
Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Introduction and Implementation for Finite
Element Methods

Chapter 1: Finite elements for 1D second order elliptic equation

Xiaoming He
Department of Mathematics & Statistics

Missouri University of Science & Technology
Email: hex@mst.edu

Homepage: https://web.mst.edu/~hex/

1 / 152

https://web.mst.edu/~hex/

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

2 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

3 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Target problem

Solve

− d

dx

(
c(x)

du(x)

dx

)
= f (x), a < x < b,

u(a) = ga, u(b) = gb

for u(x).

Why do we start from this problem?

An easy look at the basic idea of the finite element method.

Numerical methods for partial differential equations: finite
element method, finite difference method, finite volume
method, boundary element method, etc., which use different
techniques to discretize partial differential equations.

4 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Weak formulation

First, multiply a function v(x) on both sides of the original
equation,

− d

dx

(
c(x)

du(x)

dx

)
= f (x), a < x < b

⇒ − d

dx

(
c(x)

du(x)

dx

)
v(x) = f (x)v(x), a < x < b

⇒ −
∫ b

a

d

dx

(
c(x)

du(x)

dx

)
v(x) dx =

∫ b

a
f (x)v(x) dx .

u(x) is called a trial function and v(x) is called a test function.

5 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Weak formulation

Second, using integration by parts, we obtain∫ b

a

d

dx

(
c(x)

du(x)

dx

)
v(x) dx

=

∫ b

a

(
cu′
)′

v dx

=

∫ b

a
v d(cu′)

= cu′v |ba −
∫ b

a
cu′ dv

= c(b)u′(b)v(b)− c(a)u′(a)v(a)−
∫ b

a
cu′v ′ dx .

6 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Weak formulation

Then

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a
cu′v ′ dx =

∫ b

a
fv dx .

Since the solution at x = a and x = b are given by
u(a) = ga, u(b) = gb, then we can choose the test function
v(x) such that v(a) = v(b) = 0.

Hence ∫ b

a
cu′v ′ dx =

∫ b

a
fv dx .

What spaces should u and v belong to? Sobolev spaces!

7 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D Sobolev spaces

Definition (Support)

If u is a function, then its support supp(u) is the closure of the set
on which u is nonzero.

Definition (Compactly supported)

If u is a function defined on an open interval I and supp(u) is a
compact subset (that is, a closed and bounded subset), then u is
said to be compactly supported in I .

Lemma (I)

A function compactly supported in an open interval I is zero on
and near the boundary of I .

8 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D Sobolev spaces

Definition

C∞0 (I) is the set of all functions that are infinitely differentiable on
I and compactly supported in I .

Recall integration by parts:∫ b

a
u′v dx = uv |ba −

∫ b

a
uv ′ dv

= u(b)v(b)− u(a)v(a)−
∫ b

a
uv ′ dx .

For v ∈ C∞0 (I), we have v(a) = v(b) = 0. Then∫ b

a
u′v dx = −

∫ b

a
uv ′ dx .

9 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D Sobolev spaces

Definition (weak derivative)

Suppose u is a real-valued function defined on an open interval
I = (a, b) and that u is integrable over every compact subset of I .
If there exists another locally integrable function w defined on I
such that ∫ b

a
wv dx = −

∫ b

a
uv ′ dx

for all v ∈ C∞0 (I), then u is said to be weakly differentiable and w
is called the weak derivative of u.

10 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D Sobolev spaces

Lemma (II)

If u is differentiable, then u is weakly differentiable and its weak
derivative is u′.

Remark

In the Sobolev spaces, which will be defined below, u′ is used to
represent the weak derivative.

11 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D Sobolev spaces

Definition (L2 space)

L2(I) = {v : I → R :

∫ b

a

v2 dx <∞}

where I = (a, b).

Definition (H1 space)

H1(I) = {v ∈ L2(I) : v ′ ∈ L2(I)}

where I = (a, b).

Definition (H1
0 space)

H1
0 (I) = {v ∈ H1(I) : v(a) = v(b) = 0}

where I = (a, b).

12 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Weak formulation

Weak formulation: find u ∈ H1(I) such that∫ b

a
cu′v ′ dx =

∫ b

a
fv dx .

for any v ∈ H1
0 (I) where I = (a, b).

Let a(u, v) =
∫ b
a cu′v ′ dx and (f , v) =

∫ b
a fv dx .

Weak formulation: find u ∈ H1(I) such that

a(u, v) = (f , v)

for any v ∈ H1
0 (I) where I = (a, b).

13 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Galerkin formulation

Assume there is a finite dimensional subspace Uh ⊂ H1[a, b].

Galerkin formulation (without considering the Dirichlet
boundary condition, which will be handled later) : find
uh ∈ Uh such that

a(uh, vh) = (f , vh)

⇔
∫ b

a
cu′hv ′h dx =

∫ b

a
fvh dx

for any vh ∈ Uh.

Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

Question: How to obtain Uh?

14 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

15 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Mesh

Assume that we have a uniform partition of [a, b] into N
elements with mesh size h = b−a

N .

Let xi = a + (i − 1)h (i = 1, · · · ,N + 1) denote the mesh
nodes.

Let En = [xn, xn+1] (n = 1, · · · ,N) denote the mesh elements.

16 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D linear finite element space

Define 1D linear finite element space:

Uh = {φ ∈ C [a, b] : φ(x) is linear on each [xn, xn+1]

(n = 1, 2, · · · ,N)}.

Uh is actually a piecewise linear function space based on the
mesh generated in the previous section.

17 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D linear finite element space

Theorem (I)

Uh is an (N + 1)−dimensional subspace of C [a, b]. (Math 6601:
Numerical Analysis)

Proof:

First, it is easy to verify that Uh is a subspace of C [a, b].

If we can find a continuous piecewise linear basis of N + 1
functions for Uh, then the proof is completed.

Consider φj(x) ∈ Uh such that

φj(xi) = δij =

{
0, if j 6= i ,
1, if j = i .

for i , j = 1, · · · ,N + 1.

18 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D linear finite element space

Continued proof:

In fact,

φ1(x) =

{
x2−x
h , if x1 ≤ x ≤ x2,

0, otherwise,

φj(x) =


x−xj−1

h , if xj−1 ≤ x ≤ xj ,
xj+1−x

h , if xj ≤ x ≤ xj+1,
0, otherwise,

(j = 2, · · · ,N)

φN+1(x) =

{ x−xN
h , if xN ≤ x ≤ xN+1,

0, otherwise,

In order to show that φj(x) (i = 1, · · · ,N + 1) form a basis of
Uh, we need to show the linear independence of {φj}N+1

j=1 and

Uh = span{φj}N+1
j=1 .

19 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D linear finite element space

Continued proof:

Linear independence: consider

N+1∑
j=1

cjφj(x) = 0

for any x ∈ [a, b].

Let x = xi (i = 1, · · · ,N + 1), then

φj(xi) = δij =

{
0, if j 6= i ,
1, if j = i .

⇒ ci = 0 (i = 1, · · · ,N + 1)

So φj(x) (j = 1, · · · ,N + 1) are linearly independent.

20 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D linear finite element space

Continued proof:

Span: Given any f ∈ Uh, let cj = f (xj) and consider

g(x) =
N+1∑
j=1

cjφj(x).

First, g(xi) = ci = f (xi) (i = 1, · · · ,N + 1).

Second, both f (x) and g(x) are linear in each piece
[xi , xi+1] (j = 1, · · · ,N).

Hence f (x) = g(x) in each piece [xi , xi+1] (i = 1, · · · ,N).

Then f (x) = g(x) =
N+1∑
j=1

cjφj(x).

This implies Uh = span{φj}N+1
j=1 .

Therefore φj(x) (j = 1, · · · ,N + 1) form a basis of Uh.

21 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

22 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Discretization formulation

Recall the Galerkin formulation (without considering the
Dirichlet boundary condition, which will be handled later):
find uh ∈ Uh such that

a(uh, vh) = (f , vh)

⇔
∫ b

a
cu′hv ′h dx =

∫ b

a
fvh dx

for any vh ∈ Uh.

Since uh ∈ Uh = span{φj}N+1
j=1 , then

uh =
N+1∑
j=1

ujφj

for some coefficients uj (j = 1, · · · ,N + 1).

23 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Discretization formulation

If we can set up a linear algebraic system for
uj (j = 1, · · · ,N + 1) and solve it, then we can obtain the
finite element solution uh.

