Introduction and Implementation for Finite
Element Methods

Chapter 1: Finite elements for 1D second order elliptic equation

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology
Email: hex@mst.edu
Homepage: https://web.mst.edu/~hex/

1/152

https://web.mst.edu/~hex/

Outline

@ Weak/Galerkin formulation
© FE Space

© FE discretization

@ Boundary treatment

© FE Method

@ General extensions

@ Conclusions

2 /152

Weak/Galerkin formulation

Outline

@ Weak/Galerkin formulation

3/152

Weak/Galerkin formulation

Target problem

@ Solve
—% (c(x)d‘;ix)> = f(x), a<x < b,
u(a) = ga, u(b) = g
for u(x).

@ Why do we start from this problem?
@ An easy look at the basic idea of the finite element method.

@ Numerical methods for partial differential equations: finite
element method, finite difference method, finite volume
method, boundary element method, etc., which use different
techniques to discretize partial differential equations.

4 /152

Weak/Galerkin formulation

Weak formulation

e First, multiply a function v(x) on both sides of the original
equation,

_d% <c(x)dL;(;)> =f(x), a<x<b

= _dii <c(x) dLC’I(XX)> v(x) = F()v(x), a<x < b

- -/ e (et ™)) v = [" Fv(e) d

@ u(x) is called a trial function and v(x) is called a test function.

5/152

Weak/Galerkin formulation

Weak formulation

@ Second, using integration by parts, we obtain
b
d d
/a o <c(x) LCII(XX)> v(x) dx
b !/
= / (cu') v dx
a
b
= / v d(cu’)

b
= cu’v[f—/ cu’ dv
a

6 /152

Weak/Galerkin formulation

Weak formulation

@ Then

b b
—c(b)u (B)v(b) + c(a)u/(a)v(a) + / eV dx = / fr dx.

@ Since the solution at x = a and x = b are given by
u(a) = ga, u(b) = gp, then we can choose the test function
v(x) such that v(a) = v(b) = 0.

b b
/ cu'v dx:/ fv dx.

@ What spaces should v and v belong to? Sobolev spaces!

@ Hence

7 /152

Weak/Galerkin formulation

1D Sobolev spaces

Definition (Support)

If uis a function, then its support supp(u) is the closure of the set
on which u is nonzero.

Definition (Compactly supported)

If uis a function defined on an open interval | and supp(u) is a
compact subset (that is, a closed and bounded subset), then u is
said to be compactly supported in /.

Lemma (1)

A function compactly supported in an open interval | is zero on
and near the boundary of I.

Weak/Galerkin formulation

1D Sobolev spaces

Definition
C5°(1) is the set of all functions that are infinitely differentiable on
| and compactly supported in /.

@ Recall integration by parts:

b b
/ Jvdx = uv\f—/ w' dv
a a b
— u(b)v(b) — u(a)v(a) — / ' d.

e For v € C§°(/), we have v(a) = v(b) =0. Then

b b
/ u'v dx = —/ uv' dx.
a a

9/152

Weak/Galerkin formulation

1D Sobolev spaces

Definition (weak derivative)

Suppose u is a real-valued function defined on an open interval
| = (a, b) and that u is integrable over every compact subset of /.
If there exists another locally integrable function w defined on /

such that
b b
/WVdX:—/ uv' dx

for all v € C3°(/), then u is said to be weakly differentiable and w
is called the weak derivative of u.

10 /152

Weak/Galerkin formulation

1D Sobolev spaces

Lemma (I1)

If u is differentiable, then u is weakly differentiable and its weak
derivative is u'.

Remark

In the Sobolev spaces, which will be defined below, u' is used to
represent the weak derivative.

11 /152

Weak/Galerkin formulation

1D Sobolev spaces

Definition (L? space)
b
L’()={v:I =R: / v2 dx < oo}
a

where | = (a, b).

Definition (H* space)
HY (1) = {v e L2(): v/ € L2(])}
where | = (a, b).

Definition (H3 space)
H3(1) = {v € H*(I) : v(a) = v(b) = 0}
where | = (a, b).

Weak/Galerkin formulation

Weak formulation

o Weak formulation: find u € H(/) such that

b b
/ cu'v' dx:/ fv dx.

for any v € H} (/) where | = (a, b).
o Let a(u,v) f cu'v dxand(f,v):fabfvdx.

@ Weak formulation: find u € H(/) such that
a(u,v) = (f,v)

for any v € H3(/) where | = (a, b).

13 /152

Weak/Galerkin formulation

Galerkin formulation

@ Assume there is a finite dimensional subspace U, C H![a, b].

@ Galerkin formulation (without considering the Dirichlet
boundary condition, which will be handled later) : find
up € Up such that

a(up, vp) = (f, vn)

b b
& / cupvy, dx = / fvp dx
a a

for any v, € U,.

@ Basic idea of Galerkin formulation: use finite dimensional
space to approximate infinite dimensional space.

@ Question: How to obtain U,?

14 /152

Outline

© FE Space

15 /152

@ Assume that we have a uniform partition of [a, b] into N

b—a
N -

o let x;=a+ (i—1)h (i=1,---,N+ 1) denote the mesh
nodes.

elements with mesh size h =

o Let E, = [xp, Xnt1] (n=1,--- , N) denote the mesh elements.

16 /152

FE Space

1D linear finite element space

@ Define 1D linear finite element space:

U, = {¢€ Cla,b]: ¢(x) is linear on each [xp, xp+1]
(n=1,2,--- ,N)}.

@ U, is actually a piecewise linear function space based on the
mesh generated in the previous section.

17 /152

FE Space
1D linear finite element space

Theorem (1)

Uy is an (N + 1)—dimensional subspace of C|a, b]. (Math 6601:
Numerical Analysis)

Proof:
e First, it is easy to verify that Uy, is a subspace of C|a, b].

@ If we can find a continuous piecewise linear basis of N + 1
functions for Uy, then the proof is completed.

o Consider ¢;(x) € U such that

0, ifj#i,
@“O:%:{l,ﬁj:L

fori,j=1,--,N+1.

18 /152

FE Space

1D linear finite element space

Continued proof:

@ In fact,
22X xp < x < xo
() = 3 T o =S
0, otherwise,
L xjo1 < x < xj,
X —X .
pi(x) = T X < x < Xjy,
0, otherwise,
(=2,---,N)
X_XN. ifXN<X<XN 1,
Pn+1(x) o T
0, otherwise,
@ In order to show that ¢;j(x) (i =1,---, N+ 1) form a basis of

Un, we need to show the linear independence of {qﬁj}jN:JEl and
Up = span{¢;} 41

19 /152

FE Space
1D linear finite element space

Continued proof:
@ Linear independence: consider

N+1

> Goi(x) =0

j=1
for any x € [a, b].
o Lletx=x; (i=1,---,N+1), then

(on s)0, ifjA
94() = 9 _{ 1, ifj=i.
= =0(i=1---,N+1)
® So ¢j(x) j =1,---,N+1) are linearly independent.

20 /152

FE Space
1D linear finite element space

Continued proof:
@ Span: Given any f € Uy, let ¢; = f(x;) and consider

N+1

g(x) = ().

j=1
o First, g(xi) =ci=f(x) (i=1,--- ,N+1).

@ Second, both f(x) and g(x) are linear in each piece
[Xi?Xi+1] (./ = 17 T 7N)

@ Hence f(x) = g(x) in each piece [x;,x;11] (i =1,--- , N).
N+1

@ Then f(x) = g(x) = Zl cjpj(x).
J:

@ This implies Uy = span{gbj}jN:Jil.

Therefore ¢j(x) (j =1,---,N + 1) form a basis of Up,.

21 /152

FE discretization

Outline

© FE discretization

22 /152

FE discretization

Discretization formulation

@ Recall the Galerkin formulation (without considering the
Dirichlet boundary condition, which will be handled later):
find up € Uy, such that

Uh, vp) = (f, vp)

b
& cu;, v, dx = / fvp dx
a

for any v, € U,.
N+1

o Since up € Up = span{¢;} 7", then
N+1
uh =D 4o
j=1

for some coefficients u; (j =1,--- ,N +1).

23 /152

FE discretization

Discretization formulation

@ If we can set up a linear algebraic system for
ui (j=1,---,N+1) and solve it, then we can obtain the
finite element solution up.

