?

@ Basic idea: Given n+ 1 distinct real numbers xp, x1, X2, -+ , Xp
and n+ 1 arbitrary numbers yo, y1,- -+, yn, find an
interpolating polynomial p(x) of degree at most n such that
yJ:p(XJ) 0:07172)"' 7”)-
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

e What if we don't know f(x) explicitly, but just the values
yi (=0,1,2,---,n) of f(x) at some points
xj (j=0,1,2,---,n) due to the measurement limitation or
the information availability?

@ Basic idea: Given n+ 1 distinct real numbers xp, x1, X2, -+ , Xp
and n+ 1 arbitrary numbers yo, y1,- -+, yn, find an
interpolating polynomial p(x) of degree at most n such that
yJ:p(XJ) 0:07172)"' 7”)-

@ Questions: Does such an interpolating polynomial p(x) exist?
If it does, then is it unique?

@ Yes!
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Theorem (II1)
For any n+ 1 distinct real numbers xy, x1, X2, -+ ,x, and for n + 1
arbitrary numbers v, y1, Y2, , Yn, let
L X=X
L) = ]] X _X
[T

Then there exists a unique interpolating polynomial

px) =Y ykli(x)
k=0

of degree at most n such that y; = p(x;) (j =0,1,2,--- ,n).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Proof:

e First, since each Li(x) is of degree n, then p(x) is of degree n.
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Lagrange polynomial approximation /interpolation

Proof:
e First, since each Li(x) is of degree n, then p(x) is of degree n.

@ Second, it is easy to verify that

0, ifj+#k,
L) = fk:{ 1, ifj=k
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Proof:
e First, since each Li(x) is of degree n, then p(x) is of degree n.

@ Second, it is easy to verify that

0, ifj+#k,
L) = fk:{ 1, ifj=k

@ Then

p(x) =D yili(x) =D bk = y.
k=0 k=0
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Proof:
e First, since each Li(x) is of degree n, then p(x) is of degree n.

@ Second, it is easy to verify that
N_ s )0, ifj#Kk,
L) = fk_{ 1, ifj=k
@ Then
p(x) =D yili(x) =D bk = y.
k=0 k=0

@ Hence we complete the proof of the existence of p(x).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:

@ Now let's turn to the uniqueness of p(x).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
@ Now let's turn to the uniqueness of p(x).

@ Assume there are two such polynomials p(x) and g(x) of
degree at most n that their values at x; (j =0,1,2,--- ,n) are
yi j=0,1,2,---,n). Thatis,

yj:p(xj):q(xj)’ j:05152a"' , n.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
@ Now let's turn to the uniqueness of p(x).

@ Assume there are two such polynomials p(x) and g(x) of
degree at most n that their values at x; (j =0,1,2,--- ,n) are
yi j=0,1,2,---,n). Thatis,

Yj :p(Xj) :q(XJ)’ j:05152a"' , n.
@ Since p(x) and g(x) are polynomials of degree at most n,
then we may let

n
p(x) = Zakxk,
k=0

a(x) = > Bx*
k=0

for some constants ay and B (k=0,1,2,--- ,n).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
o Let vx = ax — Bk. Then

n n

p(x) = a(x) = > (ax = B)x* = wx*.

k=0 k=0
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
o Let vx = ax — Bk. Then

n

p(x) —q(x) = Z(Oék — Bi)x* = Z’kak-

k=0 k=0

@ Since y; = p(xj) = q(x)) (j =0,1,2,---,n), then
p(xj) —alx) =0( =01 w)-
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
o Let vx = ax — Bk. Then

n

p(x) —q(x) = Z(Oék — Bi)x* = Z’kak-

k=0 k=0

@ Since y; = p(xj) = q(x)) (j =0,1,2,---,n), then
p(xj) —alx) =0( =01 w)-

@ Hence

n
Z’kaJk:O,J:O,l,2, , N
k=0
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:

@ The above linear system can be rewritten as

2 3

0 I o x5 x3g "+ X 70
7 L xg x2 x4 - X 7
A . = _ .
2
Tn 1 x x; Xr? Xy Yn
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
@ The above linear system can be rewritten as

2 3
Yo 1 x x5 x5 - x4 Yo 0
ol 1 xa x2 X3 - xJ ol 0
A = =1
2
Yn I x, x2 x5 -0 xP Yn 0

@ The above matrix A is a Vandermonde matrix and the

determinant of the matrxi A is
n k-1

det(A) = [ ] T« — %)-

k=1 j=0
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
@ The above linear system can be rewritten as

2 3
Yo 1 x x5 x5 - x4 Yo 0
ol 1 xa x2 X3 - xJ ol 0
A = =1
2
Yn I x, x2 x5 -0 xP Yn 0

@ The above matrix A is a Vandermonde matrix and the
determinant of the matrxi A is

n k—1
det(A) = [ ] T« — %)-
k=1 j=0
@ Since xp, X1, X2, ++ , Xp are distinct real numbers, then

det(A) # 0.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof: Recall

Theorem
Let A be an n X n matrix. Then the following are equivalent:
e A is nonsingular/invertible.

o det(A) # 0.
o X =0 is the unique solution of AX = 0.

_>
o AX = b hasa unique solution.

@ The columns (and rows) of A are linearly independent.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:

@ Hence the above linear system has a unique solution
v« =0 (k=1,2,---,n), which implies
Oék:ﬁk (k:0,1,2,--~ ,n).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:

@ Hence the above linear system has a unique solution
v« =0 (k=1,2,---,n), which implies
Oék:ﬁk (k:0,1,2,--~ ,n).

@ Then p(x) = q(x). This completes the proof.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Continued proof:
@ Hence the above linear system has a unique solution
v« =0 (k=1,2,---,n), which implies
Oék:ﬁk (k:0,1,2,--~ ,n).

@ Then p(x) = q(x). This completes the proof.
Remark

In fact, the above theory from linear algebra can be used to prove
the existence and uniqueness at the same time. (Homework)
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Definition (Lagrange basis)

The set of functions {L,(x)}}_, is called the Lagrange basis for
the space of polynomials of degree n associated with the set of
points {xx}7_o. And Ly (k=10,1,2,---,n) are called the
Lagrange basis functions.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Definition (Lagrange basis)

The set of functions {L,(x)}}_, is called the Lagrange basis for
the space of polynomials of degree n associated with the set of
points {xx}7_o. And Ly (k=10,1,2,---,n) are called the
Lagrange basis functions.

Definition (Lagrange form)

n
p(x) = > ykLk(x) is called the Lagrange form of the interpolating

k=0
polynomial p(x), which satisfies yx = p(xx) (j =0,1,2,--- ,n).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
What if pick up yx = f(xx) (k =0,1,2,---,n) for a given
function f(x)?
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
What if pick up yx = f(xx) (k =0,1,2,---,n) for a given
function f(x)?

Definition (Lagrange polynomial approximation)

p(x) = > f(xk)Lk(x) is called the Lagrange polynomial
k=0

approximation /interpolation of a given function f(x).
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

The error of the Lagrange polynomial approximation:
Theorem (1V)

If xo, X1, X2, -+ , X, are n+ 1 distinct points in [a, b] and
f € C"[a, b], then for each x € [a, b], there exists a number
& =&(x) € (a, b) such that

(n+1)(¢g(x X
60) — ) = () = +(f,§i B'W( )

where W (x) = [[/_o(x — x;) and p(x) is the Lagrange polynomial
approximation /interpolation.

Proof.

See pages 215-216 of the textbook. (Independent study
problem) O
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
@ What happen if f is a n-th order polynomial?
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Remark
@ What happen if f is a n-th order polynomial?

o (" (g(x)) = 0 since F("+1) = 0.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
@ What happen if f is a n-th order polynomial?

o (" (g(x)) = 0 since F("+1) = 0.
@ The error f(x) — p(x) = 0.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
@ What happen if f is a n-th order polynomial?

o (" (g(x)) = 0 since F("+1) = 0.
@ The error f(x) — p(x) = 0.