Therefore, we choose the test function
vh = φi (i = 1, · · · ,N + 1). Then the finite element
formulation gives

∫ b

a
c

N+1∑
j=1

ujφj

′ φ′i dx =

∫ b

a
f φi dx , i = 1, · · · ,N + 1

⇒
N+1∑
j=1

uj

[∫ b

a
cφ′jφ

′
i dx

]
=

∫ b

a
f φi dx , i = 1, · · · ,N + 1.

24 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Discretization formulation

Define the stiffness matrix

A = [aij]
N+1
i ,j=1 =

[∫ b

a
cφ′jφ

′
i dx

]N+1

i ,j=1

.

Define the load vector

~b = [bi]
N+1
i=1 =

[∫ b

a
f φi dx

]N+1

i=1

.

Define the unknown vector

~X = [uj]
N+1
j=1 .

Then we obtain the linear algebraic system

A~X = ~b.

Here A is symmetric positive-definite if the original elliptic
equation is symmetric positive-definite.

25 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Discretization formulation

Remark

In fact, since

φj(xk) = δjk =

{
0, if j 6= k ,
1, if j = k .

then

uh(xk) =
N+1∑
j=1

ujφj(xk) = uk .

Hence the coefficient uj is actually the numerical solution at
the node xj (j = 1, · · · ,N + 1).

Once ~X = [uj]
N+1
j=1 is obtained, the finite element solution

uh =
N+1∑
j=1

ujφj and the numerical solutions at all the mesh

nodes are obtained.
26 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

In this section we will first introduce the matrix and vector
assembly by using a special method. In the later section “FE
method”, we will discuss a different universal framework.

From the definition of φj (j = 1, · · · ,N + 1), we can see that
φj are non-zero only on the elements adjacent to the node xj ,
but 0 on all the other elements.

This observation motivates us to think about

aij =

∫ b

a
cφ′jφ

′
i dx =

N∑
n=1

∫ xn+1

xn

cφ′jφ
′
i dx , i , j = 1, · · · ,N + 1.

It is easy to see that most of
∫ xn+1

xn
cφ′jφ

′
i dx will be 0.

So we only need to use numerical integration to compute
those nonzero integrals.

27 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 1: when |i − j | > 1, xi and xj are not neighboring mesh
nodes.

Then on any element [xn, xn+1] (n = 1, · · · ,N), at least one
of φj and φi is 0.

Hence ∫ xn+1

xn

cφ′jφ
′
i dx = 0 (n = 1, · · · ,N)

⇒ aij =
N∑

n=1

∫ xn+1

xn

cφ′jφ
′
i dx= 0.

28 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 2: when i = j + 1 (j = 1, · · · ,N), the only element, on
which both φj and φi are not zero, is [xj , xj+1].

Hence ∫ xn+1

xn

cφ′jφ
′
i dx = 0 (n = 1, · · · , j − 1, j + 1, · · · ,N)

⇒ aij =
N∑

n=1

∫ xn+1

xn

cφ′jφ
′
i dx =

∫ xj+1

xj

cφ′jφ
′
i dx

⇒ aj+1,j =

∫ xj+1

xj

c(x)

(
xj+1 − x

h

)′(x − xj
h

)′
dx

= − 1

h2

∫ xj+1

xj

c(x) dx .

29 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 3: when i = j − 1 (j = 2, · · · ,N + 1), the only element,
on which both φj and φi are not zero, is [xj−1, xj].

Hence ∫ xn+1

xn

cφ′jφ
′
i dx = 0 (n = 1, · · · , i − 1, i + 1, · · · ,N)

⇒ aij =
N∑

n=1

∫ xn+1

xn

cφ′jφ
′
i dx =

∫ xj

xj−1

cφ′jφ
′
i dx

⇒ aj−1,j =

∫ xj

xj−1

c(x)

(
x − xj−1

h

)′(xj − x

h

)′
dx

= − 1

h2

∫ xj

xj−1

c(x) dx .

30 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 4: when i = j (j = 2, · · · ,N), the only two elements, on
which both φj and φi are not zero, are [xj−1, xj] and [xj , xj+1].

Hence ∫ xn+1

xn

cφ′jφ
′
i dx = 0 (n = 1, · · · , j − 2, j + 1, · · · ,N)

⇒ aij =
N∑

n=1

∫ xn+1

xn

cφ′jφ
′
i dx =

∫ xj

xj−1

cφ′jφ
′
i dx +

∫ xj+1

xj

cφ′jφ
′
i dx

⇒ ajj =

∫ xj

xj−1

c(x)

(
x − xj−1

h

)′(
x − xj−1

h

)′
dx

+

∫ xj+1

xj

c(x)

(
xj+1 − x

h

)′(
xj+1 − x

h

)′
dx

=
1

h2

∫ xj

xj−1

c(x) dx +
1

h2

∫ xj+1

xj

c(x) dx .

31 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 5: when i = j = 1, the only element, on which both φj
and φi are not zero, is [x1, x2].

Hence ∫ xn+1

xn

cφ′1φ
′
1 dx = 0 (n = 2, · · · ,N)

⇒ a11 =
N∑

n=1

∫ xn+1

xn

cφ′1φ
′
1 dx =

∫ x2

x1

cφ′1φ
′
1 dx

⇒ a11 =

∫ x2

x1

c(x)

(
x2 − x

h

)′(x2 − x

h

)′
dx

=
1

h2

∫ x2

x1

c(x) dx .

32 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Case 6: when i = j = N + 1, the only element, on which both
φj and φi are not zero, is [xN , xN+1].

Hence ∫ xn+1

xn

cφ′N+1φ
′
N+1 dx = 0 (n = 1, · · · ,N − 1)

⇒ aN+1,N+1 =
N∑

n=1

∫ xn+1

xn

cφ′N+1φ
′
N+1 dx =

∫ xN+1

xN

cφ′N+1φ
′
N+1 dx

⇒ aN+1,N+1 =

∫ xN+1

xN

c(x)

(
x − xN

h

)′(
x − xN

h

)′
dx

=
1

h2

∫ xN+1

xN

c(x) dx .

33 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

From the above discussion, we can see that most of the
elements aij (i , j = 1, · · · ,N + 1) are 0.

Hence the stiffness matrix A is called a sparse matrix.

We can also see that we only need to compute the integrals
on local elements instead of the whole domain, which later
will lead to the “local assembly” idea of finite elements.

34 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the stiffness matrix

Algorithm I:

Initialize the matrix: A = sparse(N + 1,N + 1);

Compute the integrals and assemble them into A:

FOR j = 1, · · · ,N + 1:

IF j ≤ N, THEN

Compute A(j + 1, j) = − 1
h2

∫ xj+1

xj
c(x) dx ;

END

IF j ≥ 2, THEN

Compute A(j − 1, j) = − 1
h2

∫ xj
xj−1

c(x) dx ;

END

IF 2 ≤ j ≤ N, THEN

Compute A(j , j) = 1
h2

∫ xj
xj−1

c(x) dx + 1
h2

∫ xj+1

xj
c(x) dx ;

END

END

Compute A(1, 1) = 1
h2

∫ x2
x1

c(x) dx ;

Compute A(N + 1,N + 1) = 1
h2

∫ xN+1

xN
c(x) dx ;

35 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the load vector

The idea for the assembly of the load vector is similar. We
have

bi =

∫ b

a
f φi dx =

N∑
n=1

∫ xn+1

xn

f φi dx , i = 1, · · · ,N + 1,

Case 1: when 2 ≤ i ≤ N, the only two elements, on which φi
is not zero, are [xi−1, xi] and [xi , xi+1]. Then∫ xn+1

xn

f φi dx = 0 (n = 1, · · · , i − 2, i + 1, · · · ,N)

⇒ bi =
N∑

n=1

∫ xn+1

xn

f φi dx =

∫ xi

xi−1

f φi dx +

∫ xi+1

xi

f φi dx

=

∫ xi

xi−1

f (x)
x − xi−1

h
dx +

∫ xi+1

xi

f (x)
xi+1 − x

h
dx .

36 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the load vector

Case 2: when i = 1, the only element, on which φ1 is not
zero, is [x1, x2]. Then∫ xn+1

xn

f φ1 dx = 0 (n = 2, · · · ,N)

⇒ b1 =
N∑

n=1

∫ xn+1

xn

f φ1 dx

=

∫ x2

x1

f φ1 dx =

∫ x2

x1

f (x)
x2 − x

h
dx .

37 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the load vector

Case 3: when i = N + 1, the only element, on which φN+1 is
not zero, is [xN , xN+1]. Then∫ xn+1

xn

f φN+1 dx = 0 (n = 1, · · · ,N − 1)

⇒ bN+1 =
N∑

n=1

∫ xn+1

xn

f φN+1 dx =

∫ xN+1

xN

f φN+1 dx

=

∫ xN+1

xN

f (x)
x − xN

h
dx .