@ Therefore, we choose the test function
vh=¢; (i=1,---,N+1). Then the finite element
formulation gives

N+1

/
b b
/C > uds ¢1-dx—/ foidx, i=1,-- N+1
a a

j=t
N+1

b b
= Zuj[/ c¢;¢;dx]:/ fojdx, i=1,--- N+1.
j=1 a

a

24 /152

FE discretization

Discretization formulation

@ Define the stiffness matrix

b N+1
N+1 /
A=ty = | [eoior o
a ij=1
@ Define the load vector
N+1

b
B:{mﬁﬁz[/ wﬂm]

i=1

@ Define the unknown vector
Y 1, 1N+1
X = [”j]j:l :
@ Then we obtain the linear algebraic system

AX = b.
@ Here A is symmetric positive-definite if the original elliptic

equation is symmetric positive-definite.

25 /152

FE discretization

Discretization formulation

Remark
@ In fact, since

(v Y s)0, ifjFk,
9i(Xk) = 0jk _{ 1, ifj=k.
then
N+1
up(xx) = Z ujdj(xk) = ug.
j=1

@ Hence the coefficient u; is actually the numerical solution at
the node x; (j =1,--- ,N+1).

o Once X = [uj]J.’V:JE1 is obtained, the finite element solution
N+1
up = Y, uj¢; and the numerical solutions at all the mesh
j=1
nodes are obtained.

FE discretization

Assembly of the stiffness matrix

@ In this section we will first introduce the matrix and vector
assembly by using a special method. In the later section “FE
method”, we will discuss a different universal framework.

e From the definition of ¢; (j =1,---, N+ 1), we can see that
¢j are non-zero only on the elements adjacent to the node Xx;,
but 0 on all the other elements.

@ This observation motivates us to think about
b *Xn+1
a,,-—/ c)) dx = / c@ld! dx, ij=1,-- N+1.
a Xn

@ It is easy to see that most of f;:"“ cd;d; dx will be 0.

@ So we only need to use numerical integration to compute
those nonzero integrals.

27 /152

FE discretization

Assembly of the stiffness matrix

e Case 1: when |i —j| > 1, x; and x; are not neighboring mesh
nodes.

@ Then on any element [xp, xp+1] (n=1,---, N), at least one
of ¢; and ¢; is 0.

@ Hence

Xn+1
/ Cqﬁ;(bf-dX:O(n:l,---,N)

N Xn+1 iy
= aj= Z/ cgj¢i dx= 0.
n=1"%n

28 /152

FE discretization

Assembly of the stiffness matrix

o Case 2: wheni=j+1(j=1,---,N), the only element, on
which both ¢; and ¢; are not zero, is [x;, Xj41].

@ Hence

Xn41
/ cdidh dx=0(n=1,--- j—1j+1,--N)

N Xn+1 oy Xj+1 Y
= aj :Z/ ¢ dx:/ ¢ dx
n=1*n

Xj

Xj+1 xii1—x\ /x—x\'
= aj+1J:/ c(x)(JHh)(hj> dx

J

29 /152

FE discretization
Assembly of the stiffness matrix

@ Case 3: wheni=/—1(j=2,---,N+1), the only element,
on which both ¢; and ¢; are not zero, is [xj_1, Xj].

@ Hence

Xn+1
/ CHldhdx =0 (n=1,,i—1,i+1,-,N)

N Xn+1 y Xj
= a,-j:Z/ c¢j¢,-dx:/
n=1"vXn X

40} dx
1

j_

% x—xi_1\ [xi—x\’
= aj_l’j:/ C(X)< hJ 1) < J ; > dx
Xj—1

J

1[5
= /12/ c(x) dx.

G—1

30 /152

FE discretization

Assembly of the stiffness matrix

o Case 4: when i=j (j=2,---,N), the only two elements, on
which both ¢; and ¢; are not zero, are [xj_1, xj] and [}, xj4+1].

@ Hence

Xn+1
/ C¢j¢:dxzo(n:177J_27./+1a7N)

n

- i > & > e /4l
= aj= Z/ ¢} dx:/ ¢} dx+/ @} dx
n=1"*n Xj—1 Xj

J

Xj _ . li _ i /
= ajj:/ c(x) <X :Jl> (X ;(Jl> dx
Xj—1
e (2 ‘X)/ (2 ‘X)/ i
; h h

1 Xj 1 Xj+1
= ﬁ/ c(x) dx + ﬁ/ c(x) dx.

31/152

FE discretization

Assembly of the stiffness matrix

o Case 5: when i = j = 1, the only element, on which both ¢;
and ¢; are not zero, is [xi, xp].

@ Hence

Xn+1
/ cdipy dx=0(n=2,---,N)

N Xn+4-1 X2
= aj = Z/ coy b dx:/ c@y b dx
n=1"*n

X1

2 x3—x\' [x—xY\
= an :/ c(x)() < > dx
1 h h

1/X2 (x) d
= — C\X X.
h2 1

32 /152

FE discretization

Assembly of the stiffness matrix

@ Case 6: when i = j = N + 1, the only element, on which both
¢; and ¢; are not zero, is [xy, Xn41]-

@ Hence

Xn+1
/ CPyp1dyyr dx=0(n=1,--- ,N—1)

n

XN

XN x—xv\ [/ x—xn\’
= aN+1,N+1 = / C(X) h h dx
XN

1 /XN+1 ()
= — c(x) dx.
h? xn

N Xn+1 XN+1
_ / / _ / /
= aAN+1,N+1 = E / C¢N+1¢N+1 dx —/ C¢N+1¢N+1 dx
n=1"v*n

33 /152

FE discretization

Assembly of the stiffness matrix

@ From the above discussion, we can see that most of the
elements aj (i,j=1,---,N+1) are 0.

@ Hence the stiffness matrix A is called a sparse matrix.

@ We can also see that we only need to compute the integrals
on local elements instead of the whole domain, which later
will lead to the “local assembly” idea of finite elements.

34 /152

FE discretization

Assembly of the stiffness matrix

Algorithm I
@ Initialize the matrix: A = sparse(N + 1, N + 1);
@ Compute the integrals and assemble them into A:
FORj=1,-- ,N+1:
IF j < N, THEN
Compute A(j + 1,j) = *,,Lz f;j“ c(x) dx;
END
IF j > 2, THEN
Compute A(j —1,j) = —% X’ c(x) dx;
END
IF2<j<N, THEN
Compute A(j,j) = 7» fxf Le(x) dx + 4 fo+1) dx;
END
END
Compute A(L,1) = 35 [c(x) dx;
Compute A(N + 1, N +1) = 35 [V ¢(x) dx;

35 /152

FE discretization
Assembly of the load vector

@ The idea for the assembly of the load vector is similar. We

have
b *Xn+1
b;:/ f¢;dX = / fgb dX,i:].,---,N—I—].,
a Xn

@ Case 1: when 2 < < N, the only two elements, on which ¢;
is not zero, are [xj_1,x;] and [x;, x;+1]. Then

Xn+1

N Xn+1 Xi Xi+1
= b,-:Z/ f¢,—dx:/ f¢,-dx+/ foi dx
n=1 Xi—1 Xi

Xn _

X v Xj+1 . _
= / Fx) 2L gy 1 / Fx) L X gy
Xj—1 h Xj h

36 /152

FE discretization
Assembly of the load vector

@ Case 2: when / =1, the only element, on which ¢; is not
zero, is [x1, x2]. Then

Xn+1
/ for dx =0 (n=2,--- , N)

N Xn+1
:M_Z/ for dx
n=1"Y*n
X2 X2 —
/fmw/fUWth

X1 X1

37 /152

FE discretization
Assembly of the load vector

@ Case 3: when i = N + 1, the only element, on which ¢py1 is
not zero, is [xn, xy+1]. Then

Xn+1
/ fony1 dx=0(n=1,--- ,N—1)

N XN+1
= byi1=) / fonp1 dx = / foniq dx
n=1

Xn+1

Xn XN

XN+1 _
= / f(X)X N .
XN h

38 /152

FE discretization
Assembly of the load vector

Algorithm 11
o Initialize the matrix: b = zeros(N + 1,1);

@ Compute the integrals and assemble them into b:
FORi=2--- N:

Compute
b(i) = [0 PO dbet [0 F(x) 9 dig
END
Compute b(1) = [£(x)*2* dx;

Compute b(+1) = fXN“ f(x) 5N dx;

39 /152

Boundary treatment

Outline

@ Boundary treatment

40 /152

Boundary treatment

Dirichlet boundary condition

o Basically, the Dirichlet boundary condition
u(a) = ga, u(b) = gp give the solutions at x; = a and
XN+1 = b
@ Since the coefficient u; in the finite element solution
N+1
up = Y, uj¢; is actually the numerical solution at the node
j=1
xi j=1,---,N+1), we actually know that u; = u(a) = g,
and uy11 = u(b) = gp.

