
A NON-CHAINABLE PLANE CONTINUUM WITH SPAN ZERO

L. C. HOEHN

Abstract. A plane continuum is constructed which has span zero but is not
chainable.

1. Introduction

1.1. Background. The notion of the span of a continuum was introduced by Lelek
in [8]. There he proved that chainable continua have span zero, and in 1971 ([9]) he
asked whether the converse also holds. This is known as Lelek’s problem, and has
become a topic of much interest in continuum theory, in part because there are few
other means presently available to decide whether a given continuum is chainable.
An affirmative answer to Lelek’s problem would have provided a useful tool with
applications to other open problems in continuum theory; for instance, it would
have completed the classification of planar homogeneous continua (see [20]).

Lelek’s problem has been featured in a number of recent surveys, appearing as
Problem 8 in [5], Problem 2 in [7], Problem 81 in [4], Conjecture 2 in [12], and in
[15, p. 255].

There has been previous work toward finding a counterexample for Lelek’s prob-
lem. Repovš et al. exhibit in [21] a sequence of trees in the plane with arbitrar-
ily small (positive) spans, none of which has a chain cover of mesh < 1. In [1],
Bartošová et al. consider generalizations of the notions of chainability and span
zero to the class of Hausdorff (not necessarily metrizable) continua, and prove via
a model-theoretic construction that a counterexample for Lelek’s problem in that
context would imply that there exists a metric counterexample.

Many positive partial results for Lelek’s problem have been obtained in [13],
[16], [17], and [20]. Notably, Minc proves in [13] that span zero is equivalent to
chainability among those continua which are inverse limits of trees with simplicial
bonding maps, and Oversteegen does the same in [16] for continua which are the
image of a chainable continuum under an induced map.

A number of properties of chainable continua have been established for span zero
continua. It is known that span zero continua are atriodic [8], and Oversteegen and
Tymchatyn show in [19] that they are tree-like and weakly chainable. Further,
Marsh proves in [11] that products of span zero continua have the fixed point prop-
erty, and Bustamante et al. prove in [3] theorems about fixed point and universality
properties in the hyperspace of subcontinua of a span zero continuum, generalizing
corresponding theorems for chainable continua.
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In this paper, we give an example showing that in general span zero does not
imply chainable, even among continua in the plane. This example also provides
a negative answer to a question of Mohler (Problem 171 of [4] and Problem 7 of
[10]), which asks whether every weakly chainable atriodic tree-like continuum is
chainable.

The example presented here is a simple-triod-like continuum, which we will de-
velop as a nested intersection of thickened simple triods in the plane. In Section 2,
we introduce some terminology that is useful for describing these simple triods in a
combinatorial way. We then show how to extract combinatorial information from
a given chain cover of a graph described this way in Section 3 (see [16] for some
related work). Section 4 contains the necessary combinatorial lemmas pertaining
to our particular graphs, and in Section 5 we construct the example precisely and
prove it has the stated properties.

1.2. Definitions and notation. A continuum is a compact connected metric
space. We will always denote the metric by d.

Given a continuum X , the span of X is the supremum of all η ≥ 0 for which there
exists a subcontinuum Z of X×X such that: 1) d(x, y) ≥ η for each (x, y) ∈ Z; and
2) π1(Z) = π2(Z), where π1, π2 : X ×X → X are the first and second coordinate
projections, respectively.

The following facts are straightforward (see [8]):

• if X and Y are continua with X ⊆ Y , then span(X) ≤ span(Y );
• the arc [0, 1] has span zero; and
• if 〈Xn〉∞n=1 is a sequence of continua in a given compact metric space, then

lim sup
n→∞

span(Xn) ≤ span(lim sup
n→∞

Xn).

The third fact implies in particular that given any space X and any ε > 0,
there is some δ > 0 such that span(Xδ) < span(X) + ε, where Xδ denotes the
δ-neighborhood of X .

A chain cover of a continuum X is a finite open cover U = 〈U`〉`<L which is
enumerated in such a way that U`1 ∩ U`2 6= ∅ if and only if |`1 − `2| ≤ 1. X is
chainable if every open cover of X has a refinement which is a chain cover.

A simple triod is a continuum T which is the union of three arcs, A1, A2, A3,
which have a common endpoint o and are otherwise pairwise disjoint. A1, A2, A3

are called the legs of T , and o is the branch point of T .

If f : X → Y is a function and x1, . . . , xn ∈ X , we will often write

x1 · · ·xn
f7→ y1 · · · yn

to mean f(xi) = yi for each i.
Given a set S, a total quasi-order on S is a binary relation ≤ on S which is

reflexive and transitive, and which satisfies the property that for every s1, s2 ∈ S,
we have s1 ≤ s2 or s2 ≤ s1 (or both). If ≤ is a total quasi-order, we write s1 ' s2
to mean s1 ≤ s2 and s2 ≤ s1, and we write s1 < s2 to mean s1 ≤ s2 and s2 � s1.