38 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Assembly of the load vector

Algorithm II:

Initialize the matrix: b = zeros(N + 1, 1);

Compute the integrals and assemble them into ~b:
FOR i = 2, · · · ,N:

Compute
b(i) =

∫ xi
xi−1

f (x)
x−xi−1

h dx +
∫ xi+1

xi
f (x) xi+1−x

h dx ;

END
Compute b(1) =

∫ x2
x1

f (x) x2−xh dx ;

Compute b(N + 1) =
∫ xN+1

xN
f (x) x−xNh dx ;

39 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

40 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Dirichlet boundary condition

Basically, the Dirichlet boundary condition
u(a) = ga, u(b) = gb give the solutions at x1 = a and
xN+1 = b.

Since the coefficient uj in the finite element solution

uh =
N+1∑
j=1

ujφj is actually the numerical solution at the node

xj (j = 1, · · · ,N + 1), we actually know that u1 = u(a) = ga
and uN+1 = u(b) = gb.

Therefore, we don’t really need the first and last equations in
the linear system since they are set up for u1 and uN+1 by
using φ1 and φN+1.

41 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Dirichlet boundary condition

One way to impose the Dirichlet boundary condition is to
replace the first and last equations in the linear system by the
following two equations

u1 = ga ⇒ 1 · u1 + 0 · u2 + · · ·+ 0 · uN+1 = ga,

uN+1 = gb ⇒ 0 · u1 + · · ·+ 0 · uN−1 + 1 · uN+1 = gb.

That is, the first and last rows of the matrix A should become

(1, 0, · · · , 0)

and

(0, · · · , 0, 1)

respectively.

And the first and last elements of the vector ~b should become
ga and gb respectively.

42 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Dirichlet boundary condition

Algorithm III:

Deal with the Dirichlet boundary conditions:
A(1, :) = 0;
A(1, 1) = 1;
A(N + 1, :) = 0;
A(N + 1,N + 1) = 1;
b(1) = ga;
b(N + 1) = gb;

43 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

44 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Basic algorithm

Input a, b, and N. Compute h = b−a
N and

xj = a + (j − 1)h (j = 1, · · · ,N + 1).

Assemble the stiffness matrix A by using Algorithm I.

Assemble the load vector ~b by using Algorithm II.

Deal with the Dirichlet boundary condition by using Algorithm
III.

Solve A~X = ~b for ~X by using a direct or iterative method.

Remark

The above algorithm uses the Algorithms I, II, and III, which are
designed for some particular cases with a special method. It is not
general enough to deal with different types of PDEs. Therefore, we
will discuss a more universal framework in the following.

45 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Universal framework of the finite element method

Generate the information matrices: P, T , E ;

Assemble the matrices and vectors: local assembly based on
P, T , E only;

Deal with the boundary conditions: boundary information
matrix and local assembly;

Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).

46 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Mesh information matrices

Define your global indices for all the mesh elements and mesh
nodes. Let N denote the number of mesh elements and Nm

denote the number of mesh nodes. Here Nm = N + 1.

Define matrix P to be an information matrix consisting of the
coordinates of all mesh nodes.

Define matrix T to be an information matrix consisting of the
global node indices of the mesh nodes of all the mesh
elements.

47 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Mesh information matrices

For example, for the mesh used in this chapter, we can use
the j th column of the matrix P to store the coordinates of the
j th mesh node and the nth column of the matrix T to store
the global node indices of the mesh nodes of the nth mesh
element:

P =
(

x1 x2 · · · xNm−1 xNm

)
=

(
x1 x2 · · · xN xN+1

)
,

T =

(
1 2 · · · Nm − 2 Nm − 1
2 3 · · · Nm − 1 Nm

)
=

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

48 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Finite element information matrices

The above mesh information matrices P and T are for the
mesh nodes.

We also need similar finite element information matrices Pb

and Tb for the finite elements nodes, which are the nodes
corresponding to the finite element basis functions.

For example, the finite element nodes of the linear finite
element are the same as those mesh nodes since all the linear
basis functions are corresponding to mesh nodes.

Note: For the nodal finite element basis functions, the
correspondence between the finite elements nodes and the
finite element basis functions is one-to-one in a
straightforward way. But it could be more complicated for
other types of finite element basis functions in the future.

49 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Finite element information matrices

Define your global indices for all the mesh elements and finite
element nodes (or the finite element basis functions). Let Nb

denote the total number of the finite element basis functions
(= the number of unknowns = the total number of the finite
element nodes). Here Nb = N + 1.

Then

uh =

Nb∑
j=1

ujφj .

Define matrix Pb to be an information matrix consisting of
the coordinates of all finite element nodes.

Define matrix Tb to be an information matrix consisting of
the global node indices of the finite element nodes of all the
mesh elements.

50 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Finite element information matrices

For the linear finite elements we use here, Pb = P and
Tb = T since the nodes of the linear finite element basis
functions are the same as those of the mesh. We use the j th

column of the matrix Pb to store the coordinates of the j th

finite element node and the nth column of the matrix Tb to
store the global node indices of the finite element nodes of the
nth mesh element:

Pb =
(

x1 x2 · · · xNb−1 xNb

)
=

(
x1 x2 · · · xN xN+1

)
,

Tb =

(
1 2 · · · Nb − 2 Nb − 1
2 3 · · · Nb − 1 Nb

)
=

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

51 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Finite element information matrices

Remark

For many types of finite elements, such as the quadratic elements
which will be discussed later and some elements which will be
introduced in Chapter 2, Pb and Tb are different from P and T
since the nodes for the finite element basis functions are different
from those of the mesh.

52 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Observation based on Algorithm I:

All the non-zero entries in the stiffness matrix A come from
the non-zero local integrals defined on the mesh elements.

In each non-zero local integral, the trial and test basis
functions are only corresponding to the nodes of the element
which is the integral interval.

On each element, all the local integrals, whose trial and test
basis functions are corresponding to the nodes of this element,
have non-trivial contribution to some non-zero entries of the
stiffness matrix A.

53 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

New assembly idea for the stiffness matrix A:

Loop over all the mesh elements;

Compute all non-zero local integrals on each element for A;

Assemble these non-zero local integrals into the corresponding
entries of the stiffness matrix A.

54 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Compute all non-zero local integrals on each element for A:

On the nth element En = [xn, xn+1], we get non-zero local
integrals only when the trial and test basis functions are
corresponding to the finite element nodes of the element.

That is, we only consider the trial and test basis functions to
be φn or φn+1.

There are only four non-zero local integrals on En with the
global basis functions φn and φn+1:∫ xn+1

xn

cφ′nφ
′
n dx ,

∫ xn+1

xn

cφ′n+1φ
′
n dx ,

∫ xn+1

xn

cφ′nφ
′
n+1 dx ,

∫ xn+1

xn

cφ′n+1φ
′
n+1 dx .

They can be rewritten as∫ xn+1

xn

cφ′jφ
′
i dx (i , j = n, n + 1).

55 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Recall

φ1(x) =

{
x2−x
h , if x1 ≤ x ≤ x2,

0, otherwise,

φj(x) =


x−xj−1

h , if xj−1 ≤ x ≤ xj ,
xj+1−x

h , if xj ≤ x ≤ xj+1,
0, otherwise.

(i = 2, · · · ,N)

φN+1(x) =

{ x−xN
h , if xN ≤ x ≤ xN+1,

0, otherwise,

Define two local linear basis functions:

ψn1 = φn|En=
xn+1 − x

h
, ψn2 = φn+1|En=

x − xn
h

.

So in one element, the number of local basis functions
Nlb = 2.

56 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Then the only four non-zero local integrals become∫ xn+1

xn

cψ′n1ψ
′
n1 dx ,

∫ xn+1

xn

cψ′n2ψ
′
n1 dx ,

∫ xn+1

xn

cψ′n1ψ
′
n2 dx ,

∫ xn+1

xn

cψ′n2ψ
′
n2 dx .

That is, instead of the original four non-zero local integrals
with the global basis functions φn and φn+1, we will compute
the following four non-zero local integrals with the local basis
functions ψn1 and ψn2:∫ xn+1

xn

cψ′nαψ
′
nβ dx (α, β = 1, 2).

Question: how to compute these integrals?

Gauss quadrature (Math 6601: Numerical Analysis). The
needed information is stored in the matrices P and T .