@ Therefore, we don't really need the first and last equations in
the linear system since they are set up for u; and up41 by

using ¢1 and ¢pn41.

41 /152

Boundary treatment

Dirichlet boundary condition

@ One way to impose the Dirichlet boundary condition is to
replace the first and last equations in the linear system by the
following two equations

n=g=1wu+0-w+ --+0 -uys1 = g,
un+1=8p=0-u1+---+0-uny-1+1-unt1 = 8.
@ That is, the first and last rows of the matrix A should become
(1a 07 o 70)
and

(0,---,0,1)

respectively.

o And the first and last elements of the vector b should become
g, and g, respectively.

42 /152

Boundary treatment
Dirichlet boundary condition

Algorithm Il1:

@ Deal with the Dirichlet boundary conditions:
A(l,:) =0;
A(1,1)=1;
AN+1,:)=0;
AIN+1,N+1)=1;
b(1) = ga;
b(N + 1) = gp;

43 /152

FE Method

Outline

© FE Method

44 /152

FE Method

Basic algorithm

@ Input a, b, and N. Compute h = % and

xi=a+(G-1)h(=1,--- ,N+1).
@ Assemble the stiffness matrix A by using Algorithm I.
o Assemble the load vector b by using Algorithm II.

@ Deal with the Dirichlet boundary condition by using Algorithm
.

e Solve AX = b for X by using a direct or iterative method.

Remark

The above algorithm uses the Algorithms I, Il, and Ill, which are
designed for some particular cases with a special method. It is not
general enough to deal with different types of PDEs. Therefore, we
will discuss a more universal framework in the following.

45 /152

FE Method

Universal framework of the finite element method

@ Generate the information matrices: P, T, E;

@ Assemble the matrices and vectors: local assembly based on
P, T, E only;

@ Deal with the boundary conditions: boundary information
matrix and local assembly;

@ Solve linear systems: numerical linear algebra (Math 6601:
Numerical Analysis).

46 /152

FE Method

Mesh information matrices

@ Define your global indices for all the mesh elements and mesh
nodes. Let /V denote the number of mesh elements and N,
denote the number of mesh nodes. Here N, = N + 1.

@ Define matrix P to be an information matrix consisting of the
coordinates of all mesh nodes.

@ Define matrix T to be an information matrix consisting of the
global node indices of the mesh nodes of all the mesh
elements.

47 /152

Mesh information matrices

FE Method

@ For example, for the mesh used in this chapter, we can use
the j™ column of the matrix P to store the coordinates of the
jt mesh node and the nt" column of the matrix T to store
the global node indices of the mesh nodes of the n" mesh

element:
P = (Xl X2
= (x x
1 2
T = (5
_ 1 2
o 2 3

XNp—1 XNy)

XN XN+1)7
Npy—2 Np—1
Np—1 N
N—-1 N

N N+1)

48 /152

FE Method

Finite element information matrices

@ The above mesh information matrices P and T are for the
mesh nodes.

@ We also need similar finite element information matrices Py
and T, for the finite elements nodes, which are the nodes
corresponding to the finite element basis functions.

@ For example, the finite element nodes of the linear finite
element are the same as those mesh nodes since all the linear
basis functions are corresponding to mesh nodes.

e Note: For the nodal finite element basis functions, the
correspondence between the finite elements nodes and the
finite element basis functions is one-to-one in a
straightforward way. But it could be more complicated for
other types of finite element basis functions in the future.

49 /152

FE Method

Finite element information matrices

@ Define your global indices for all the mesh elements and finite
element nodes (or the finite element basis functions). Let N,
denote the total number of the finite element basis functions
(= the number of unknowns = the total number of the finite
element nodes). Here N, = N + 1.

@ Then
Np

up = Z ujg;.

Jj=1
@ Define matrix Pp, to be an information matrix consisting of

the coordinates of all finite element nodes.

@ Define matrix Tj, to be an information matrix consisting of
the global node indices of the finite element nodes of all the
mesh elements.

50 /152

FE Method

Finite element information matrices

@ For the linear finite elements we use here, P, = P and
T, = T since the nodes of the linear finite element basis
functions are the same as those of the mesh. We use the j
column of the matrix P, to store the coordinates of the j
finite element node and the nt" column of the matrix T} to
store the global node indices of the finite element nodes of the
nt" mesh element:

XNp—1 XN,)

P, = (x1 x
= (x x XN XN41)
_ <1 2 i Ny—2 Nb—1>
23 oo Ny—1 N,
B (1 2 N-1 N >
2 3 N N+1 /-

51/152

FE Method

Finite element information matrices

Remark

For many types of finite elements, such as the quadratic elements
which will be discussed later and some elements which will be
introduced in Chapter 2, Py, and T, are different from P and T
since the nodes for the finite element basis functions are different
from those of the mesh.

FE Method

Local assembly

Observation based on Algorithm I:

@ All the non-zero entries in the stiffness matrix A come from
the non-zero local integrals defined on the mesh elements.

@ In each non-zero local integral, the trial and test basis
functions are only corresponding to the nodes of the element
which is the integral interval.

@ On each element, all the local integrals, whose trial and test
basis functions are corresponding to the nodes of this element,
have non-trivial contribution to some non-zero entries of the
stiffness matrix A.

53 /152

FE Method

Local assembly

New assembly idea for the stiffness matrix A:

@ Loop over all the mesh elements;

@ Compute all non-zero local integrals on each element for A;

@ Assemble these non-zero local integrals into the corresponding
entries of the stiffness matrix A.

54 /152

FE Method

Local assembly

Compute all non-zero local integrals on each element for A:

@ On the n'" element E, = [x,, xp11], we get non-zero local
integrals only when the trial and test basis functions are
corresponding to the finite element nodes of the element.

@ That is, we only consider the trial and test basis functions to

be ¢ or ¢ny1.

@ There are only four non-zero local integrals on E, with the
global basis functions ¢, and ¢p41:

Xn+1 ;L Xn+1 , , Xn+1 ;o Xn+1 , ,
/ ey, dx, / chad dx, / BB i, / i dx.
X; X X; X

n n n n

@ They can be rewritten as

Xn+1) J .
cg;¢; dx (i,j = n,n+1).
Xn

55 /152

FE Method

Local assembly

@ Recall
¢ (X) _ XZ;Xa if x1 < x < x,
1 0, otherwise,
ﬁa if Xj—1 <x< Xjs
gbJ(X) = W? if Xj <x< Xi+1,
0, otherwise.
(i=2,---,N)
X—XN ;
if xy < x < Xyt
o 41(x) o ’
0, otherwise,
@ Define two local linear basis functions:
Xp+1 — X X — Xp
Yn1 = ¢nlE,= — Yn2 = Gnt1lE,= p

So in one element, the number of local basis functions
Nlb = 2.

56 /152

FE Method

Local assembly

@ Then the only four non-zero local integrals become

Xn+1 , , Xn+1 , , Xn+1 , , Xn+1 , ,
/ cWlatly dx, / oty dx, / cWlatla dx, / cWlatls dx.
X X X X

n n n n

@ That is, instead of the original four non-zero local integrals
with the global basis functions ¢, and ¢,41, we will compute
the following four non-zero local integrals with the local basis
functions 1p1 and ¥po:

Xn+1
/ chnathng dx (o, B =1,2).
Xn

@ Question: how to compute these integrals?

e Gauss quadrature (Math 6601: Numerical Analysis). The
needed information is stored in the matrices P and T.

57 /152

FE Method

Local assembly

Assemble the non-zero local integrals into A:

@ Based on Algorithm |, when the trial function is ¢; and the
test function is ¢;, the corresponding non-zero local integrals
should be assembled to aj;.

Xn+1 /L]
For example, an c¢), @), dx should be assemble to app.

f;:"“ cd) 10, dx should be assemble to ap py1.

f;;"“ c¢l,d,41 dx should be assemble to api1,,.

Xn+1 / /
f " cd 1P, dx should be assemble to ;11 11

Xn

58 /152

FE Method

Local assembly

@ Therefore, if we find the global node indices of the trial and
test basis functions, we can easily locate where to assemble a
non-zero local integral.