If S is finite and ≤ is a total quasi-order on S, then there is a function f : S → Z
which is order preserving (i.e. f(s1) ≤ f(s2) iff s1 ≤ s2) whose range is a contiguous
block of integers.

By a graph, we will mean an undirected connected graph without multiple edges
or loops (i.e. edge from a vertex to itself). If G is a graph, V (G) denotes the set of
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vertices. A pair of vertices v1, v2 ∈ V (G) are adjacent in G provided there is an edge
between them. A sequence of distinct vertices v1, . . . , vn ∈ V (G) are consecutive in
G provided there is an edge between vi and vi+1 for each 0 ≤ i ≤ n− 1.

A graph G will be considered as a topological space in the usual way, where the
edges are realized by arcs. If v1, v2 ∈ V (G) are adjacent in G, then we will use the
notation [v1, v2] to denote the arc joining v1 and v2.

If T is a tree and a, b ∈ T , then [a, b] denotes the minimal arc A ⊆ T with
a, b ∈ A.

By a word, we will mean a finite sequence of symbols. If ω is a word, then |ω|
denotes the length of ω. A word ω will be considered as a function on the set
of integers {0, 1, . . . , |ω| − 1}. ω← denotes the reverse of ω, defined by ω←(j) =
ω(|ω| − j − 1).

Given words ω1, ω2 such that the last symbol of ω1 coincides with the first symbol
of ω2, define ω1 t ω2 to be the word obtained by concatenating onto ω1 all but the
first symbol in ω2. For example, abc t caba = abcaba.

2. Graph-words

2.1. Sketches and the graph-word ρN .

Definition. A graph-word in the alphabet Γ is a pair ρ = 〈Gρ, wρ〉 where Gρ is a
graph, and wρ : V (Gρ) → Γ is a function.

Let us fix, for the rest of this paper, the alphabet Γ := {a, b, c}∪ {dt : t ∈ [0, 1]}.
For each positive integer N , denote by αN , βN , γN the following three words:

(abc)2N+1[

2N−1∏

i=0

adi/2Ncdi/2Na(cba)2N−i−1cbc(abc)2N−i−1]ad1cd1a(cba)
2N+1

(abc)2N+1[
2N−1∏

i=0

adi/2Ncdi/2Na(cba)2N−i−1cbabc(abc)2N−i−1]ad1cd1a(cba)
2N+1cb

ac

For later use, we also define the word β−N to be identical to the word βN except
without the final b.

Define the graph-word ρN as follows. Let GρN
be a simple triod, with vertex

set V (GρN
) = {o, p1, . . . , p|αN |−1, q1, . . . , q|βN |−1, r}, where o is the branch point of

the triod, p|αN |−1, q|βN |−1, r are the endpoints of GρN
, the points pj belong to the

leg [o, p|αN |−1] with pj ∈ [o, pj+1] for each j, and the points qj belong to the leg
[o, q|βN |−1] with qj ∈ [o, qj+1] for each j. Put p0 := o and q0 := o. Define wρN

:
V (GρN

) → Γ by wρN
(pj) := αN (j), wρN

(qj) := βN (j), and wρN
(r) := γN (1) = c.

To construct the example of a non-chainable continuum X with span zero, we
will define a sequence of simple triods 〈TN〉∞N=0 such that TN is contained in a small
neighborhood of TN−1 for each N > 0; X will then be defined as the intersection
of the nested sequence of neighborhoods of the triods TN . The graph-word ρN will
be used to describe the pattern with which we nest the simple triod TN inside a
small neighborhood of TN−1. To carry this out precisely, we introduce the notion
of a sketch below.

Remark. The space X may alternatively be described as an inverse limit of simple
triods, as follows. Let T be a simple tirod with endpoints denoted as a, b, c and
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branch point o. Denote a point in the interior of the arc [o, b] by d0, and param-
eterize the arc [d0, b] by dt for t ∈ [0, 1], so that d1 = b (as per the notion of a
Γ-marking defined below). Then the N -th bonding map bN : T → T takes o to a, is
the identity on the segment [d0, b], and otherwise maps the legs [o, a], [o, b], [o, c] in
a piecewise linear way according to the patterns αN , βN , γN , respectively. Figures
1, 2, and 3, along with the proof of Proposition 1 below, provide some geometric
intuition for how this looks.

Definition. Given a simple triod T with branch point o, a Γ-marking of T is a
function ι : Γ → T such that ι(a), ι(b), ι(c) are the endpoints of T and {ι(dt) :
t ∈ [0, 1]} ⊂ [o, ι(b)] are such that whenever t < t′, we have ι(dt) ∈ [o, ι(dt′ )] and
diam([ι(dt), ι(dt′ )]) = d(ι(dt), ι(dt′)) = t′ − t.