57 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Assemble the non-zero local integrals into A:

Based on Algorithm I, when the trial function is φj and the
test function is φi , the corresponding non-zero local integrals
should be assembled to ai j .

For example,
∫ xn+1

xn
cφ′nφ

′
n dx should be assemble to ann.∫ xn+1

xn
cφ′n+1φ

′
n dx should be assemble to an,n+1.∫ xn+1

xn
cφ′nφ

′
n+1 dx should be assemble to an+1,n.∫ xn+1

xn
cφ′n+1φ

′
n+1 dx should be assemble to an+1,n+1.

58 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.

Question: Since we compute∫ xn+1

xn

cψ′nαψ
′
nβ dx (α, β = 1, 2)

instead of ∫ xn+1

xn

cφ′jφ
′
i dx (i , j = n, n + 1),

how do we obtain the corresponding global node indices of the
local trial and test basis functions ψnα and ψnβ (α, β = 1, 2)?

Information matrix Tb!

59 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Recall that the nth column of the matrix Tb stores the global
node indices of the finite element nodes of the nth mesh
element:

Tb =

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

Hence Tb(α, n) and Tb(β, n) give the global node indices of
the local trial and test basis functions ψnα and
ψnβ (α, β = 1, 2).

That is, for n = 1, · · · ,N,∫ xn+1

xn

cψ′nαψ
′
nβ dx (α, β = 1, 2)

should be assembled to aij where i = Tb(β, n) and
j = Tb(α, n).

60 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Algorithm IV:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:
Compute r =

∫ xn+1

xn
cψ′nαψ

′
nβ dx ;

Add r to A(Tb(β, n),Tb(α, n));
END

END
END

61 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Algorithm IV (alternative version):

Initialize the matrix: A = sparse(Nb,Nb) and
S = zeros(Nlb,Nlb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:
Compute S(β, α) =

∫ xn+1

xn
cψ′nαψ

′
nβ dx ;

END
END
A(Tb(:, n),Tb(:, n)) = A(Tb(:, n),Tb(:, n)) + S ;

END

62 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

If we follow Algorithm IV to develop a subroutine to assemble
the matrix arising from a more general integral∫ xn+1

xn

cψ
(r)
nαψ

(s)
nβ dx ,

then Algorithm IV is equivalent to calling this subroutine with
input parameters r = s = 1.

63 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the coefficient function c ;

the Gauss quadrature points and weights for numerical
integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T , 2) and the
number of mesh nodes Nm = size(P, 2);

the finite element information matrices Pb and Tb for the trial
and test functions respectively, which can also provide the
number of local basis functions Nlb = size(Tb, 1) and the
number of the global basis functions Nb = size(Pb, 2) (= the
number of unknowns);

the type of the basis function for the trial and test functions
respectively. 64 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Observation based on Algorithm II:

All the non-zero entries in the load vector ~b come from the
non-zero local integrals defined on the mesh elements.

In each non-zero local integral, the test basis functions are
only corresponding to the nodes of the element which is the
integral interval.

On each element, all the local integrals, whose test basis
functions are corresponding to the nodes of this element, have
non-trivial contribution to some non-zero entries of the load
vector ~b.

65 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

New assembly idea for the load vector ~b:

Loop over all the elements;

Compute all non-zero local integrals on each element for the
load vector ~b;

Assemble these non-zero local integrals into the corresponding
entries of the load vector ~b.

66 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Compute all non-zero local integrals on each element for ~b:

On the nth element En = [xn, xn+1], we get non-zero local
integrals only when the test basis functions are corresponding
to the finite element nodes of the element.

That is, we only consider the test basis functions to be φn or
φn+1.

There are only two non-zero local integrals on En with the
global basis functions φn and φn+1:∫ xn+1

xn

f φn dx ,

∫ xn+1

xn

f φn+1 dx .

They can be rewritten as∫ xn+1

xn

f φi dx (i = n, n + 1).

67 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Using ψn1 and ψn2, these two non-zero local integrals become∫ xn+1

xn

f ψn1 dx ,

∫ xn+1

xn

f ψn2 dx .

That is, instead of the original two non-zero local integrals
with the global basis functions φn and φn+1, we will compute
the following two non-zero local integrals with the local basis
functions ψn1 and ψn2:∫ xn+1

xn

f ψnβ dx (β = 1, 2).

Question: how to compute these integrals?

Gauss quadrature (Math 6601: Numerical Analysis). The
needed information is stored in the matrices P and T .

68 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Assemble the non-zero local integrals into ~b:

Based on Algorithm I, when the test function is φi , the
corresponding non-zero local integrals should be assembled to
bi .

For example,
∫ xn+1

xn
f φn dx should be assemble to bn.∫ xn+1

xn
f φn+1 dx should be assemble to bn+1.

Therefore, if we find the global node indices of test basis
functions, we can easily locate where to assemble a non-zero
local integral.

69 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Question: Since we compute∫ xn+1

xn

f ψnβ dx (β = 1, 2)

instead of ∫ xn+1

xn

f φi dx (i = n, n + 1),

how do we obtain the corresponding global node indices of the
local test basis functions ψnβ (β = 1, 2)?

Information matrix Tb!

70 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Recall that the nth column of the matrix Tb stores the global
node indices of the finite element nodes of the nth mesh
element:

Tb =

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

Hence Tb(β, n) gives the global node indices of the local test
basis functions ψnβ (β = 1, 2).

That is, for n = 1, · · · ,N,∫ xn+1

xn

f ψnβ dx (β = 1, 2)

should be assembled to bi where i = Tb(β, n).

71 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Algorithm V:

Initialize the vector: b = zeros(Nb, 1);

Compute the integrals and assemble them into ~b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫ xn+1

xn
f ψnβ dx ;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;
END

END

72 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

Algorithm V (alternative version):

Initialize the vector: b = zeros(Nb, 1) and d = zeros(Nlb, 1);

Compute the integrals and assemble them into ~b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute d(β, 1) =
∫ xn+1

xn
f ψnβ dx ;

END
b(Tb(:, n), 1) = b(Tb(:, n), 1) + d ;

END

73 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

If we follow Algorithm V to develop a subroutine to assemble
the vector arising from a more general integral∫ xn+1

xn

f ψ
(s)
nβ dx ,

then Algorithm V is equivalent to calling this subroutine with
parameter s = 0.

74 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Local assembly

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

the right hand side function f ;

the quadrature points and weights for numerical integrals;

the mesh information matrices P and T , which can also
provide the number of mesh elements N = size(T , 2) and the
number of mesh nodes Nm = size(P, 2);

the finite element information matrices Pb and Tb for the test
functions, which can also provide the number of local basis
functions Nlb = size(Tb, 1) and the number of the global basis
functions Nb = size(Pb, 2) (= the number of unknowns);

the type of the basis function for the test functions.

75 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Treat boundary conditions

Boundary information matrix boundarynodes:

boundarynodes(1, k) is the type of the kth boundary finite
element node: Dirichlet, Neumann, Robin......

boundarynodes(2, k) is the global node index of the kth

boundary finite element node.

Set nbn to be the number of boundary finite element nodes;

Define g(x) to be the boundary function which satisfies
g(a) = ga and g(b) = gb;

Algorithm III can be reorganized into a more general
framework by using the boundary information matrix
boundarynodes.

76 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Treat boundary conditions

Algorithm VI:

Deal with the Dirichlet boundary conditions:

FOR k = 1, · · · , nbn:
IF boundarynodes(1, k) shows Dirichlet condition, THEN

i = boundarynodes(2, k);
A(i , :) = 0;
A(i , i) = 1;
b(i) = g(Pb(i));

ENDIF
END

77 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Enriched algorithm

Recall Algorithm IV:

Initialize the matrix: A = sparse(Nb,Nb);

Compute the integrals and assemble them into A:

FOR n = 1, · · · ,N:
FOR α = 1, · · · ,Nlb:

FOR β = 1, · · · ,Nlb:
Compute r =

∫ xn+1

xn
cψ′nαψ

′
nβ dx ;

Add r to A(Tb(β, n),Tb(α, n));
END

END
END

78 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Enriched algorithm

Recall Algorithm V:

Initialize the vector: b = zeros(Nb, 1);

Compute the integrals and assemble them into ~b:

FOR n = 1, · · · ,N:
FOR β = 1, · · · ,Nlb:

Compute r =
∫ xn+1

xn
f ψnβ dx ;

b(Tb(β, n), 1) = b(Tb(β, n), 1) + r ;
END

END

79 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Enriched algorithm

Input a, b, and N. Generate the mesh information matrices P
and T , the finite element information matrices Pb and Tb for
the trial and test functions respectively.