@ Hence the n-th order Lagrange polynomial approximation is
exact for n-th order polynomial.
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark

o Define ||f||, = max |f(x)|. Then the error bound is
a<x<

If = plloe = max [f(x) = p(x)|

a<x<b
1

(n+1)!
1

]| vl

(n+1)! Hf(nH)Hoo (b=a)"*
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark

o Define ||f||, = max |f(x)|. Then the error bound is
a<x<

If = Plloe = max, |f(x) — p(x)|
< gl ]
(ni 1)! Hf(nH)Hoo(b_ a)".

@ In fact, we have

If=ple < chmt||feD]) .

where h= max (xj11 — X;).
ogI.SH( G+1 = X))
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
o The error bound depends on the nodes {x;}?_, since

W(x) = TTo(x = xi)-
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Polynomial Approximation

Lagrange polynomial approximation /interpolation

Remark
o The error bound depends on the nodes {x;}?_, since
W(x) = [TiZo(x — xi)-

o Can we choose {x;}7_, suitably to minimize the error bound?

@ Yes! Chebyshev Polynomials!
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Polynomial Approximation

Chebyshev Polynomials approximation /interpolation

Theorem (V)
The uniform norm of W(x) = [[;_y(x — x;) is minimized on [a, b]
when

1 2i+1
x,-zz[(ba)cos<nl::1 -72T>+a+b], i=0,1,2,---,n,

and the minimum value of the norm is

1 n
||W||oo = 22n+1(b - 3) +1‘

Proof.

See pages 217-219 of the textbook for the proof and the related
materials on Chebyshev polynomials. (Independent study
problem) O
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Polynomial Approximation

Chebyshev polynomials approximation /interpolation

Definition
If the Lagrange polynomial approximation/interpolation of a
function f(x) on [a, b] uses the following roots of Chebyshev

polynomials

1 2i+1 =« .
i = 37 - ‘5 y 1= 71727"'1 )
X, 2[(b a)cos(n_i_1 2>+a+b] i=0 n

then it is called the Chebyshev polynomials
approximation/interpolation of the function f(x) on [a, b].

63 /80



Polynomial Approximation

Chebyshev polynomials approximation /interpolation

Remark

Compared with the error bound of the regular Lagrange polynomial
approximation

If = pll

H (n+1 H (b_a)n—i-l,

(e.e]

the error bound of the Chebyshev polynomial approximation is

1 n+1 n+1 1
IF = plee < gy |0 (6= 0"
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Polynomial Approximation

Hermit polynomial approximation /interpolation

Definition

For any n distinct real numbers x1, X2, - - - , x,,, the Hermit
polynomial approximation /interpolation of a given function f(x) is
a polynomial p(x) of degree at most 2n — 1 such that

p(xi) = f(x;), p'(x)=F(x), i=1,2---,n.
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Polynomial Approximation

Hermit polynomials approximation /interpolation

Theorem (VI)

If x1,x2,+++ ,xp are n+ 1 distinct real numbers in [a, b] and
f € CYa, b]. Then there exists a unique Hermit polynomial
approximation/interpolation H,(x) of f(x). And it is given by

Zf Xk hk —i—Zf Xk)hk

where

he(x) = [1—2L0(x)(x — x¢)] (Lk(x))?,

hi(x) = (x =) (Le(x))*.
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Polynomial Approximation

Hermit polynomials approximation /interpolation

Theorem (VI: Continued)

Moreover, if f € C2"[a, b], then there exists a £ = £(x) € [a, b]
such that

n — x 2
F(x) — o) = (L o,

Proof.
See page 221 of the textbook. (Independent study problem) O
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Polynomial Approximation

Some thoughts for the polynomial approximation

Remark
@ In order to obtain a desired accuracy from the polynomial
approximation, enough number of interpolating nodes {x;}7_,
need to be selected.
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Polynomial Approximation

Some thoughts for the polynomial approximation

Remark

@ In order to obtain a desired accuracy from the polynomial
approximation, enough number of interpolating nodes {x;}7_,
need to be selected.

o When n is large, the corresponding polynomial has very hight
order.

o Can we use lower order polynomial to achieve high accuracy?