Define the simple triod T0 := {(x, 0) : x ∈ [−1, 1]} ∪ {(0, y) : y ∈ [0, 2]} ⊂ R2,
and define a Γ-marking ι : Γ → T0 by:

ι(a) := (−1, 0)

ι(b) := (0, 2)

ι(c) := (1, 0)

ι(dt) := (0, 1 + t) for t ∈ [0, 1].

To simplify definitions and arguments in the following, we will restrict our at-
tention to a special class of graph-words.

Definition. A compliant graph-word is a graph-word 〈G,w〉 in the alphabet Γ such
that there is no pair of adjacent vertices v1, v2 in G with w(v1) ≈Γ w(v2).

Observe that ρN is a compliant graph-word for each N .

Definition. Suppose T is a simple triod with a Γ-marking ι : Γ → T , and let
ρ = 〈G,w〉 be a compliant graph-word in the alphabet Γ. Then ŵ : G → T is a ρ-
suggested bonding map provided ŵ|V (G) = ι◦w, and for any adjacent v1, v2 ∈ V (G),
we have that ŵ|[v1,v2] is a homeomorphism from [v1, v2] to [ι(w(v1)), ι(w(v2))].

Definition. Let 〈Ω, d〉 be a metric space, let T ⊆ Ω be a Γ-marked simple triod,
let G ⊆ Ω be a graph, and let ε > 0. Then ρ = 〈G,w〉 is a 〈T, ε〉-sketch of G in Ω if
ρ is a compliant graph-word in the alphabet Γ, and there is a ρ-suggested bonding
map ŵ : G → T such that d(x, ŵ(x)) < ε

2 for every x ∈ G.

The next proposition assures us that we may use the graph word ρN defined
above to describe the pattern with which we embed one simple triod into a small
neighborhood of another, in the plane.

We will need some additional notation when working with the graph-word ρN .
For each i ≤ 2N , define n(i) and m(i) to be the unique integers such that

(n(i)− 1) n(i) (n(i) + 1)
αN7→ di/2N cdi/2N

(m(i)− 1) m(i) (m(i) + 1)
βN7→ di/2Ncdi/2N .

For each i < 2N , define θ(i) := 6N − 3i+ 1 and φ(i) := 6N − 3i+ 2, so that

(n(i) + θ(i)− 1) (n(i) + θ(i)) (n(i) + θ(i) + 1)
αN7→ cbc

(m(i) + φ(i)− 2) (m(i) + φ(i)− 1) · · · (m(i) + φ(i) + 2)
βN7→ cbabc.
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Note that n(0) = m(0) = 6N + 5, and that n(i) + 2θ(i) = n(i + 1) and m(i) +
2φ(i) = m(i + 1) for each i < 2N .

Proposition 1. Suppose T ⊂ R2 is a simple triod and ι : Γ → T is a Γ-marking.
For each integer N > 0 and any ε > 0, there is an embedding of the simple triod
graph GρN

in R2 such that ρN is a 〈T, ε〉-sketch of GρN
in R2. Moreover, the

embedding can be chosen to satisfy [q|βN |−2, q|βN |−1] = [ι(c), ι(b)].

Observe that this proposition would be more or less immediate if we were to re-
place R2 by R3. Thus, the reader who is content with a non-planar counterexample
for Lelek’s problem may skip the details.

Proof. For simplicity, we will argue only the case T = T0, with the Γ-marking ι as
described above; the general case can be treated similarly.

First we will analytically define a different embedding of GρN
in R2, then we will

describe how to obtain the desired embedding from it.
Let η > 0 be significantly smaller than ε, say η < ε

20N2 . For 0 ≤ i ≤ 2N , put

pn(i) := (1 + η, (4i+ 3
2 )η),

qm(i) := (1, (4i+ 3
2 )η).

For 0 ≤ i < 2N and 1 ≤ j < θ(i), put

pn(i)+j := (1− j, (4i+ 3)η),

pn(i+1)−j := (1− j, 4(i+ 1)η),

and put pn(i)+θ(i) := (1− θ(i), (4i + 7
2 )η). For 0 ≤ i < 2N and 1 ≤ j < φ(i), put

qm(i)+j := (1 − j, (4i+ 2)η),

qm(i+1)−j := (1 − j, (4(i+ 1) + 1)η),

and put qm(i)+φ(i) := (1− φ(i), (4i+ 7
2 )η). Further, put

pn(0)−j := (1− j, 0) for 1 ≤ j < 6N + 5,

qm(0)−j := (1− j, η) for 1 ≤ j < 6N + 5,

qm(2N)+j := (1− j, (8N + 2)η) for 1 ≤ j ≤ 6N + 7,

pn(2N)+j := (1− j, (8N + 3)η) for 1 ≤ j ≤ 6N + 5.

Finally, put o := (−6N − 4, 12η) and r := (−6N − 5, 12η). Join each pair of adjacent

vertices in GρN
by a straight line segment in R2. Denote the resultant embedding

of GρN
in R2 by G′. Figure 1 depicts the embedding G′ for N = 1.