Assemble the stiffness matrix A by using Algorithm IV.

Assemble the load vector ~b by using Algorithm V.

Deal with the Dirichlet boundary condition by using Algorithm
VI.

Solve A~X = ~b for ~X by using a direct or iterative method.

80 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Numerical example

Example 1: Use the 1D linear finite element method to solve
the following equation:

− d

dx

(
ex

du(x)

dx

)
= −ex [cos(x)− 2sin(x)− x cos(x)− x sin(x)] (0 ≤ x ≤ 1),

u(0) = 0, u(1) = cos(1).

The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

Let’s code for the linear finite element method for 1D elliptic
equation together!

Open your Matlab!

81 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Numerical example

h maximum absolute error at all nodes

1/4 2.3340× 10−3

1/8 5.8317× 10−4

1/16 1.4645× 10−4

1/32 3.6675× 10−5

1/64 9.1700× 10−6

1/128 2.2929× 10−6

Table: The maximum numerical errors at all mesh nodes.

Any Observation?

82 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Numerical example

Second order convergence O(h2) since the error is reduced by
1
4 when h is reduced by half.

This matches the optimal approximation capability expected
from piecewise linear functions.

83 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

84 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Basic framework

A “reference→ local → global” framework will be introduced
to construct the finite element spaces.

Since all the integrals in the discretization formulation are
locally computed on the mesh elements, it is critical to have a
convenient formulation of the local basis functions on all the
mesh elements.

But we still need the concept of the global basis functions
theoretically.

In the following, we will first introduce the “local → global”
framework to construct the 1D linear finite element space by
defining the local basis functions in a direct way. Later we will
introduce the “reference→ local” framework for defining the
local basis functions in another way.

85 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Recall:

Assume that we have a uniform partition of [a, b] into N
elements with mesh size h = b−a

N .

Let xi = a + (i − 1)h (i = 1, · · · ,N + 1) denote the mesh
nodes, which are also the finite element nodes of the 1D linear
finite elements.

Let En = [xn, xn+1] (n = 1, · · · ,N) denote the mesh elements.

Let Nm denote the number of mesh nodes. Here Nm = N + 1.

Let Nb denote the number of global finite element basis
functions. Here Nb = N + 1.

Let Nlb denote the number of local finite element basis
functions in one element. Here Nlb = 2.

86 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

For the above mesh and 1D linear finite element, we recall

Pb = P =
(

x1 x2 · · · xN xN+1

)
,

Tb = T =

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

87 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

On each mesh element
En = [xn, xn+1] = [An1,An2] (n = 1, · · · ,N), we define two
local linear basis functions

ψn1(x) = an1x + bn1 and ψn2(x) = an2x + bn2

such that

ψnj(Ani) = δij =

{
0, if j 6= i ,
1, if j = i .

for i , j = 1, 2.

Then it’s easy to obtain

ψn1(xn) = 1 ⇒ an1xn + bn1 = 1,

ψn1(xn+1) = 0 ⇒ an1xn+1 + bn1 = 0,

ψn2(xn) = 0 ⇒ an2xn + bn2 = 0,

ψn2(xn+1) = 1 ⇒ an2xn+1 + bn2 = 1.

88 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Solve the 4× 4 system to get

an1 =
−1

xn+1 − xn
, bn1 =

xn+1

xn+1 − xn
, an2 =

1

xn+1 − xn
, bn2 =

−xn
xn+1 − xn

.

Hence

ψn1(x) =
xn+1 − x

xn+1 − xn
, ψn2(x) =

x − xn
xn+1 − xn

.

Since xn+1 − xn = h, then the two local linear basis functions
are

ψn1(x) =
xn+1 − x

h
,

ψn2(x) =
x − xn

h
,

which match the non-zero pieces of the global linear basis
functions obtained in Chapter 1.

89 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

“local → global” framework:

Define the local finite element space

Sh(En) = span{ψn1, ψn2}.

At each finite element node xj (j = 1, · · · ,N + 1), define the
corresponding global linear basis function φj such that
φj |En ∈ Sh(En) and

φj(xi) = δij =

{
0, if j 6= i ,
1, if j = i ,

for i , j = 1, · · · ,N + 1.

Then define the global finite element space to be

Uh = span{φj}N+1
j=1 .

90 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

In fact,

φj |En =


ψn1, if j = n,
ψn2, if j = n + 1,
0, otherwise,

for j = 1, · · · ,N + 1 and n = 1, · · · ,N.

That is,

φ1 =

{
ψ11, on E1,
0, otherwise,

φj =


ψn1, on En such that j = n,
ψn2, on En such that j = n + 1,
0, otherwise,

j = 2, · · · ,N;

φN+1 =

{
ψN2, on EN ,
0, otherwise,

91 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Hence

φ1 =

{
ψ11, on E1 = [x1, x2],
0, otherwise,

φj =


ψj1, on Ej = [xj , xj+1],
ψj−1,2, on Ej−1 = [xj−1, xj],
0, otherwise,

j = 2, · · · ,N;

φN+1 =

{
ψN2, on EN = [xN , xN+1],
0, otherwise,

For each xj (j = 2, · · · ,N), there are two local basis functions
which are defined to be 1 at xj . One is the ψj1 defined on the
element Ej = [xj , xj+1]. The other one is the ψj−1,2 defined on
the element Ej−1 = [xj−1, xj]. These two local basis functions
form the non-zero part of φj on the elements Ej = [xj , xj+1]
and Ej−1 = [xj−1, xj] while φj is 0 everywhere else.

92 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Since

ψn1(x) =
xn+1 − x

h
, ψn2(x) =

x − xn
h

,

then

φ1(x) =

{
x2−x
h , if x1 ≤ x ≤ x2,

0, otherwise,

φj(x) =


x−xj−1

h , if xj−1 ≤ x ≤ xj ,
xj+1−x

h , if xj ≤ x ≤ xj+1,
0, otherwise,

(j = 2, · · · ,N)

φN+1(x) =

{ x−xN
h , if xN ≤ x ≤ xN+1,

0, otherwise,

which are the same as the global basis functions defined in
Chapter 1.

93 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Recall that the nth column of the information matrix Tb is(
n

n + 1

)
.

which are the global node indices of the two finite element
nodes An1 = xn and An2 = xn+1 in the element [xn, xn+1].

Since the local basis functions ψn1 and ψn2 are one-to-one
corresponding to the finite element nodes An1 = xn and
An2 = xn+1 in the element [xn, xn+1], the nth column of the
information matrix Tb also gives the global indices of the local
basis functions ψn1 and ψn2, which are n and n + 1.

94 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Hence

φj |En =


ψn1, if j = Tb(1, n),
ψn2, if j = Tb(2, n),
0, otherwise.

for j = 1, · · · ,N + 1 and n = 1, · · · ,N.

This is the reason why we use Tb(α, n) and Tb(β, n)
(α, β = 1, 2) to give the global node indices of the local trial
and test basis functions ψnα and ψnβ (α, β = 1, 2) of the nth

mesh element in Chapter 1!

95 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Now let’s turn to the “reference → local” framework for
defining the local basis functions in another way.

Consider the reference interval [Â1, Â2] = [0, 1].

Define two reference linear basis functions ψ̂1(x̂) = a1x̂ + b1

and ψ̂2(x̂) = a2x̂ + b2 such that

ψ̂j(Âi) = δij =

{
0, if j 6= i ,
1, if j = i ,

for i , j = 1, 2.

Then it’s easy to obtain

ψ̂1(Â1) = 1 ⇒ b1 = 1,

ψ̂1(Â2) = 0 ⇒ a1 + b1 = 0,

ψ̂2(Â1) = 0 ⇒ b2 = 0,

ψ̂2(Â2) = 1 ⇒ a2 + b2 = 1.

96 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Hence a1 = −1, b1 = 1, a2 = 1, b2 = 0 and

ψ̂1(x̂) = 1− x̂ ,

ψ̂2(x̂) = x̂ .

Now we can use the affine mapping to construct the local
basis functions from the reference ones.

If x ∈ [a, b], then

a ≤ x ≤ b ⇒ 0 ≤ x − a ≤ b − a⇒ 0 ≤ x − a

b − a
≤ 1.

Let x̂ = x−a
b−a . Then

x̂ ∈ [0, 1], x = (b − a)x̂ + a.

97 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

For a given function ψ̂(x̂) where x̂ ∈ [0, 1], we can define the
corresponding function for x ∈ [a, b] as follows:

ψ(x) = ψ̂(x̂) = ψ̂(
x − a

b − a
).