@ Question: Since we compute
*Xn+1
/ Chpatng dx (o, B =1,2)
instead of
Xn+1
| cophax (= nn)
Xn
how do we obtain the corresponding global node indices of the
local trial and test basis functions ¢p, and ¥pg (o, 6 = 1,2)7

@ Information matrix Tp!

59 /152

FE Method

Local assembly

@ Recall that the n" column of the matrix T} stores the global
node indices of the finite element nodes of the nt" mesh

element:
s_(12 N-1 N
b7\23 ... N N41)
@ Hence Tp(«r, n) and Tp(3, n) give the global node indices of
the local trial and test basis functions v,, and

Yng (o, B =1,2).

@ That is, for ,

*Xn+1
/ Chpatng dx (o, B =1,2)

should be assembled to a;; where and
j = Tb(a, n).

60 /152

FE Method

Local assembly

Algorithm 1V:
o Initialize the matrix: A = sparse(Np, Np);

@ Compute the integrals and assemble them into A:

FORO[Z].,'”,N/b:

Xn+1
e

Compute r = [ci, 17,5 dx;
Add r to A(, To(a, n));

END

61 /152

FE Method
Local assembly

Algorithm IV (alternative version):

e Initialize the matrix: A = sparse(Np, Np) and
S = zeros(N,b, Nlb);
@ Compute the integrals and assemble them into A:
FORn=1,--- /N:
FORCM:].,'” ,N/b:
FOR p=1,---,Np:
Compute S(B,) = [[™* cibnaig dx;
END
END
A(Tb(:’ n)a Tb(:’ n)) = A(Tb(:’ n)v Tb(:) n)) + 5;
END

62 /152

FE Method

Local assembly

o If we follow Algorithm IV to develop a subroutine to assemble
the matrix arising from a more general integral

Xn+1
J

then Algorithm IV is equivalent to calling this subroutine with
input parameters r = s = 1.

63 /152

FE Method

Local assembly

To make a general subroutine for different cases, more information

needed for computing and assembling the integral should be

treated as input parameters or input functions of this subroutine:
@ the coefficient function c;

o the Gauss quadrature points and weights for numerical
integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices P, and T}, for the trial
and test functions respectively, which can also provide the
number of local basis functions Ny, = size(Tp, 1) and the
number of the global basis functions N, = size(Pp,2) (= the
number of unknowns);

@ the type of the basis function for the trial and test functions
respectively. 64,/ 152

FE Method

Local assembly

Observation based on Algorithm II:

@ All the non-zero entries in the load vector b come from the
non-zero local integrals defined on the mesh elements.

@ In each non-zero local integral, the test basis functions are
only corresponding to the nodes of the element which is the
integral interval.

@ On each element, all the local integrals, whose test basis
functions are corresponding to the nodes of this element, have
non-trivial contribution to some non-zero entries of the load
vector b.

65 /152

FE Method

Local assembly

New assembly idea for the load vector b:
@ Loop over all the elements;

@ Compute all non-zero local integrals on each element for the
load vector b;

@ Assemble these non-zero local integrals into the corresponding
entries of the load vector b.

66 /152

FE Method

Local assembly

Compute all non-zero local integrals on each element for b:

o On the n'" element E, = [x,, xp11], we get non-zero local
integrals only when the test basis functions are corresponding
to the finite element nodes of the element.

@ That is, we only consider the test basis functions to be ¢, or
¢n+1-

@ There are only two non-zero local integrals on E, with the
global basis functions ¢, and ¢p11:

Xn+1 Xn+1
[o de [fonia ae

@ They can be rewritten as

Xn+1
/ foi dx (i =n,n+1).

67 /152

FE Method

Local assembly

@ Using ¥n1 and ¥p2, these two non-zero local integrals become

Xn4-1 Xn+1
/ fin dx, / fipno dx.

@ That is, instead of the original two non-zero local integrals
with the global basis functions ¢, and ¢,+1, we will compute
the following two non-zero local integrals with the local basis
functions 1p1 and ¥po:

*Xn+1
/ fing dx (B =1,2).
@ Question: how to compute these integrals?

e Gauss quadrature (Math 6601: Numerical Analysis). The
needed information is stored in the matrices P and T.

68 /152

FE Method

Local assembly

Assemble the non-zero local integrals into b:

@ Based on Algorithm |, when the test function is ¢;, the
corresponding non-zero local integrals should be assembled to

b;.

@ For example, f);”“ f¢n dx should be assemble to by,.

X

° f;;"“ f¢ni1 dx should be assemble to by 1.

@ Therefore, if we find the global node indices of test basis
functions, we can easily locate where to assemble a non-zero
local integral.

69 /152

FE Method

Local assembly

@ Question: Since we compute

Xn+1
/ Fibns dx (8 =1,2)

instead of

Xn+41
/ foidx (i=n,n+1),

how do we obtain the corresponding global node indices of the
local test basis functions 1,5 (8 = 1,2)?

@ Information matrix Tp!

70 /152

FE Method
Local assembly

o Recall that the n" column of the matrix T} stores the global
node indices of the finite element nodes of the nt" mesh

element:
T _ 12 -+ N-1 N
>~ \23 ... N N+1)"
@ Hence T,(S3, n) gives the global node indices of the local test
basis functions ¥ng (5 = 1,2).

@ That is, for
Xn+41
/ fing dx (B =1,2)

should be assembled to b; where

71/152

FE Method

Local assembly

Algorithm V:
e Initialize the vector: b = zeros(Np,1);

@ Compute the integrals and assemble them into b:

Compute r = f;;”“ fins dx;
b(;1) = b(1) +r;

72 /152

FE Method
Local assembly

Algorithm V (alternative version):
e Initialize the vector: b = zeros(Np,1) and d = zeros(Njp, 1);
@ Compute the integrals and assemble them into b:
FORn=1,---,N:
FOR B =1,---,Np:
Compute d(3,1) = f;;”“ fihng dx;
END
b(Tb(:a n)v 1) = b(Tb(:v n): 1) +d;
END

73 /152

FE Method

Local assembly

o If we follow Algorithm V to develop a subroutine to assemble
the vector arising from a more general integral

Xn+1 (s)
/X f¢n5 dx,

then Algorithm V is equivalent to calling this subroutine with
parameter s = 0.

74 /152

FE Method

Local assembly

To make a general subroutine for different cases, more information
needed for computing and assembling the integral should be
treated as input parameters or input functions of this subroutine:

@ the right hand side function f;
@ the quadrature points and weights for numerical integrals;

@ the mesh information matrices P and T, which can also
provide the number of mesh elements N = size(T,2) and the
number of mesh nodes N, = size(P, 2);

@ the finite element information matrices P, and T, for the test
functions, which can also provide the number of local basis
functions Nj, = size(Tp, 1) and the number of the global basis
functions N, = size(Pp,2) (= the number of unknowns);

@ the type of the basis function for the test functions.

75 /152

FE Method

Treat boundary conditions

@ Boundary information matrix boundarynodes:

o boundarynodes(1, k) is the type of the k' boundary finite
element node: Dirichlet, Neumann, Robin......

o boundarynodes(2, k) is the global node index of the k"
boundary finite element node.

@ Set nbn to be the number of boundary finite element nodes;

e Define g(x) to be the boundary function which satisfies
g(a) = g2 and g(b) = gb;
@ Algorithm Il can be reorganized into a more general

framework by using the boundary information matrix
boundarynodes.

76 /152

FE Method
Treat boundary conditions

Algorithm VI:
@ Deal with the Dirichlet boundary conditions:

FOR k=1,--- nbn:
IF boundarynodes(1, k) shows Dirichlet condition, THEN
i = boundarynodes(2, k);

A(i,:) =0;

Al i) = 1;

b(i) = g(Ps(i));
ENDIF

END

77 /152

FE Method
Enriched algorithm

Recall Algorithm 1V:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:
FORn=1,--- /N:
FORCY:].,-” ,N/bi
FOR B =1,---, Np:
Compute r = f;;"“ CPhpatng dx;
Add r to A(Tp(5, n), Te(a, n));
END
END
END

78 /152

FE Method
Enriched algorithm

Recall Algorithm V:
e Initialize the vector: b = zeros(Np,1);
@ Compute the integrals and assemble them into b:
FORn=1,---,N:
FOR B =1,---,Np:
Compute r = f " fihps dx;

b(Tb(ﬁ’n)v)_b(Tb(ﬁ’)7) r;
END
END

79 /152

FE Method

Enriched algorithm

@ Input a, b, and N. Generate the mesh information matrices P
and T, the finite element information matrices P, and T, for
the trial and test functions respectively.