Observe that in G′, for each integer k ≤ −1, if v and v′ are two vertices in the
line x = k, then w(v) = w(v′). Also notice that each vertex v in the line x = −1 is
already close to the point ι(w(v)) = ι(a) = (−1, 0), and that each vertex u of the
form pn(i) or qm(i) is already close to the point ι(w(u)) = ι(c) = (1, 0). We now
describe heuristically in two steps how to mold G′ into the embedding we seek.

First, for each i ≤ 2N , for each triple 〈v1, v2, v3〉 of the form 〈pn(i)−2, pn(i)−1, pn(i)〉,
〈qm(i)−2, qm(i)−1, qm(i)〉, 〈pn(i)+2, pn(i)+1, pn(i)〉, or 〈qm(i)+2, qm(i)+1, qm(i)〉, move the
vertex v2 up to be close to the point ι(di/2N ), move the vertex v3 down slightly,
and shape the arcs joining v1 to v2 and v2 to v3 so that:

(1) there is a homeomorphism ŵ1 : [v1, v2] → [ι(a), ι(di/2N )] ⊂ T0 such that
ŵ1(v1) = ι(a), ŵ1(v2) = ι(di/2N ), and d(x, ŵ1(x)) < η for each x ∈ [v1, v2],
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pn(0)
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b
pn(1)
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b
pn(2)

b
b

b

qm(0)

b
b

b

qm(1)

b
b

b

qm(2)

bbbbbb
b
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pn(0)+θ(0)

bbb
b
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pn(1)+θ(1)

bbbbbbb

b
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qm(0)+φ(0)

bbbb

b
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qm(1)+φ(1)

bbbbbbbbbb
b

b b b b b b b b b b
b

or

bbbbbbbbbbb

bbbbbbbbbbbbb

x = −1

Figure 1. The intermediate stage G′ for the embedding of Gρ1
in R2.

b

b

b

b

ι(d1)

ι(d1/2)

ι(d0)

ι(c)

Figure 2. The second intermediate stage for the embedding of
Gρ1

in R2.

(2) there is a homeomorphism ŵ2 : [v2, v3] → [ι(di/2N ), ι(c)] ⊂ T0 such that
ŵ2(v2) = ι(di/2N ), ŵ2(v3) = ι(c), and d(x, ŵ2(x)) < η for each x ∈ [v2, v3],
and

(3) [v1, v2]∪[v2, v3] misses the closed upper-right quandrant of the plane {(x, y) :
x ≥ 0, y ≥ 0},

and so that in the end no new intersections between those arcs have been introduced
(i.e., so that the result is still an embedding of GρN

). Figure 2 depicts the result
for N = 1.



A NON-CHAINABLE PLANE CONTINUUM WITH SPAN ZERO 7

(a) Before wrapping

(b) After wrapping

Figure 3. Wrapping the strip counterclockwise around the simple
triod to obtain the embedding of GρN

in R2.

Next, take the strip {(x, y) : x ≤ −1, 0 ≤ y ≤ (8N + 3)η} and stretch and wind
it counter-clockwise 2N + 2 times around the outside of

2N⋃

i=0

(
[pn(i)−2, pn(i)+2] ∪ [qm(i)−2, qm(i)+2]

)
,

so that for each integer k ≤ −1, all the vertices v in the line x = k end up near the
point ι(w(v)) ∈ T0, taking care to make sure [q|βN |−2, q|βN |−1] = [ι(c), ι(b)]. Figure
3 depicts roughly how this wrapping looks.

The resulting embedding satisfies the desired properties. �

2.2. Span and ρN . In this section we prove that the span of a simple triod de-
scribed by ρN converges to 0 as N → ∞. This ensures that we will obtain a
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continuum with span zero when we take the nested intersection of neighborhoods
of triods described by the ρN ’s.

Lemma 2. Let T be a simple triod with legs A1, A2, A3 and branch point o. For
each i let pi be the endpoint of leg Ai other than o. Suppose δ > 0 and W ⊂ A1×A2

is an arc such that (o, o) ∈ W , W meets ({p1}×A2)∪(A1×{p2}), and d(x1, x2) ≤ δ
for each (x1, x2) ∈ W . Then the span of T is ≤ δ.

Proof. Suppose Z ⊂ T × T is a subcontinuum with π1(Z) = π2(Z). If π1(Z) is an
arc, then it is easy to see that Z meets the diagonal ∆T = {(x, x) : x ∈ T }, as arcs
have span zero.

If π1(Z) is a subtriod T ′ of T , then we may assume T = T ′ by replacing the
arc W by the component of W ∩ (T ′ × T ′) that contains (o, o). Let K1 and K2

be disjoint clopen subsets of (A1 × A2) r W such that (A1 × {o}) r W ⊂ K1,
({o} ×A2)rW ⊂ K2, and K1 ∪K2 = (A1 ×A2)rW .