@ Yes! Piecewise polynomials!
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Piecewise polynomial approximation

Outline

@ Piecewise polynomial approximation
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Piecewise polynomial approximation

Basic idea of piecewise polynomial approximation

e Divide the interval [a, b] into many sub-intervals.
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Basic idea of piecewise polynomial approximation
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@ On each sub-interval, a lower order polynomial is used to
approximate the given function f(x). Then we assemble all of
the pieces on all of the sub-intervals together to obtain the
piecewise polynomial approximation of f(x) on [a, b].
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Piecewise polynomial approximation

Basic idea of piecewise polynomial approximation

e Divide the interval [a, b] into many sub-intervals.

@ On each sub-interval, a lower order polynomial is used to
approximate the given function f(x). Then we assemble all of
the pieces on all of the sub-intervals together to obtain the
piecewise polynomial approximation of f(x) on [a, b].

@ Continuous piecewise polynomial approximation requires that
the piecewise polynomial approximation to be continuous.
That is, the polynomial on each sub-interval must match the
polynomials on the neighboring sub-intervals.

@ Many numerical methods use piecewise polynomial
approximation, such as the finite element method.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Definition (continuous piecewise linear polynomial)

Given a partition
Aa=xg<x31 <X <Xxp_1<xy=Db

of [a, b], the set La of all continuous piecewise linear polynomials
on [a, b] with respect to A is

Ln = {p € Cla,b]: ¢(x) is linear on each [x;, xj+1]
(i=0,1,2,--- ,N—1) of Al.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)
La is an (N + 1)—dimensional subspace of Cla, b]. J
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)
La is an (N + 1)—dimensional subspace of Cla, b]. J

Proof:
e First, it is easy to verify that L is a subspace of C|a, b].
@ If we can find a continuous piecewise linear basis of N + 1
functions for L, then the proof is completed.

e Consider j(x) € La (i =0,---, N) such that

0, ifj#i,
gp,-(Xj)(S,'j_{L ifj:i.

@ Linear independence: consider Z,N:o cipi(x) = 0 for any
x € [a, b].
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)
La is an (N + 1)—dimensional subspace of Cla, b]. J

Proof:
e First, it is easy to verify that L is a subspace of C|a, b].

@ If we can find a continuous piecewise linear basis of N + 1
functions for L, then the proof is completed.

e Consider j(x) € La (i =0,---, N) such that
N s S0, it
‘”’(’9)5’1{ 1, ifj=1i.
@ Linear independence: consider Z,N:o cipi(x) = 0 for any
x € [a, b].
o Let x=xj, then ;=0 (j=0,---,N).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)
La is an (N + 1)—dimensional subspace of Cla, b]. }

Proof:
e First, it is easy to verify that L is a subspace of C|a, b].

@ If we can find a continuous piecewise linear basis of N + 1
functions for L, then the proof is completed.

e Consider j(x) € La (i =0,---, N) such that

0, ifj#i,
/ﬁpi(xj)&j—{l? ifj:i.

@ Linear independence: consider Z,N:o cipi(x) = 0 for any

x € [a, b].
o Let x = x;, then cj:O(j:O <+, N).
e So pi(x) (i=0,- N) are linearly independent.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ Span: Given any f € Lp, let ¢; = f(x;) and consider
N
gx) = Z;:o cipi(x).
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Continuous piecewise linear approximation
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Continuous piecewise linear approximation
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Continuous piecewise linear approximation

Continued proof:

@ Span: Given any f € Lp, let ¢; = f(x;) and consider
N
g(x) = Z;:o cipi(x).
e First, g(xj) =¢;=1(x;)) j=0,---,N).