@ Assemble the stiffness matrix A by using Algorithm V.
o Assemble the load vector b by using Algorithm V.

@ Deal with the Dirichlet boundary condition by using Algorithm
VI.

e Solve AX = b for X by using a direct or iterative method.

80 /152

FE Method

Numerical example

@ Example 1: Use the 1D linear finite element method to solve
the following equation:

d [,du(x)
dx <e dx >
= —e*[cos(x) — 2sin(x) — x cos(x) — x sin(x)] (0 < x <1),

u(0) =0, u(1) = cos(1).

@ The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

@ Let's code for the linear finite element method for 1D elliptic
equation together!

@ Open your Matlab!

81/152

FE Method
Numerical example

h maximum absolute error at all nodes
1/4 2.3340 x 1073
1/8 5.8317 x 10~*
1/16 1.4645 x 10~*
1/32 3.6675 x 107°
1/64 9.1700 x 10~°
1/128 2.2929 x 10~°

Table: The maximum numerical errors at all mesh nodes.

@ Any Observation?

82 /152

FE Method

Numerical example

@ Second order convergence O(h?) since the error is reduced by
% when h is reduced by half.

@ This matches the optimal approximation capability expected
from piecewise linear functions.

83 /152

General extensions

Outline

@ General extensions

84 /152

General extensions

Basic framework

@ A “reference— local — global” framework will be introduced
to construct the finite element spaces.

@ Since all the integrals in the discretization formulation are
locally computed on the mesh elements, it is critical to have a
convenient formulation of the local basis functions on all the
mesh elements.

@ But we still need the concept of the global basis functions
theoretically.

@ In the following, we will first introduce the “local — global”
framework to construct the 1D linear finite element space by
defining the local basis functions in a direct way. Later we will
introduce the “reference— local” framework for defining the
local basis functions in another way.

85 /152

General extensions

Reconstruct 1D linear finite element space

Recall:

@ Assume that we have a uniform partition of [a, b] into N

elements with mesh size h = %.

Let i =a+ (i—1)h (i=1,---,N+ 1) denote the mesh
nodes, which are also the finite element nodes of the 1D linear
finite elements.

Let E, = [Xn, Xnt+1] (n=1,---, N) denote the mesh elements.

Let N, denote the number of mesh nodes. Here N,,, = N + 1.

Let Ny denote the number of global finite element basis
functions. Here Np = N + 1.

Let Ny, denote the number of local finite element basis
functions in one element. Here N, = 2.

86 /152

General extensions

Reconstruct 1D linear finite element space

@ For the above mesh and 1D linear finite element, we recall

Pb:P:(Xl X2 o XN XN+1)7

12 ... N-1 N
Tb_T‘<23--- N N+1>'

87 /152

General extensions

Reconstruct 1D linear finite element space

@ On each mesh element
En = [Xny Xnt1] = [An1, An2] (n=1,--- | N), we define two
local linear basis functions

VYn1(x) = amx + by and Yp2(x) = an2x + b2

such that
0, A,
wnj()_5U_{17 ifj:i.
fori,j=1,2.
@ Then it's easy to obtain
wnl(Xn) =1 aniXn + bp1 =1,
wnl(Xn+1 0 an1Xp+1 + bn1 = 0,

anaXn + bpp = 0,

R

) =
¢n2(xn) 0
¢n2(Xn+1) an2Xpy1 + bn2 =1

88 /152

General extensions

Reconstruct 1D linear finite element space

@ Solve the 4 x 4 system to get

-1 Xn+1 1 —Xp
agpm = ———,bp=———,ap=———,bp=——7-—.
Xn+1 — Xpn Xn+1 — Xp Xn+1 — Xpn Xn+1 — Xn
@ Hence
Xp+1 — X X — Xp
¢n1(X) =) 1/}n2(X) = .
Xn+1 — Xn Xn4+1 — Xn

@ Since xp11 — Xn, = h, then the two local linear basis functions
are
Xp+1 — X
h

X — Xp

1/)n2 (X) = h 3

which match the non-zero pieces of the global linear basis
functions obtained in Chapter 1.

wnl(X) =

89 /152

General extensions

Reconstruct 1D linear finite element space

“local — global” framework:
@ Define the local finite element space

Sh(En) - 5P3”{¢n17 wnZ}-

@ At each finite element node x; (j = 1,---, N + 1), define the
corresponding global linear basis function ¢; such that
qu’En € Sh(En) and

0, ifj#£i,
Cbf'(x"):‘sff':{l. ifj=1,

fori,j=1,--- ,N+1.

@ Then define the global finite element space to be

U, = span{</>j}j’\’;il.

90 /152

General extensions

Reconstruct 1D linear finite element space

@ In fact,
wnla 'f./ =n,
Gile, = Wn2, ifj=n+1,
0, otherwise,

forj=1,--- N+landn=1,---,N.

@ That is,
b1 = Y11, on Eq,
! 0, otherwise,
¥n1, on E, such that j = n,
¢ =14 t¥m, on E,suchthatj=n+1, j=2,--,N;
0, otherwise,
¢ _ ’(/)NQ, on EN,
N+ 0, otherwise,

91 /152

General extensions

Reconstruct 1D linear finite element space

@ Hence
oy = | Y1 on B = [x1, %],
1 0, otherwise,
Yji,on Ej =[x, x4,
qb_j = ¢j—1,2, on Ej—l = [Xj—lan]a J = 27 T 7N;
0, otherwise,
R [xn, Xn1],
+ 0, otherwise,
@ For each x; (j =2,---, N), there are two local basis functions

which are defined to be 1 at x;. One is the 1)j; defined on the
element E; = [}, xj+1]. The other one is the 1;_1 > defined on
the element E;_; = [xj_1,x;j]. These two local basis functions
form the non-zero part of ¢; on the elements E; = [x;, Xj11]
and Ej_; = [xj_1, Xj] while ¢; is 0 everywhere else.

92 /152

General extensions

Reconstruct 1D linear finite element space

@ Since
Xpt1 — X X — Xn
wnl(x) = Ta ¢n2(x) = h)
then
§Z5]_(X) _ X2;Xa if x1 < x < X2,
0, otherwise,
Xﬁ)}jjila if Xj—1 SXSXja
9j(x) = T X < x < X1,
0, otherwise,
(=2, ,N)
dN l(X) X_hXNa if xy < x < xnyr1,
+ 0, otherwise,

which are the same as the global basis functions defined in
Chapter 1.

93

152

General extensions

Reconstruct 1D linear finite element space

@ Recall that the nt" column of the information matrix T}, is

(»00)

which are the global node indices of the two finite element
nodes An1 = X, and App = Xpy1 in the element [x,, xpt1]-

@ Since the local basis functions v,; and v,,» are one-to-one
corresponding to the finite element nodes A,; = x, and
A2 = Xpi1 in the element [x,, X,41], the n®" column of the
information matrix T also gives the global indices of the local
basis functions 1,1 and 1,2, which are n and n+ 1.

94 /152

General extensions

Reconstruct 1D linear finite element space

@ Hence

wnh If./ = Tb(lan)a
¢j|En = ¢n2) If./ = Tb(2a n)7
0, otherwise.

forj=1,---,N+landn=1,--- N.

@ This is the reason why we use Tp(cr,n) and Tp(3, n)
(o, B =1,2) to give the global node indices of the local trial
and test basis functions ¢po and ¢pg (o, B = 1,2) of the nth
mesh element in Chapter 1!

95 /152

General extensions

Reconstruct 1D linear finite element space

@ Now let's turn to the “reference — local” framework for
defining the local basis functions in another way.

o Consider the reference interval [A;, Ay] = [0,1].

@ Define two reference linear basis functions 1&1(2) =a1Xk+ b
and (%) = a2X + by such that

0i(A) = 51:{0’ 71,

1, ifj=1i,
fori,j=1,2.
@ Then it's easy to obtain
121(2\1) =1 = b =1,
P1(A2) =0 = a1 +b =0,
) (2\1)=0 = b =0,
Uo(A) =1 = apy+by=1.

96 /152

General extensions

Reconstruct 1D linear finite element space

@ Henceai=—-1,by=1,a0=1,bp =0 and

hx) = 1-%

@ Now we can use the affine mapping to construct the local
basis functions from the reference ones.

e If x € [a, b], then

agxgb:>05x—a§b—a:>0§F§1.

. X—a
o Let x=7=2. Then

$€[0,1], x=(b—a)k+a.