For each i ∈ {1, 2, 3} let Ui and Vi be the two components of (Ai × Ai) r∆T ,
where (Ai r {o})× {o} ⊂ Ui and {o} × (Ai r {o}) ⊂ Vi. It can then be seen that
the set

Y :=
(
U1 ∪ U2 ∪ V3 ∪ (A1 ×A3) ∪ (A2 ×A3) ∪K1 ∪K−12

)
rW

is clopen in (T × T )r (W ∪W−1 ∪∆T ) (see Proposition 5.1 of [6]).
Observe that p3 /∈ π1(Y ) and p3 /∈ π2((T × T ) r Y ), hence Z * Y and Z *

(T × T )r Y . Since Z is connected, it follows that Z must meet W ∪W−1 ∪∆T .
Thus in either case, there is some (x1, x2) ∈ Z with d(x1, x2) ≤ δ. Therefore T

has span ≤ δ. �

Proposition 3. Suppose T ⊂ R2 is Γ-marked. If the triod graph GρN
is embedded

in R2 such that ρN is a 〈T, ε〉-sketch of GρN
in R2, then the span of GρN

is less
than 1

2N + ε.

Proof. In order to apply Lemma 2, we will produce an arc W ⊂ [o, p|αN |−1] ×
[o, q|βN |−1]. Intuitively, one may think of W as a pair of points travelling simulta-
neously, one on the leg [o, p|αN |−1] and the other on [o, q|βN |−1], starting with both
at o, ending with one at the end of its leg, and at every moment staying within
distance 1

2N +ε from one another. With this in mind, and referring to Figure 1, one
should be easily convinced that such a W may be defined which passes through the
following pairs, in order: (o, o), (pn(0), qm(0)), (pn(0)−φ(0), qm(0)+φ(0)), (pn(0), qm(1)),
(pn(0)+θ(0), qm(1)−θ(0)), (pn(1), qm(1)), . . . , (pn(2N), qm(2N)), (p|αN |−1, qm(2N)+6N+5).
The precise definition of this arc W follows.

Suppose that n, n′ andm,m′ are two pairs of adjacent integers. Let Sn,n′

m,m′ denote

the square [pn, pn′ ]× [qm, qm′ ]. Suppose one of the following occurs:

(1) w(pn) = w(qm), w(pn′ ) = w(qm′);
(2) w(pn) = w(qm), w(pn′ ) = di/2N , w(qm′ ) = d(i+1)/2N for some i; or
(3) w(pn′ ) = w(qm′), w(pn) = di/2N , w(qm) = d(i+1)/2N for some i.

Then let Wn,n′

m,m′ ⊂ Sn,n′

m,m′ be an arc such that d(x1, x2) <
1
2N + ε for each (x1, x2) ∈

Wn,n′

m,m′ , and Wn,n′

m,m′ ∩ ∂Sn,n′

m,m′ = {(pn, qm), (pn′ , qm′)}.
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Define the arc W ⊂ [o, p|αN |−1]× [o, q|βN |−1] as follows. It will be helpful to refer
to Figure 1 when reading this formula.

W :=

n(0)−1⋃

j=0

W j,j+1
j,j+1 ∪

2N−1⋃

i=0




φ(i)−1⋃

j=0

W
n(i)−j, n(i)−j−1
m(i)+j, m(i)+j+1 ∪

φ(i)−1⋃

j=0

W
n(i)−φ(i)+j, n(i)−φ(i)+j+1
m(i)+φ(i)+j, m(i)+φ(i)+j+1 ∪

θ(i)−1⋃

j=0

W
n(i)+j, n(i)+j+1
m(i+1)−j, m(i+1)−j−1 ∪

θ(i)−1⋃

j=0

W
n(i)+θ(i)+j, n(i)+θ(i)+j+1
m(i+1)−θ(i)+j, m(i+1)−θ(i)+j+1


∪

6N+4⋃

j=0

W
n(2N)+j, n(2N)+j+1
m(2N)+j, m(2N)+j+1.

Then W contains (o, o) and meets {p|αN |−1}×[o, q|βN |−1], and d(x1, x2) <
1
2N +ε

for each (x1, x2) ∈ W , hence the claim follows by Lemma 2. �

3. Combinatorics from chain covers

3.1. Chain quasi-orders.

Definition. Define the equivalence relation ≈Γ on Γ by σ ≈Γ τ if and only if σ = τ
or σ, τ ∈ {b} ∪ {dt : t ∈ [0, 1]}.

The relation ≈Γ partitions Γ into three equivalence classes. If ι is a Γ-marking
of a triod T , then σ ≈Γ τ if and only if ι(σ) and ι(τ) belong to the same leg of T .

The following definition is closely related to the notion of a chain word reduction
from [14]. It should be thought of as follows: if 〈G,w〉 is a 〈T, ε〉-sketch of G and
we have a chain cover of G of small mesh, then v1 ≤ v2 means roughly that the
chain “covers v1 before, or at around the same time as, v2” (see Proposition 5).