@ Second, both f(x) and g(x) are linear in each piece
[Xjaijrl] (jZO,'” ’N_l)'
@ Hence f(x) = g(x) in each piece [xj, xj+1] (j =0,--- , N —1).

73 /80



Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ Span: Given any f € Lp, let ¢; = f(x;) and consider
N
g(x) = Z;:o cipi(x).
e First, g(xj) =¢;=1(x;)) j=0,---,N).

@ Second, both f(x) and g(x) are linear in each piece
[Xjaijrl] (jZO,'” ’N_l)'
@ Hence f(x) = g(x) in each piece [xj, xj+1] (j =0,--- , N —1).

@ Then f(x) = g(x) = Z,’-V:o cipi(x).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ Span: Given any f € Lp, let ¢; = f(x;) and consider
N

g(x) = 2izo Gigi(x)-
e First, g(xj) =¢;=1(x;)) j=0,---,N).
@ Second, both f(x) and g(x) are linear in each piece

[Xjaijrl] (jZO,'” ’N_l)'
@ Hence f(x) = g(x) in each piece [xj, xj+1] (j =0,--- , N —1).
@ Then f(x) = g(x) = Z,,'V:o cipi(x)-
e This implies La = span{yo(x), -, on(x)}.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ Span: Given any f € Lp, let ¢; = f(x;) and consider

g(x) = Z,N:o cipi(x).

o First, g(x;) = ¢ =f(x;)) j=0,---,N).

@ Second, both f(x) and g(x) are linear in each piece
s xj+1] G =0,---, N = 1).
Hence f(x) = g(x) in each piece [xj, xj+1] (j =0,--- , N —1).
Then f(x) = g(x) = Z,,'V:o cipi(x)-
This implies La = span{yo(x), -, on(x)}.

Therefore ¢j(x) (i =0,---, N) form a basis of La
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:
@ Span: Given any f € Lp, let ¢; = f(x;) and consider
g(x) = Z,N:o cipi(x).
o First, g(x))=¢i=f(x)(=0,-,N).
@ Second, both f(x) and g(x) are linear in each piece
s xj+1] G =0,---, N = 1).
@ Hence f(x) = g(x) in each piece [xj, xj+1] (j =0,--- , N —1).
@ Then f(x) = g(x) = Z,,'V:o cipi(x)-
e This implies La = span{yo(x), -, on(x)}.
@ Therefore ¢j(x) (i =0,---, N) form a basis of La if they

exist.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ The existence of ;(x) (i =0,---,N):

¢o(x)

on(x)

pi(x)

{
{
|

X1—X
X1—Xo
0, otherwise,

if xo <x<x,

X—XN—1
XN—XN—1’
0, otherwise,

if xn—1 < x < xp,

X—Xj_1 .

o I xie1 S x <X,

Xi+1—X H

o X S x < Xiga,

0, otherwise.
(i=1,---,N=1)

74 /80



Piecewise polynomial approximation

Continuous piecewise linear approximation

Continued proof:

@ The existence of ;(x) (i =0,---,N):

X1 —X .
i) = { G o <x<n
0, otherwise,
X—XN-—1 .
SDN(X) _ XN—XN_1’ if xy—1 < x < XN,
0, otherwise,
o I xim1 < x < x,
pi(x) = oo I X < x <X,
0, otherwise.
(i=1,---,N-1)
e A geometric illustration of ¢;(x) (i =0,---, N): see Figure

4.8 on page 240 of the textbook.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Remark

@ The continuous piecewise linear basis functions
vi(x) (i=0,1,2,--- ,N) are the well-known hat functions.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Remark

@ The continuous piecewise linear basis functions
vi(x) (i=0,1,2,--- ,N) are the well-known hat functions.