Consider [a, b] = [xn, xn+1]. Then x̂ = x−xn
xn+1−xn = x−xn

h .

From the above affine mapping and the reference basis functions

ψ̂1(x̂) = 1− x̂ and ψ̂2(x̂) = x̂ ,

we can use the “reference → local” framework to obtain the same
local basis functions as before:

ψn1(x) = ψ̂1(x̂) = ψ̂1(
x − xn

h
)

= 1− x − xn
h

=
h − x + xn

h
=

xn+1 − x

h
,

ψn2(x) = ψ̂2(x̂) = ψ̂2(
x − xn

h
)=

x − xn
h

.

98 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

The affine mapping actually maps

Â1 = 0 → An1 = xn,

Â2 = 1 → An2 = xn+1.

It is easy to verify that ψnj(x) (j = 1, 2) are linear functions and

ψnj(Ani) = δij =

{
0, if j 6= i ,
1, if j = i .

for i , j = 1, 2.

Remark: If you want to use the reference basis functions ψ̂j and the
affine mapping x̂ = x−xn

h to provide the local basis functions

ψnj(x) = ψ̂j(x̂) instead of directly using the local basis functions,
you will need to use chain rule to obtain the derivative of the local

basis functions. For example,
dψnj (x)

dx =
dψ̂j (x̂)
dx̂

dx̂
dx .

99 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Once the local basis functions are obtained by using the
“reference → local” framework, we can use the“local →
global” framework discussed before to obtain the 1D linear
finite element space.

This is the so called “reference→ local → global” framework.

100 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Summary of three ways for the global finite element basis
functions:

Directly define the global finite element basis functions
globally. This is not a general way.

Define local finite element basis functions directly on the local
elements and then use them to form the global basis
functions. I will use this way in my solution of 1D equations.

Define local finite element basis functions by using the
reference element and affine mapping and then use them to
form the global basis functions. I will use this way in my
solution of 2D equations.

101 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Reconstruct 1D linear finite element space

Two structures to represent the local basis functions in code:

“function” style: Use a subroutine with different parameters
as a function to describe all the local basis functions; then
evaluate the subroutine when we need to evaluate the local
basis functions at needed points. I will use this style in my
solution.

“coefficient” style: Only store the coefficients of all the local
basis functions; then use these coefficients to evaluate the
local basis functions at needed points.

102 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

We first consider the reference quadratic basis functions on
the reference interval [Â1, Â2] = [0, 1] with Â3 = 1

2 .

Define three reference quadratic basis functions

ψ̂1(x̂) = a1x̂2 + b1x̂ + c1,

ψ̂2(x̂) = a2x̂2 + b2x̂ + c2,

ψ̂3(x̂) = a3x̂2 + b3x̂ + c3,

such that

ψ̂j(Âi) = δij =

{
0, if j 6= i ,
1, if j = i ,

for i , j = 1, 2, 3.

103 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Then it’s easy to obtain

ψ̂1(Â1) = 1 ⇒ c1 = 1,

ψ̂1(Â2) = 0 ⇒ a1 + b1 + c1 = 0,

ψ̂1(Â3) = 0 ⇒ 1

4
a1 +

1

2
b1 + c1 = 0,

ψ̂2(Â1) = 0 ⇒ c2 = 0,

ψ̂2(Â2) = 1 ⇒ a2 + b2 + c2 = 1,

ψ̂2(Â3) = 0 ⇒ 1

4
a2 +

1

2
b2 + c2 = 0,

ψ̂3(Â1) = 0 ⇒ c3 = 0,

ψ̂3(Â2) = 0 ⇒ a3 + b3 + c3 = 0,

ψ̂3(Â3) = 1 ⇒ 1

4
a3 +

1

2
b3 + c3 = 1.

104 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Hence

a1 = 2, b1 = −3, c1 = 1,

a2 = 2, b2 = −1, c2 = 0,

a3 = −4, b3 = 4, c3 = 0.

Then the three reference quadratic basis functions are

ψ̂1(x̂) = 2x̂2 − 3x̂ + 1,

ψ̂2(x̂) = 2x̂2 − x̂ ,

ψ̂3(x̂) = −4x̂2 + 4x̂ .

105 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Now we turn to the local quadratic basis functions based on
the above reference quadratic basis functions.

Assume that we have a uniform partition of [a, b] into N
elements with mesh size h = b−a

N .

Let xi = a + (i − 1)h (i = 1, · · · ,N + 1) denote the mesh
nodes.

Let En = [xn, xn+1] (n = 1, · · · ,N) denote the mesh elements.

Let Nm denote the number of mesh nodes. Here Nm = N + 1.

106 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

For the above mesh, we recall

P =
(

x1 x2 · · · xNm−1 xNm

)
=

(
x1 x2 · · · xN xN+1

)
,

T =

(
1 2 · · · Nm − 2 Nm − 1
2 3 · · · Nm − 1 Nm

)
=

(
1 2 · · · N − 1 N
2 3 · · · N N + 1

)
.

107 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

The finite element nodes of 1D quadratic finite elements
include all the mesh nodes and the middle points of all the
mesh elements.

Let yk = a + (k − 1)h/2 (k = 1, · · · ,Nb) denote the finite
element nodes where Nb = 2N + 1 is the number of global
finite element basis functions.

It is easy to see
xi = y2i−1.

Also, each mesh element En = [xn, xn+1] includes three finite
element nodes:

y2n−1, y2n+1, y2n.

Let Nlb denote the number of local finite element basis
functions in one element. Here Nlb = 3.

108 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

For the 1D quadratic finite elements, we use the j th column of
the matrix Pb to store the coordinates of the j th finite element
node and the nth column of the matrix Tb to store the global
node indices of the finite element nodes of the nth mesh
element

Pb =
(

y1 y2 · · · yNb−1 yNb

)
=

(
y1 y2 · · · y2N y2N+1

)
,

Tb =

 1 3 · · · Nb − 4 Nb − 2
3 5 · · · Nb − 2 Nb

2 4 · · · Nb − 3 Nb − 1


=

 1 3 · · · 2N − 3 2N − 1
3 5 · · · 2N − 1 2N + 1
2 4 · · · 2N − 2 2N

 .

109 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Recall the affine mapping between x ∈ [xn, xn+1] and
x̂ ∈ [0, 1]:

x̂ =
x − xn

xn+1 − xn
=

x − xn
h

, ψ(x) = ψ̂(x̂) = ψ̂(
x − xn

h
).

Then the three local quadratic basis functions on the element
En = [xn, xn+1] are

ψn1(x) = ψ̂1(x̂) = ψ̂1(
x − xn

h
)= 2

(
x − xn

h

)2

− 3
x − xn

h
+ 1,

ψn2(x) = ψ̂2(x̂) = ψ̂2(
x − xn

h
)= 2

(
x − xn

h

)2

− x − xn
h

,

ψn3(x) = ψ̂3(x̂) = ψ̂3(
x − xn

h
)= −4

(
x − xn

h

)2

+ 4
x − xn

h
.

110 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

The affine mapping actually maps

Â1 = 0 → An1 = y2n−1 = xn,

Â2 = 1 → An2 = y2n+1 = xn+1,

Â3 =
1

2
→ An3 = y2n =

xn + xn+1

2
.

It’s also easy to verify that ψnj(x) (j = 1, 2, 3) are quadratic
functions and

ψnj(Ani) = δij =

{
0, if j 6= i ,
1, if j = i ,

for i , j = 1, 2, 3.

111 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Remark: If you want to use the reference basis functions ψ̂j

and the affine mapping x̂ = x−xn
h to provide the local basis

functions ψnj(x) = ψ̂j(x̂) instead of directly using the local
basis functions, you will need to use chain rule to obtain the
derivative of the local basis functions. For example,
dψnj (x)

dx =
dψ̂j (x̂)
dx̂

dx̂
dx .

112 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Define the local finite element space

Sh(En) = span{ψn1, ψn2, ψn3}.

At each finite element node yj (j = 1, · · · , 2N + 1), define the
corresponding global linear basis function φj such that
φj |En ∈ Sh(En) and

φj(yi) = δij =

{
0, if j 6= i ,
1, if j = i .

for i , j = 1, · · · , 2N + 1.

Then define the global finite element space to be

Uh = span{φj}2N+1
j=1 .

113 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

In fact,

φj |En =


ψn1, if j = 2n − 1,
ψn2, if j = 2n + 1,
ψn3, if j = 2n,
0, otherwise,

for j = 1, · · · , 2N + 1 and n = 1, · · · ,N.