Definition. Suppose 〈G,w〉 is a compliant graph-word. A chain quasi-order of
〈G,w〉 is a total quasi-order ≤ on V (G) satisfying:

(C1) if v1 ' v2, then w(v1) ≈Γ w(v2);
(C2) if v1, v2 ∈ V (G) are adjacent in G, then v1 and v2 are ≤-adjacent; and
(C3) if v1, v2, v3 ∈ V (G) are consecutive in G, v ∈ V (G), and if σ, τ ∈ {a, c}

and t, t′ ∈ [0, 1] are such that t′ ≥ t, v1v2v3
w7→ σdtτ , w(v) = dt′ , and

v1 < v2 ' v < v3, then t′ − t < 1
2 .

Notice that if ≤ is a chain quasi-order, then the reverse order of ≤ (defined by
v1 ≤∗ v2 iff v2 ≤ v1) is also a chain quasi-order.

The following simple lemma will be useful later on.

Lemma 4. Let ≤ be a chain quasi-order of 〈G,w〉. Suppose v1, s1, . . . , sκ, v2 are
consecutive in G and v ∈ V (G) is such that v1 < v < v2. Then there is some
i ∈ {1, . . . , κ} such that v ' si.
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Proof. Put s0 := v1, sκ+1 := v2, and let i be the largest integer in {0, . . . , κ} such
that si ≤ v. Then si+1 > v, so since si and si+1 are ≤-adjacent by property (C2),
we must have si ≥ v. Thus si ' v. �

3.2. Chain covers and the triod T0.

Proposition 5. Suppose 〈G,w〉 is a compliant graph-word which is a 〈T0, ε〉-sketch
of a graph G in R2. If there is a chain cover for G of mesh < 1

2 − ε, then there is
a chain quasi-order of 〈G,w〉.
Proof. Let U = 〈U` : ` < L〉 be a chain cover for G of mesh < 1

2 − ε, ordered so
that U` ∩U`′ 6= ∅ iff |`− `′| ≤ 1. For each v ∈ V (G), let `(v) be such that v ∈ U`(v)

(for each v there are either one or two choices for `(v)).
Observe that if v1, v2 ∈ V (G) and `(v1) = `(v2), then w(v1) ≈Γ w(v2), since

otherwise d(ι(w(v1)), ι(w(v2))) ≥
√
2 > 1

2 , hence d(v1, v2) > 1
2 − ε, contradicting

the fact that the diameter of U`(v1) = U`(v2) is <
1
2 − ε.

Define the relation ≤ on V (G) by setting v1 ≤ v2 if and only if for every v ∈ V (G)
satisfying `(v2) ≤ `(v) ≤ `(v1) we have w(v) ≈Γ w(v1).

The following facts follow directly from the definition of ≤:

Facts. (1) If `(v1) ≤ `(v2), then v1 ≤ v2.
(2) If v1 ≤ v2 and w(v1) 6≈Γ w(v2), then `(v1) < `(v2).
(3) If v1, v2 ∈ V (G) are ≤-adjacent, then w(v1) 6≈Γ w(v2).

It is straightforward to check using the definition and these facts that ≤ is a
total quasi-order.

We now check that ≤ satisfies properties (C1), (C2), and (C3) of the definition
of a chain quasi-order.

(C1): Suppose v1, v2 ∈ V (G) with v1 ' v2. Assume without loss of generality
that `(v2) ≤ `(v1). It then follows immediately from the definition of ≤ and the
assumption v1 ≤ v2 that w(v1) ≈Γ w(v2) (take v = v2).

(C2): Suppose v1, v2 ∈ V (G) are adjacent in G. Since 〈G,w〉 is compliant, we
know that w(v1) 6≈Γ w(v2). Let σ := w(v1) and τ := w(v2). Assume without loss
of generality that `(v1) < `(v2), which implies that v1 < v2.

If v ∈ V (G) were such that w(v) 6≈Γ σ, τ and v1 < v < v2, then `(v1) < `(v) <
`(v2). This would imply that the link Ul(v) contains the point v and meets the arc
[v1, v2]. Since 〈G,w〉 is compliant, the only possible cases are:

{σ, τ} = {a, b} and w(v) = c

{σ, τ} = {a, c} and w(v) ∈ {b} ∪ {dt : t ∈ [0, 1]}
{σ, τ} = {b, c} and w(v) = a

{σ, τ} = {a, dt} and w(v) = c (for some t ∈ [0, 1])

{σ, τ} = {c, dt} and w(v) = a (for some t ∈ [0, 1])

In each case, we have d(ι(w(v)), [ι(σ), ι(τ)]) ≥ 1 > 1
2 . But this yields a contradic-

tion, since U has mesh < 1
2 − ε.

Suppose for a contradiction that v1, v2 are not adjacent in the ≤ order. Let
v, v′ be such that v1 < v < v′, and v1, v are ≤-adjacent and v, v′ are ≤-adjacent.
By the above, we have that w(v), w(v′) are each ≈Γ to either σ or τ , hence by
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Fact (3) the only possibility is w(v) ≈Γ τ , w(v′) ≈Γ σ. Fact (2) then implies that
`(v1) < `(v) < `(v′).