97 /152

General extensions

Reconstruct 1D linear finite element space

@ For a given function ¢)(&) where X € [0,1], we can define the
corresponding function for x € [a, b] as follows:

000 = 09 = 0=,
o Consider [a, b] = [xn, Xpt1]. Then & = = = 225,

@ From the above affine mapping and the reference basis functions
P1(%) =1 — % and (X)) = &,

we can use the “reference — local” framework to obtain the same
local basis functions as before:

) = (&) = h(Z)
B 1_X—X,, h—x+Xy Xpp1—x
B h h n h
) = (&) = o ()=

98 /152

General extensions

Reconstruct 1D linear finite element space

@ The affine mapping actually maps

/2\1:0 — A,,1:X,,,
/A42 =1 — An2 = Xp+1-

@ It is easy to verify that ,j(x) (j = 1,2) are linear functions and
AN s)0, ifjAd,
Vni(Ani) = 05 = { 1, ifj=i.

fori,j=1,2.

@ Remark: If you want to use the reference basis functions 1/31- and the
affine mapping X = *3° to provide the local basis functions
Vni(x) = 1j(X) instead of directly using the local basis functions,

you will need to use chain rule to obtain the derivative of the local

dipni(x) _ dii(%) dx
dx dk dx’

basis functions. For example,

99 /152

General extensions

Reconstruct 1D linear finite element space

@ Once the local basis functions are obtained by using the
“reference — local” framework, we can use the“local —
global” framework discussed before to obtain the 1D linear
finite element space.

@ This is the so called “reference— local — global” framework.

100 /152

General extensions

Reconstruct 1D linear finite element space

Summary of three ways for the global finite element basis
functions:

@ Directly define the global finite element basis functions
globally. This is not a general way.

@ Define local finite element basis functions directly on the local
elements and then use them to form the global basis
functions. | will use this way in my solution of 1D equations.

@ Define local finite element basis functions by using the
reference element and affine mapping and then use them to
form the global basis functions. | will use this way in my
solution of 2D equations.

101 /152

General extensions

Reconstruct 1D linear finite element space

Two structures to represent the local basis functions in code:

@ “function” style: Use a subroutine with different parameters
as a function to describe all the local basis functions; then
evaluate the subroutine when we need to evaluate the local
basis functions at needed points. | will use this style in my

solution.

o ‘coefficient” style: Only store the coefficients of all the local
basis functions; then use these coefficients to evaluate the
local basis functions at needed points.

102 /152

General extensions

1D quadratic finite element space

@ We first consider the reference quadratic basis functions on
the reference interval [A, Ay] = [0, 1] with A3 = 1.

@ Define three reference quadratic basis functions

D1(X) = ak®+ bk +c,
Da(X) = @k + bk + o,
P3(X) = a3k® + bk + a3,

such that

A 07 Ifj7él/
¢1(A’):5U:{ 1, ifj=i,

fori,j=1,2,3.

103 /152

General extensions

1D quadratic finite element space

@ Then it's easy to obtain

7»21(/2\1) =1
P1(A2) =0
$1(A3) =0
1ha(Ar) =0
Pa(A2) = 1
Pa(A3) =0
723(/2\1) =0
123(/2\2) =0
P3(A3) = 1

A T

C1:1,
ai+bi+ca =0,

1 1
Zal+§b1—|—C1:0,
CQZO,
a+b+o=1,
1

1
Zaz-i-ibz—i-Cz =0,
C3:07

a3+ b3+c=0,
1 1
133+§b3+c3=1.

104 /152

General extensions

1D quadratic finite element space

@ Hence

a1:2)b1:_37C1:]-7
32:2,b2:—17C2:0,
832—4,b3:4,C3:0.

@ Then the three reference quadratic basis functions are

(%) = 282 —38+1,
72;2() = 2)?2_5%7
P3(X) = —4%% 4 4%

x>

x>

105 /152

General extensions

1D quadratic finite element space

@ Now we turn to the local quadratic basis functions based on
the above reference quadratic basis functions.

@ Assume that we have a uniform partition of [a, b] into N
elements with mesh size h = 252

-

o let x;=a+ (i—1)h (i=1,---,N+ 1) denote the mesh
nodes.

e Let E, = [xn, Xpt1] (n=1,--- , N) denote the mesh elements.

@ Let N, denote the number of mesh nodes. Here N,, = N + 1.

106 / 152

General extensions

1D quadratic finite element space

@ For the above mesh, we recall

P

=
-
-
X

X1

X

[l

N P N

XNp—1 XNy)
XN XN41)
Nyp—2 Nm—1>
N,—1 Ny,
N—-1 N)
N N+1

107 /152

General extensions

1D quadratic finite element space

@ The finite element nodes of 1D quadratic finite elements
include all the mesh nodes and the middle points of all the
mesh elements.

o Let yy =a+ (k—1)h/2 (k=1,---,Np) denote the finite
element nodes where NV, = 2V 4 1 is the number of global
finite element basis functions.

@ It is easy to see

Xi = Y2i-1.
@ Also, each mesh element E, = [x,, Xp+1] includes three finite

element nodes:
Yon—1, Y2n+1, Y2n-

o Let N, denote the number of local finite element basis
functions in one element. Here N, = 3.

108 /152

General extensions

1D quadratic finite element space

o For the 1D quadratic finite elements, we use the j column of
the matrix P, to store the coordinates of the j/ finite element
node and the n column of the matrix T, to store the global
node indices of the finite element nodes of the n" mesh

element

P, = (y1 y2 ** YN-1 YN,)

= (Y1 Y2 0 V2N)/2N+1)7

13 Np—4 Np—2

T, = | 35 Npy—2 N

2 4 Np—3 Np—1
1 3 2N —3 2N -1

= 35 2N —1 2N +1

2 4 2N —2 2N

109 /152

General extensions

1D quadratic finite element space

@ Recall the affine mapping between x € [x,, xp+1] and
% €0,1]:

X — Xp X — Xp A X — Xp

f —
Xp4+1 — Xn h

@ Then the three local quadratic basis functions on the element
En = [Xn, Xnt1] are

Cx\2 B
dnl) = R =h(=2 () e

2
Ynp(x) = 12)2(;():7722(X—Xn):2<x—xn> _X_Xn’

p— — 2 —
V3(x) = 1/33(9():1%()(Xn): —4<X Xn) Y i

110 /152

General extensions

1D quadratic finite element space

@ The affine mapping actually maps

Al=0 — Anp= Yon—1 = Xn,
Ar=1 — Amp = yont1 = Xnt1,

~ 1 Xn + X
A3:§ — An3:y2n:%-

e It's also easy to verify that 1,;(x) (j = 1,2, 3) are quadratic
functions and

0, ifj#i,
Unj(Ani) = 0 :{ 1, ifj=i,

fori,j=1,2,3.

111 /152

General extensions

1D quadratic finite element space

@ Remark: If you want to use the reference basis functions 1/AJJ-
and the affine mappiAng X = *3* to provide the local basis
functions 1p;(x) = 1j(X) instead of directly using the local
basis functions, you will need to use chain rule to obtain the

derivative of the local basis functions. For example,

dni(x) _ d(%) dg
dx - dx dx-

112 /152

General extensions

1D quadratic finite element space

@ Define the local finite element space

Sh(E”) = Span{wnh ¢n27 ’l/]n3}'

@ At each finite element node y; (j = 1,--- ,2N + 1), define the
corresponding global linear basis function ¢; such that
(/)j|En S Sh(En) and

0, ifj#1,
@Wﬂz%:{]qiﬁﬂ

fori,j=1,---,2N+1.

@ Then define the global finite element space to be

Up = span{gbj}?i’fl.

113 /152

General extensions

1D quadratic finite element space

@ In fact,

Yp1, fj=2n-1,
Ym2, ifj=2n+1,
Yn3, if j=2n,
0, otherwise,

bjle, =

forj=1,---,2N+1landn=1,--- /N.

114 /152

General extensions

1D quadratic finite element space

@ Recall that the nt" column of the information matrix Tp is

2n—1
2n+1
2n

which are the global node indices of the two finite element
nodes An1 = Yon—1, An2 = yant1, and Apz = yo, in the
element [xp, Xp+1]-

@ Since the local basis functions ¥,1, 1,2, and 1,3 are
one-to-one corresponding to the finite element nodes
Anl = Yon—1, A2 = Yant1, and Auz = y2, in the element
[Xn, Xnr1], the nt column of the information matrix T}, also
gives the global indices of the local basis functions 1,1, ¥n2,
and ,3 which are 2n — 1, 2n+ 1 and 2n.