114 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Recall that the nth column of the information matrix Tb is 2n − 1
2n + 1

2n

 .

which are the global node indices of the two finite element
nodes An1 = y2n−1, An2 = y2n+1, and An3 = y2n in the
element [xn, xn+1].

Since the local basis functions ψn1, ψn2, and ψn3 are
one-to-one corresponding to the finite element nodes
An1 = y2n−1, An2 = y2n+1, and An3 = y2n in the element
[xn, xn+1], the nth column of the information matrix Tb also
gives the global indices of the local basis functions ψn1, ψn2,
and ψn3 which are 2n − 1, 2n + 1 and 2n.

115 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D quadratic finite element space

Hence

φj |En =


ψn1, if j = Tb(1, n),
ψn2, if j = Tb(2, n),
ψn3, if j = Tb(3, n),
0, otherwise,

for j = 1, · · · , 2N + 1 and n = 1, · · · ,N.

116 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

Question: Can we dynamically incorporate linear, quadratic
and even more 1D finite elements on different meshes into one
code of a general framework since they are so similar?

Answer: Yes! We have actually done so when we coded for
the 1D linear finite element method!

This is because in our 1D linear finite element code we have
designed many flexible input parameters and input functions:
r , s, c , N, Nm, Nb, Nlb, P, T , Pb, Tb, and type of finite
elements!

117 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

r , s and c depend on the equation only;

P, T , N and Nm depend on the mesh only;

Pb, Tb, Nb and Nlb depend on the type of finite elements and
the mesh;

For a new type of finite elements, we need to add the basis
functions into the code!

118 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

Example 2: Use the 1D quadratic finite element method to
solve the following equation:

− d

dx

(
ex

du(x)

dx

)
= −ex [cos(x)− 2sin(x)− x cos(x)− x sin(x)] (0 ≤ x ≤ 1),

u(0) = 0, u(1) = cos(1).

The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

Let’s code for the quadratic finite element method for 1D
elliptic equation together!

Open your Matlab!

119 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

h maximum absolute error at all nodes

1/4 4.6597× 10−5

1/8 2.9918× 10−6

1/16 1.8901× 10−7

1/32 1.1869× 10−8

1/64 7.4356× 10−10

1/128 4.6623× 10−11

Table: The maximum numerical errors at all mesh nodes.

Any Observation?

120 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

Third order convergence O(h3) since the error is reduced by
at least 1

8 when h is reduced by half.

This matches the optimal approximation capability expected
from piecewise quadratic functions.

In fact, we observe superconvergence since the convergence
order is almost O(h4).

121 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D cubic finite element space

We consider the reference cubic basis functions on the
reference interval [Â1, Â2] = [0, 1].

Define four reference quadratic basis functions

ψ̂1(x̂) = a1x̂3 + b1x̂2 + c1x̂ + d1,

ψ̂2(x̂) = a2x̂3 + b2x̂2 + c2x̂ + d2,

ψ̂3(x̂) = a3x̂3 + b3x̂2 + c3x̂ + d3,

ψ̂4(x̂) = a4x̂3 + b4x̂2 + c4x̂ + d4,

such that

ψ̂1(Â1) = 1, ψ̂1(Â2) = 0, ψ̂′1(Â1) = 0, ψ̂′1(Â2) = 0;

ψ̂2(Â1) = 0, ψ̂2(Â2) = 1, ψ̂′2(Â1) = 0, ψ̂′2(Â2) = 0;

ψ̂3(Â1) = 0, ψ̂3(Â2) = 0, ψ̂′3(Â1) = 1, ψ̂′3(Â2) = 0;

ψ̂4(Â1) = 0, ψ̂4(Â2) = 0, ψ̂′4(Â1) = 0, ψ̂′4(Â2) = 1.

122 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

1D cubic finite element space

This is a Hermite type of finite elements since the definition of
the basis functions involves with the derivatives. The linear
and quadratic elements discussed before are Lagrange type of
finite elements since the definition of the basis functions
involves with the nodal values only.

123 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u′(a) = ra, u(b) = gb.

Recall

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx .

Since the solution at x = b is given by u(b) = gb, then we can choose the
test function v(x) such that v(b) = 0.

Hence

rac(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx

⇒
∫ b

a

cu′v ′ dx =

∫ b

a

fv dx−rac(a)v(a).

Code? Just add −rac(a) to the corresponding entry of the load vector ~b!
You can find the corresponding entry by repeating the derivation of the
matrix formulation from the above weak formulation.

124 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u(a) = ga, u

′(b) = rb.

Recall

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx .

Since the solution at x = a is given by u(a) = ga, then we can choose the
test function v(x) such that v(a) = 0.

Hence

−rbc(b)v(b) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx

⇒
∫ b

a

cu′v ′ dx =

∫ b

a

fv dx+rbc(b)v(b).

Code? Just add rbc(b) to the corresponding entry of the load vector ~b!
You can find the corresponding entry by repeating the derivation of the
matrix formulation from the above weak formulation.

125 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u′(a) = ra, u

′(b) = rb.

Recall

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a
cu′v ′ dx =

∫ b

a
fv dx .

Hence

−rbc(b)v(b) + rac(a)v(a) +

∫ b

a
cu′v ′ dx =

∫ b

a
fv dx .

Is there anything wrong? The solution is not unique!

If u is a solution, then u + c is also a solution where c is a
constant.

126 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

Example 3: Use the 1D linear and quadratic finite element
methods to solve the following equation:

− d

dx

(
ex

du(x)

dx

)
= −ex [cos(x)− 2sin(x)− x cos(x)− x sin(x)] (0 ≤ x ≤ 1),

u(0) = 0, u′(1) = cos(1)− sin(1).

The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

127 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u(a) = ga, u

′(b) + qbu(b) = pb.

Recall

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx .

Since the solution at x = a is given by u(a) = ga, then we can choose the
test function v(x) such that v(a) = 0.

Hence

−[pb − qbu(b)]c(b)v(b) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx

⇒ qbc(b)u(b)v(b) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx+pbc(b)v(b).

Code? Just add pbc(b) to the corresponding entry of the load vector ~b
and qbc(b) to the corresponding entry of the stiffness matrix A! You can
find the corresponding entries by repeating the derivation of the matrix
formulation from the above weak formulation.

128 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u′(a) = ra, u

′(b) + qbu(b) = pb.

Recall

−c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx .

Hence

−[pb − qbu(b)]c(b)v(b) + rac(a)v(a) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx

⇒ qbc(b)u(b)v(b) +

∫ b

a

cu′v ′ dx =

∫ b

a

fv dx−rac(a)v(a) + pbc(b)v(b).

Code? Just add −rac(a) and pbc(b) to the corresponding entries of the

load vector ~b and qbc(b) to the corresponding entry of the stiffness
matrix A! You can find the corresponding entries by repeating the
derivation of the matrix formulation from the above weak formulation.

129 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Neumann/Robin boundary conditions

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u′(a) + qau(a) = pa, u(b) = gb.

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b), u′(a) + qau(a) = pa, u

′(b) = rb.

Consider

− d

dx

(
c(x)

du(x)

dx

)
= f (x) (a ≤ x ≤ b),

u′(a) + qau(a) = pa, u
′(b) + qbu(b) = pb.

130 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

General 1D finite element method

Example 4: Use the 1D linear and quadratic finite element
methods to solve the following equation:

− d

dx

(
ex

du(x)

dx

)
= −ex [cos(x)− 2sin(x)− x cos(x)− x sin(x)] (0 ≤ x ≤ 1),

u′(0) + u(0) = 1, u(1) = cos(1).

The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

131 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Recall

Definition (L2 space)

L2(I) = {v : I → R :

∫ b

a
v2 dx <∞}

where I = (a, b).

Definition (H1 space)

H1(I) = {v ∈ L2(I) : v ′ ∈ L2(I)}

where I = (a, b).

132 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Definition (L∞ space)

L∞(I) = {v : I → R : sup
x∈I
|v(x)| <∞}

where I = (a, b).

133 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

L∞ norm: ‖u‖∞ = sup
x∈I
|u(x)| for u ∈ L∞(I).

L∞ norm error: ‖u − uh‖∞ = sup
x∈I
|u(x)− uh(x)|.

L2 norm: ‖u‖0 =
√∫

I u2dx for u ∈ L2(I).

L2 norm error: ‖u − uh‖0 =
√∫

I (u − uh)2dx .

H1 semi-norm: |u|1 =
√∫

I u′2dx for u ∈ H1(I).