Define the arc A ⊂ T0 according to the value of σ as follows:

A :=





[ι(a), o] if σ = a

[ι(c), o] if σ = c

[ι(b), o] if σ ∈ {b} ∪ {dt : t ∈ [0, 1]}
.

In each case, observe that d(ι(w(v)), A) ≥ 1 > 1
2 , and also B 1

2
(ι(σ)) ⊂ A and

B 1
2
(ι(w(v′))) ⊂ A.

Applying the homeomorphism ŵ|[v1,v2] yields the chain cover 〈ŵ(U` ∩ [v1, v2]) :
`′ ≤ ` ≤ `′′〉 of the arc [ι(σ), ι(τ)] in T0, where `′ := min{` : U` ∩ [v1, v2] 6= ∅} and
`′′ := max{` : U` ∩ [v1, v2] 6= ∅}.

Notice that ŵ(U`(v1)) and ŵ(U`(v′)) are sets of diameter < 1
2 containing ι(σ)

and ι(w(v′)), respectively, hence are subsets of A. It follows in particular that the
links ŵ(U`(v1) ∩ [v1, v2]) and ŵ(U`(v′) ∩ [v1, v2]) both meet the arc A ∩ [ι(σ), ι(τ)],
which implies each link ŵ(U` ∩ [v1, v2]), `(v1) < ` < `(v′), must meet A as well.
But ŵ(U`(v)) has diameter < 1

2 and contains ι(w(v)), hence misses A by the above.
This is a contradiction, therefore we must have that v1 and v2 are ≤-adjacent.

(C3): Suppose v ∈ V (G), v1, v2, v3 are consecutive in G, and that σ, τ ∈ {a, c} and

t, t′ ∈ [0, 1] are such that t′ ≥ t, w(v) = dt′ , v1v2v3
w7→ σdtτ , and v1 < v2 ' v < v3.

From Fact (2) we know that `(v) is between `(v1) and `(v3), hence the link
U`(v) contains v and meets the arc [v1, v2] ∪ [v2, v3]. Since d(ι(dt′ ), [ι(σ), ι(dt)] ∪
[ι(dt), ι(τ)]) = d(ι(dt′ ), ι(dt)) = t′ − t and U has mesh < 1

2 − ε, it follows that

t′ − t < 1
2 . �

4. Combinatorics of the graph-word ρN

4.1. Chain quasi-orders and ρN . Throughout this subsection assume that 〈G,w〉
is a compliant graph-word, and that ≤ is a chain quasi-order of 〈G,w〉.

Let f : V (G) → Z be an order preserving function whose range is a contiguous
block of integers.

Lemma 6. Suppose v1, . . . , vn are consecutive in G, and that for each 1 < j < n
we have w(vj−1) 6≈Γ w(vj+1). Then f(v1), . . . f(vn) are consecutive integers, i.e.
either f(vj+1) = f(vj) + 1 for each 1 ≤ j < n, or f(vj+1) = f(vj) − 1 for each
1 ≤ j < n.

Proof. This follows immediately from properties (C1) and (C2) of the chain quasi-
order ≤. �

As an application of Lemma 6, we make the following observation.

Lemma 7. Suppose for some i < 2N that v0, v1, . . . , v2θ(i) ∈ V (G) are consecutive

in G with v0 · · · v2θ(i) w7→ αN (n(i)) · · ·αN (n(i + 1)). Let k := f(v0). Then we have
one of the following four cases:

(1) v0 · · · v2θ(i)
f7→ k · · · (k + 2θ(i));

(2) v0 · · · vθ(i)
f7→ k · · · (k + θ(i)), vθ(i) · · · v2θ(i)

f7→ (k + θ(i)) · · · k;
(3) v0 · · · vθ(i)

f7→ k · · · (k − θ(i)), vθ(i) · · · v2θ(i)
f7→ (k − θ(i)) · · · k; or
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(4) v0 · · · v2θ(i)
f7→ k · · · (k − 2θ(i)).

Moreover, the analogous statement holds for the word β−N (where we replace n
with m and θ with φ).

Proof. This is a simple consequence of Lemma 6. �

Lemma 8. Suppose that for each i ∈ {0, N, 2N}, there are v
(i)
1 , v

(i)
2 , v

(i)
3 ∈ V (G)

which are consecutive in G with v
(i)
1 v

(i)
2 v

(i)
3

w7→ adi/2Nc. Then it cannot be the case

that v
(0)
3 ' v

(N)
3 ' v

(2N)
3 .

Proof. Suppose for a contradiction that f(v
(0)
3 ) = f(v

(N)
3 ) = f(v

(2N)
3 ) = k. By

Lemma 6, for each i ∈ {0, N, 2N} we have either

v
(i)
1 v

(i)
2 v

(i)
3

f7→ (k − 2) (k − 1) k

or

v
(i)
1 v

(i)
2 v

(i)
3

f7→ (k + 2) (k + 1) k.