115 /152

General extensions

1D quadratic finite element space

@ Hence

wnlv If./ = Tb(lan)a
VY2, if j = Tp(2,n),
wn?n If./ = Tb(37 n)v
0, otherwise,

bjlE, =

forj=1,---,2N+1land n=1,--- /N.

116 /152

General extensions

General 1D finite element method

@ Question: Can we dynamically incorporate linear, quadratic
and even more 1D finite elements on different meshes into one
code of a general framework since they are so similar?

@ Answer: Yes! We have actually done so when we coded for
the 1D linear finite element method!

@ This is because in our 1D linear finite element code we have
designed many flexible input parameters and input functions:
r,s, ¢, N, Ny, Ny, Nip, P, T, Py, Tp, and type of finite
elements!

117 /152

General extensions

General 1D finite element method

@ r, s and ¢ depend on the equation only;
e P, T, N and N,, depend on the mesh only;

@ Py, Tp, Ny and N, depend on the type of finite elements and
the mesh;

@ For a new type of finite elements, we need to add the basis
functions into the code!

118 /152

General extensions

General 1D finite element method

@ Example 2: Use the 1D quadratic finite element method to
solve the following equation:

5 (o)

= —e*[cos(x) — 2sin(x) — x cos(x) — x sin(x)] (0 < x <1),
u(0) =0, u(1) = cos(1).

@ The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

@ Let's code for the quadratic finite element method for 1D
elliptic equation together!

@ Open your Matlab!

119 /152

General extensions

General 1D finite element method

h maximum absolute error at all nodes
1/4 4.6597 x 107>
1/8 2.9918 x 10~°
1/16 1.8901 x 10~
1/32 1.1869 x 108
1/64 7.4356 x 1010
1/128 4.6623 x 10~ 11

Table: The maximum numerical errors at all mesh nodes.

@ Any Observation?

120 /152

General extensions

General 1D finite element method

@ Third order convergence O(h?) since the error is reduced by
at least % when h is reduced by half.

@ This matches the optimal approximation capability expected
from piecewise quadratic functions.

@ In fact, we observe superconvergence since the convergence
order is almost O(h*).

121 /152

General extensions

1D cubic finite element space

@ We consider the reference cubic basis functions on the
reference interval [A1, A2] = [0, 1].
@ Define four reference quadratic basis functions

Di(R) = aXl + bR+ ak+di,

(%) = a3+ b+ ok +d,

D3(%) = a4+ bR+ X+ d,

Da(R) = aaR® 4+ bR + caX + da,

such that

P1(A1) = 1,71(Az) = 0,94 (A1) = 0,9 (A2) = O;
Da(A1) = 0,42(A2) = 1, (A1) = 0,4%(A2) = 0;
P3(A1) = 0,43(A2) = 0,95(A1) = 1,¢5(A2) = 0;
Da(A1) = 0,94(A2) = 0,4 (A1) = 0,9 (Az) = 1.

122 /152

General extensions

1D cubic finite element space

@ This is a Hermite type of finite elements since the definition of
the basis functions involves with the derivatives. The linear
and quadratic elements discussed before are Lagrange type of
finite elements since the definition of the basis functions
involves with the nodal values only.

123 /152

General extensions

Neumann /Robin boundary conditions

@ Consider
,d% (C(X) dl;(:)> = f(x) (a < x < b),u'(a) = ra, u(b) = gb.
@ Recall

b b
—c(b)d (b)v(b) + c(a)u (a)v(a) +/ cu'v' dx = / fir dx.
@ Since the solution at x = b is given by u(b) = g», then we can choose the
test function v(x) such that v(b) = 0.

@ Hence

b b
rac(a)v(a)Jr/ cu'v' dx:/ fv dx
b " b ’
= / cu'v' dX:/ fv dx—ric(a)v(a).

@ Code? Just add —r,c(a) to the corresponding entry of the load vector b!
You can find the corresponding entry by repeating the derivation of the
matrix formulation from the above weak formulation.

124 /152

General extensions

Neumann /Robin boundary conditions

@ Consider
7% (c(x) di;@) = f(x) (a < x < b),u(a) = gs, u'(b) = 1.
@ Recall

b b
—c(b)d (b)v(b) + c(a)u (a)v(a) +/ cu'v' dx = / fir dx.
@ Since the solution at x = a is given by u(a) = ga, then we can choose the
test function v(x) such that v(a) = 0.

@ Hence

b b
frbc(b)v(b)Jr/ cu'v' dx:/ fv dx
b b ’
= / cu'v' dX:/ fv dx—+ryc(b)v(b).

@ Code? Just add r,c(b) to the corresponding entry of the load vector b!
You can find the corresponding entry by repeating the derivation of the
matrix formulation from the above weak formulation.
125 /152

General extensions

Neumann /Robin boundary conditions

@ Consider

dii (c(x)du(x)> = f(x) (2 < x < b),u'(a) = ra, ' (b) = 1.

@ Recall

b b
—c(b)d'(b)v(b) + c(a)d'(a)v(a) +/ cu'v' dx :/ fv dx.

@ Hence

b b
—rpc(b)v(b) + rac(a)v(a) +/ cu'v' dx :/ fv dx.

Is there anything wrong? The solution is not unique!

If uis a solution, then u + ¢ is also a solution where c is a
constant.

126 /152

General extensions

General 1D finite element method

@ Example 3: Use the 1D linear and quadratic finite element
methods to solve the following equation:

5 ()

= —e*[cos(x) — 2sin(x) — x cos(x) — x sin(x)] (0 < x < 1),
u(0) =0, u'(1) = cos(1) — sin(1).

@ The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

127 /152

General extensions

Neumann /Robin boundary conditions

@ Consider
-2 (02) =) (2.5 5 < 8). () = g0/ (8) + asul8) = o
@ Recall

—c(b)u'(b)v(b) + c(a)u'(a)v(a) +/ cu'v' dx = / fv dx.

@ Since the solution at x = a is given by u(a) = g, then we can choose the
test function v(x) such that v(a) = 0.

@ Hence

b b
~[Ps — gou(b)]c(b)v(b) +/ 'V’ dx :/ fr dx

b ’ b ’
= qbc(b)u(b)v(b)—i-/ cu'v' dX:/ fv dx+pyc(b)v(b).

@ Code? Just add pyc(b) to the corresponding entry of the load vector b
and g»c(b) to the corresponding entry of the stiffness matrix Al You can
find the corresponding entries by repeating the derivation of the matrix

formulation from the above weak formulation.
128 /152

General extensions

Neumann /Robin boundary conditions

@ Consider

d (e(x) d”(x)) — F(x) (2 < x < b), u'(3) = £ay ' (B) + Gou(b) = p.

Cdx dx
@ Recall
b b
—c(b)u'(b)v(b)+c(a)u'(a)v(a)+/ oy dx:/ fir dx.
@ Hence

o BNeO)E) + rc(o)via) + [y’ o= [ax

b b
= gsc(b)u(b)v(b) —|—/ cu'v' dx :/ fv dx—r,c(a)v(a) + poc(b)v(b).
@ Code? Just add —r,c(a) and ppc(b) to the corresponding entries of the

load vector b and grc(b) to the corresponding entry of the stiffness

matrix Al You can find the corresponding entries by repeating the

derivation of the matrix formulation from the above weak formulation.

129 /152

_d (c(x> "“(X)) — F(x) (a < x < B),u/(3) + qou(2) = pa () = 1.

dx

@ Consider

-5 (™) =0 (2 < x <)

u'(a) + qau(a) = pa, u'(b) + gpu(b) = pp.

130 /152

General extensions

General 1D finite element method

@ Example 4: Use the 1D linear and quadratic finite element
methods to solve the following equation:

5 ()

= —e*[cos(x) — 2sin(x) — x cos(x) — x sin(x)] (0 < x < 1),
u'(0) + u(0) = 1, u(1) = cos(1).

@ The analytic solution of this problem is u = x cos(x), which
can be used to compute the error of the numerical solution.

131 /152

General extensions
More measurements for errors

Recall

Definition (L2 space)
b
L2 ={v:I—>R: / v2 dx < oo}

where | = (a, b).

Definition (H* space)
HY () ={vel>(): v e L?()}
where | = (a, b).

General extensions

More measurements for errors

Definition (L* space)

L) ={v:I—R: sup|v(x)| < o0}

xel

where | = (a, b).