H1 semi-norm error: |u − uh|1 =
√∫

I (u′ − u′h)2dx .

H1 norm: ‖u‖1 =
√∫

I u2dx +
∫
I u′2dx for u ∈ H1(I).

H1 norm error:
‖u − uh‖1 =

√∫
I (u − uh)2dx +

∫
I (u′ − u′h)2dx .

134 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

‖u − uh‖∞ = sup
x∈I
|u(x)− uh(x)|

= max
1≤n≤N

max
xn≤x≤xn+1

|u(x)− uh(x)|

= max
1≤n≤N

max
xn≤x≤xn+1

∣∣∣∣∣∣u(x)−
Nb∑
j=1

ujφj

∣∣∣∣∣∣
= max

1≤n≤N
max

xn≤x≤xn+1

∣∣∣∣∣u(x)−
Nlb∑
k=1

uTb(k,n)ψnk(x)

∣∣∣∣∣ .
135 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Define

wn(x) =

Nlb∑
k=1

uTb(k,n)ψnk(x).

Then

‖u − uh‖∞ = max
1≤n≤N

max
xn≤x≤xn+1

|u(x)− wn(x)| .

max
xn≤x≤xn+1

|u(x)− wn(x)| can be approximated by choosing the

maximum values of |u(x)− wn(x)| on a group of chosen
points in [xn, xn+1], such as some Gauss quadrature nodes in
this element. We denote the approximation by rn.

136 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Algorithm VII:

Approximate the maximum absolute errors on all elements
and then choose the largest one as the final approximation:

FOR n = 1, · · · ,N:
Compute rn ≈ max

xn≤x≤xn+1

|u(x)− wn(x)|;
END
error max

1≤n≤N
rn.

137 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

‖u − uh‖0 =

√∫
I
(u − uh)2dx

=

√√√√ N∑
n=1

∫ xn+1

xn

(u − uh)2dx

=

√√√√√ N∑
n=1

∫ xn+1

xn

u −
Nb∑
j=1

ujφj

2

dx

=

√√√√ N∑
n=1

∫ xn+1

xn

(
u −

Nlb∑
k=1

uTb(k,n)ψnk

)2

dx .

138 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Define

wn =

Nlb∑
k=1

uTb(k,n)ψnk .

Then

‖u − uh‖0 =

√√√√ N∑
n=1

∫ xn+1

xn

(u − wn)2dx .

Each integral
∫ xn+1

xn
(u − wn)2dx can be computed by

numerical integration.

139 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

By using uh =
Nb∑
j=1

ujφj , the definition of Tb, and the definition

of the local basis functions ψnk , we get

|u − uh|1 =

√∫
I
(u′ − u′h)2dx

=

√√√√ N∑
n=1

∫ xn+1

xn

(u′ − u′h)2dx

=

√√√√√ N∑
n=1

∫ xn+1

xn

u′ −
Nb∑
j=1

ujφ
′
j

2

dx

=

√√√√ N∑
n=1

∫ xn+1

xn

(
u′ −

Nlb∑
k=1

uTb(k,n)ψ
′
nk

)2

dx .

140 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Define

wn =

Nlb∑
k=1

uTb(k,n)ψ
′
nk .

Then

|u − uh|1 =

√√√√ N∑
n=1

∫ xn+1

xn

(u′ − wn)2dx .

Each integral
∫ xn+1

xn
(u′ − wn)2dx can be computed by

numerical integration.

141 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Develop a subroutine for a more general formulation√√√√ N∑
n=1

∫ xn+1

xn

(
u(s) −

Nlb∑
k=1

uTb(k,n)ψ
(s)
nk

)2

dx .

That is,√√√√ N∑
n=1

∫ xn+1

xn

(u(s) − wn,s)2dx , wn,s =

Nlb∑
k=1

uTb(k,n)ψ
(s)
nk .

The L2 norm error is equivalent to calling this subroutine with
parameter s = 0.

The H1 norm error is equivalent to calling this subroutine with
parameter s = 1.

142 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Algorithm VIII:

Initialize the error error = 0; input the parameter s;

Compute the integrals and add them into the total error:

FOR n = 1, · · · ,N:

error = error +
∫ xn+1

xn

(
u(s) −

Nlb∑
k=1

uTb(k,n)ψ
(s)
nk

)2

dx ;

END
error =

√
error ;

143 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

More numerical results for Example 1:

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/4 1.4041× 10−2 7.1969× 10−3 1.0528× 10−1

1/8 3.6803× 10−3 1.7951× 10−3 5.2731× 10−2

1/16 9.4048× 10−4 4.4854× 10−4 2.6376× 10−2

1/32 2.3760× 10−4 1.1212× 10−4 1.3189× 10−2

1/64 5.9704× 10−5 2.8029× 10−5 6.5949× 10−3

1/128 1.4964× 10−5 7.0072× 10−6 3.2975× 10−3

Table: L∞ norm error, L2 norm error and H1 semi-norm error

Any Observation?

144 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Second order convergence O(h2) in L2/L∞ norm since the
error is reduced by 1

4 when h is reduced by half.

First order convergence O(h) in H1 semi-norm since the error
is reduced by half when h is reduced by half.

This matches the optimal approximation capability expected
from piecewise linear functions.

145 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

More numerical results for Example 2:

h ‖u − uh‖∞ ‖u − uh‖0 |u − uh|1
1/4 3.3128× 10−4 2.1041× 10−4 5.4212× 10−3

1/8 3.9240× 10−5 2.6144× 10−5 1.3534× 10−3

1/16 4.7518× 10−6 3.2631× 10−6 3.3823× 10−4

1/32 5.8390× 10−7 4.0774× 10−7 8.4550× 10−5

1/64 7.2343× 10−8 5.0962× 10−8 2.1137× 10−5

1/128 9.0022× 10−9 6.3702× 10−9 5.2842× 10−6

Table: L∞ norm error, L2 norm error and H1 semi-norm error

Any Observation?

146 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

More measurements for errors

Third order convergence O(h3) in L2/L∞ norm since the error
is reduced by 1

8 when h is reduced by half.

Second order convergence O(h2) in H1 semi-norm since the
error is reduced by 1

4 when h is reduced by half.

This matches the optimal approximation capability expected
from piecewise quadratic functions.

147 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Outline

1 Weak/Galerkin formulation

2 FE Space

3 FE discretization

4 Boundary treatment

5 FE Method

6 General extensions

7 Conclusions

148 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Advantages of the finite element method

The framework of finite element methods are universal for all partial
differential equations.

If the original equations are symmetric positive definite, the linear
systems arising from finite element methods are also symmetric
positive definite, which is important for many fast matrix solvers.

It is natural for finite element methods to deal with problem
domains with curved boundary, interface or singularities once the
mesh is properly constructed.

It is natural for many finite element methods to keep the
conservation law.

The finite element methods provide piecewise functions defined on
the whole problem domain as numerical solutions, not just the
numerical solutions at mesh nodes.

The finite element methods have mature frameworks for
mathematical analysis.

149 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Advantages of the finite element method

The framework of finite element methods are universal for all
partial differential equations due to the following reasons:

The weak formulations of all partial differential equations
consist of integrals in similar formats. This unifies different
equations into a universal formation.

Due to the “local assembly” idea of the general
implementation framework of finite elements, all the processes
in finite element methods are completely based on the
information matrices, including the construction of finite
element spaces, the finite element discretization, the assembly
of the matrices and vectors, and the treatment of the
boundary conditions.

Each analysis framework for finite element methods can be
applied to a wide range of problems.

150 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Higher dimensional equations

Global indices of the elements and nodes: more complicated
but similar.

Mesh information matrices P, T : more complicated but
similar.

Mesh information matrix E : mesh information for the element
edges/surfaces.

Integrals: higher dimensional and more complicated but
similar.

Local Assembly: similar with the new indices.

Boundary information matrix boundarynodes: more
complicated but similar.

Boundary information matrix boundarysurfaces: information
for the element edges/surfaces on the problem domain
boundary.

151 / 152

Weak/Galerkin formulation FE Space FE discretization Boundary treatment FE Method General extensions Conclusions

Different types of finite elements

Linear finite elements, quadratic finite elements, cubic finite
elements......

Hermitian types of finite elements

Bilinear finite elements, biquadratic finite elements......

Crouzeix-Raviart finite elements

Mixed finite elements: Taylor-Hood elements, Raviart-Thomas
elements, Mini elements......

Nonconforming finite elements

152 / 152

	Weak/Galerkin formulation
	FE Space
	FE discretization
	Boundary treatment
	FE Method
	General extensions
	Conclusions