@ They are actually the linear finite element basis functions for
the finite element method in 1D!
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:

Mz

o Existence: Define ®(x) =

f(xi)pi(x).

0

i
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:
N
e Existence: Define ®(x) = > f(xi)pi(x).
i=0
@ Then ® € L and ®(x;) = f(xj) (j =0,---, N) since
ei(x) = dj;.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:
N
e Existence: Define ®(x) = > f(xi)pi(x).
i=0
@ Then ® € L and ®(x;) = f(xj) (j =0,---, N) since
ei(x) = dj;.

@ Uniqueness: assume there are two such ®’s, say ®; and ®,.
® Then &1(x) — P2(x;) = f(x) — (%) =0 (j =0,---, N).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:
N
e Existence: Define ®(x) = > f(xi)pi(x).
i=0
@ Then ® € L and ®(x;) = f(xj) (j =0,---, N) since
pi(x5) = djj.
@ Uniqueness: assume there are two such ®’s, say ®; and ®,.

Then q)l(XJ) — ¢2(XJ) = f(xJ) — f(XJ) =0 (j — 0, - 7N)_
Also, ®1 — &5 is linear in [x;, xj41] (j =0,--- ,N —1).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:
N
e Existence: Define ®(x) = > f(xi)pi(x).
i=0
@ Then ® € L and ®(x;) = f(xj) (j =0,---, N) since
pi(x5) = djj.
@ Uniqueness: assume there are two such ®’s, say ®; and ®,.
@ Then ®1(xj) — ®a(xj) = f(x;) — f(x;)) =0 (i =0,---,N).
o Also, ®; — ®5 is linear in [xj,xj+1] j =0,--- ,N —1).
@ Then ®; —®, =0in [x;, xj41] j=0,---,N—1).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (1)

Given an f € Cla, b], there is a unique ® € La which satisfies
O(x) = F(x) (i = 0.1,2,- - , N).

Proof:
N
e Existence: Define ®(x) = > f(xi)pi(x).
i=0
@ Then ® € L and ®(x;) = f(xj) (j =0,---, N) since
ei(x) = dj;.
@ Uniqueness: assume there are two such ®’s, say ®; and ®,.
@ Then ®1(x;) — ®a(x;) = f(x;) = f(x) =0 (j=0,---, N).
o Also, ®; — ®5 is linear in [xj,xj+1] j =0,--- ,N —1).
@ Then ®; —®, =0in [x;, xj41] j=0,---,N—1).
@ Hence ®1(x) = ®2(x) = uniqueness of ®.
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Definition (Interpolation)

N

d(x) = > f(xi)pi(x) is called the L interpolation of f, which is
i=0

denoted by Iyf(x).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Definition (Interpolation)

N

d(x) = > f(xi)pi(x) is called the L interpolation of f, which is
i=0

denoted by Iyf(x).

Remark
@ Iy : Cla,b] — La is a linear operator, i.e.,

IN(alfl(x) -+ azfg(X)) = allel(x) + 32/Nf2(X).
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Piecewise polynomial approximation

Continuous piecewise linear approximation

Theorem (I11)
If f € C?[a, b], then
1 2 "
If = inflloe = g™ I1F7lc
1
I(F =Y lloe < SHIF N0 -
If f € CYa, b], then
1 !
If = Inflls < ShIF N -

If f € Cla, b], then

|f — Infll., — O.

Proof: See pages 241-242 of textbook (Independent study problem).



Other topics

Outline

© Other topics
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Other topics

Topics: Independent study problems

@ Newton form of the Lagrange polynomials (section 4.3.4)
@ Least square approximation (section 4.3.6 and 4.3.7)

e Minmax approximation (section 4.3.8)

@ Interval bounds on the errors (section 4.3.9)

@ Cubic spline interpolation and B-splines (section 4.4.2 and
4.4.3).

e Trigonometric Approximation (section 4.5)
e Rational approximation (section 4.6)

o Wavelet (section 4.7)
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