133 /152

General extensions

More measurements for errors

e L norm: ||u||, = sup|u(x)| for ue L>(1).
xel

@ L norm error: ||u — upl|, = sup|u(x) — up(x)|.
xel

o L% norm: |ully = y/ [, u?dx for u € L*(]).

o L% norm error: |[u— upllg = 1/ [,(u — un)?dx.

o H* semi-norm: [u]; = 1/ [, udx for u € H'(I).

o H* semi-norm error: |u— up|; = 4/ [;(v' — u})?dx.

o H! norm: |jull; = \/f, uldx + [, u”dx for u € HY(/).

e H! norm error:
lu = unlly = /fy (= un)2dx + fy(u = u})2ax.

134 /152

General extensions

More measurements for errors

Np
e By using up = > uj¢j, the definition of T}, and the definition
j=1
of the local basis functions v,x, we get

|u—unlloe = suplu(x)— un(x)|
xel

= max, e 1ubd = un(x)l
Np

- 1r§nna§XN Xnng§n+1 U(X) N Zl Uj¢j
J:
Nip

= max max fulx) - kz_l UTy (ko) nk (X) | -

135 /152

General extensions

More measurements for errors

@ Define
Ny,
Wp(x) = Z UTb(k,n)dJnk(X)-
k=1
Then
Ju—unlo = max, . max |u(x) — wa(x)].
@ max

|u(x) — wp(x)| can be approximated by choosing the
Xn <X<Xp+1

maximum values of |u(x) — wp(x)| on a group of chosen
points in [x,, Xp+1], such as some Gauss quadrature nodes in
this element. We denote the approximation by r,.

136 /152

General extensions

More measurements for errors

Algorithm VII:

@ Approximate the maximum absolute errors on all elements
and then choose the largest one as the final approximation:
FORn=1,---,N:

Compute r, = max |u(x) — wy(x)[;
Xn<X<Xpy1
END

error max rp.
1<n<N

137 /152

General extensions

More measurements for errors

Np
e By using up =) uj¢j, the definition of T}, and the definition
j=1
of the local basis functions ,x, we get

lu=wlly =/ [wm)dx
)

n=1“"n
2
N Xn+41 Nb
= E / u— E uigj | dx
n=1"Xn j=1

Nip 2

138 /152

General extensions

More measurements for errors

@ Define
Nip
Wnp = Z uTb(k,n)¢nk
k=1
Then

N Xn+1
lu—unlly = Z/ (u — wp)?dx.
n=1"vXn

o Each integral [;""(u — wp,)?dx can be computed by
numerical integration.

139 /152

General extensions

More measurements for errors

Np
e By using up =) uj¢j, the definition of T}, and the definition
j=1
of the local basis functions ,x, we get

lu—upl; = /l(u’—u;,)2dx

n=1""n
2
N o xoin N
— / /
= E / u — E ujqﬁj dx
n=1"Xn j=1

140 /152

General extensions

More measurements for errors

@ Define
Nip
Wnp = Z uTb(k,n)¢nk
k=1
Then

N Xn+1
lu—uply = Z/ (v — wp)2dx.
n=1"%n

o Each integral [;""(u/ — w,)?dx can be computed by
numerical integration.

141 /152

General extensions

More measurements for errors

@ Develop a subroutine for a more general formulation

N 2
Xn+4+1 b
/ ((s) — Z UT,(k n)¢nk> dx.

@ That is,

Nip

Xn+1
Z/ S)_Wns) dx, Wns—ZUTb kn)¢£k)
Xn k=1

@ The L2 norm error is equivalent to calling this subroutine with
parameter s = 0.

@ The H! norm error is equivalent to calling this subroutine with
parameter s = 1.

142 /152

General extensions

More measurements for errors

Algorithm VIII:
@ Initialize the error error = Q; input the parameter s;
@ Compute the integrals and add them into the total error:

FORn=1,---,N:
Nip 2
error = error + f;;”“ u®) — 3° UTb(k,nWE,i) dx;

END

error = error;

143 /152

More measurements for errors

More numerical results for Example 1:

General extensions

h | flu—unlly | Ju—unl, [u— up];
1/4 | 1.4041 x 1072 | 7.1969 x 103 | 1.0528 x 1071
1/8 | 3.6803 x 1073 | 1.7951 x 10~3 | 5.2731 x 102
1/16 | 9.4048 x 10~% | 4.4854 x 10~* | 2.6376 x 102
1/32 | 2.3760 x 10~* | 1.1212 x 10~* | 1.3189 x 102
1/64 | 5.9704 x 107> | 2.8029 x 107> | 6.5949 x 103
1/128 | 1.4964 x 10~> | 7.0072 x 107° | 3.2975 x 103

Table: L norm error, L2 norm error and H! semi-norm error

@ Any Observation?

144 /152

General extensions

More measurements for errors

o Second order convergence O(h?) in L2/L> norm since the
error is reduced by % when h is reduced by half.

o First order convergence O(h) in H! semi-norm since the error
is reduced by half when h is reduced by half.

@ This matches the optimal approximation capability expected
from piecewise linear functions.

145 /152

More measurements for errors

More numerical results for Example 2:

General extensions

h | Tu—ulle | Jlu—unly [u— up];
1/4 | 3.3128 x 107* | 2.1041 x 10~* | 5.4212 x 1073
1/8 [3.9240 x 107> | 2.6144 x 107> | 1.3534 x 103
1/16 | 4.7518 x 107° | 3.2631 x 107° | 3.3823 x 10~*
1/32 | 5.8390 x 10~ | 4.0774 x 10~7 | 8.4550 x 10~°
1/64 | 7.2343 x 1078 | 5.0962 x 1078 | 2.1137 x 107°

1/128 | 9.0022 x 10~7 | 6.3702 x 1079 | 5.2842 x 10~°

Table: L norm error, L2 norm error and H! semi-norm error

@ Any Observation?

146

152

General extensions

More measurements for errors

@ Third order convergence O(h®) in L2/L> norm since the error
is reduced by & when h is reduced by half.

o Second order convergence O(h?) in H' semi-norm since the
error is reduced by % when h is reduced by half.

@ This matches the optimal approximation capability expected
from piecewise quadratic functions.

147 /152

Conclusions

Outline

@ Conclusions

148 /152

Conclusions

Advantages of the finite element method

@ The framework of finite element methods are universal for all partial
differential equations.

@ If the original equations are symmetric positive definite, the linear
systems arising from finite element methods are also symmetric
positive definite, which is important for many fast matrix solvers.

@ It is natural for finite element methods to deal with problem
domains with curved boundary, interface or singularities once the
mesh is properly constructed.

@ It is natural for many finite element methods to keep the
conservation law.

@ The finite element methods provide piecewise functions defined on
the whole problem domain as numerical solutions, not just the
numerical solutions at mesh nodes.

@ The finite element methods have mature frameworks for
mathematical analysis.

149 /152

Conclusions

Advantages of the finite element method

The framework of finite element methods are universal for all
partial differential equations due to the following reasons:

@ The weak formulations of all partial differential equations
consist of integrals in similar formats. This unifies different
equations into a universal formation.

@ Due to the “local assembly” idea of the general
implementation framework of finite elements, all the processes
in finite element methods are completely based on the
information matrices, including the construction of finite
element spaces, the finite element discretization, the assembly
of the matrices and vectors, and the treatment of the
boundary conditions.

@ Each analysis framework for finite element methods can be
applied to a wide range of problems.

150 /152

Conclusions

Higher dimensional equations

@ Global indices of the elements and nodes: more complicated
but similar.

@ Mesh information matrices P, T: more complicated but
similar.

@ Mesh information matrix E: mesh information for the element
edges/surfaces.

@ Integrals: higher dimensional and more complicated but
similar.

@ Local Assembly: similar with the new indices.

@ Boundary information matrix boundarynodes: more
complicated but similar.

@ Boundary information matrix boundarysurfaces: information
for the element edges/surfaces on the problem domain
boundary.

151 /152

Conclusions

Different types of finite elements

Linear finite elements, quadratic finite elements, cubic finite
elements......

Hermitian types of finite elements
Bilinear finite elements, biquadratic finite elements......
Crouzeix-Raviart finite elements

Mixed finite elements: Taylor-Hood elements, Raviart-Thomas
elements, Mini elements......

Nonconforming finite elements

152 /152

	Weak/Galerkin formulation
	FE Space
	FE discretization
	Boundary treatment
	FE Method
	General extensions
	Conclusions