It then follows from the pidgeonhole principle that f(v
(i)
2 ) = f(v

(j)
2 ) for distinct

i, j ∈ {0, N, 2N}. But this contradicts property (C3) of the chain quasi-order
≤. �

Lemma 9. Suppose v0, . . . , v|αN |−1 ∈ V (G) are consecutive in G and v′0, . . . , v
′
|βN |−2

∈
V (G) are consecutive in G with v0 · · · v|αN |−1

w7→ αN and v′0 · · · v′|βN |−2

w7→ β−N . Sup-

pose further that v0 ' v′0. Then v1 6' v′1.

Proof. Assume without loss of generality that v0 ≤ v1. Suppose for a contradiction
that v1 ' v′1.

We know that f(v0) ≤ f(v1) and that f(v0) = f(v′0), f(v1) = f(v′1). Put
k := f(vn(0)), and recall that n(0) = 6N +5 = m(0). It follows from Lemma 6 that

v0 · · · vn(0)
f7→ (k − 6N − 5) · · · k, and

v′0 · · · v′m(0)

f7→ (k − 6N − 5) · · · k.
Claim 9.1. Let i < 2N . If f(vn(i)) = k and f(vn(i)+θ(i)) < k, then f(vn(i+1)) = k.
Similarly, if f(v′m(i)) = k and f(v′m(i)+φ(i)) < k, then f(v′m(i+1)) = k.

Proof of Claim 9.1. Suppose f(vn(i)) = k > f(vn(i)+θ(i)). If

vn(i) · · · vn(i+1)
f7→ k · · · (k − 2θ(i)),

then in particular f(vn(i)+θ(i)+1) = k−θ(i)−1. Also, f(vn(0)−θ(i)−1) = k−θ(i)−1.
But w(vn(i)+θ(i)+1) = c 6≈Γ a = w(vn(0)−θ(i)−1), so this contradicts property (C1)
of the chain quasi-order ≤. Therefore by Lemma 7 we must have f(vn(i+1)) = k.

Similarly, suppose f(v′m(i)) = k > f(v′m(i)+φ(i)). If

v′m(i) · · · v′m(i+1)

f7→ k · · · (k − 2φ(i)),

then in particular f(v′m(i)+φ(i)+1) = k−φ(i)−1. Also, f(v′m(0)−φ(i)−1) = k−φ(i)−1.

But w(vm(i)′+φ(i)+1) = b 6≈Γ c = w(v′m(0)−φ(i)−1), so this contradicts property (C1)

of the chain quasi-order ≤. Therefore by Lemma 7 we must have f(v′m(i+1)) =

k. �(Claim 9.1)
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Claim 9.2. Either f(vn(i)) = k for each i ≤ 2N or f(v′m(i)) = k for each i ≤ 2N .

Proof of Claim 9.2. If f(vn(i)+θ(i)) < k and f(v′m(i)+φ(i)) < k for each i < 2N , then

this follows immediately from Claim 9.1 and induction. Hence assume this is not
the case, and let i∗ be the smallest i for which f(vn(i)+θ(i)) > k or f(v′m(i)+φ(i)) > k.

Observe that by Claim 9.1 and induction, we have f(vn(i)) = f(v′m(i)) = k for

each i ≤ i∗.

Case 1. f(v′m(i∗)+φ(i∗)) > k.

It follows from Lemma 6 that

v′m(i∗) · · · v′m(i∗)+φ(i′)

f7→ k · · · (k + φ(i∗)).

Suppose i∗ ≤ i < 2N , and that f(vn(i)) = k. If f(vn(i)+θ(i)) < k, then we have
by Claim 9.1 that f(vn(i+1)) = k.

If f(vn(i)+θ(i)) > k, suppose for a contradiction that

vn(i) · · · vn(i+1)
f7→ k · · · (k + 2θ(i)).

In particular, this means f(vn(i)+θ(i)+1) = k + θ(i) + 1. Also, since φ(i∗) >
θ(i), we have f(v′m(i∗)+θ(i)+1) = k + θ(i) + 1. But w(vn(i)+θ(i)+1) = c 6≈Γ a =

w(v′m(i∗)+θ(i)+1), so this contradicts property (C1) of the chain quasi-order ≤.

Therefore by Lemma 7 we must have f(vn(i+1)) = k.
Thus by induction, we have f(vn(i)) = k for each i ≤ 2N .

Case 2. f(v′m(i∗)+φ(i∗)) < k and f(vn(i∗)+θ(i∗)) > k.

Here we have by Claim 9.1 that f(v′m(i∗+1)) = k.

It follows from Lemma 6 that

vn(i∗) · · · vn(i∗)+θ(i∗)
f7→ k · · · (k + θ(i∗)).

Suppose i∗ + 1 ≤ i < 2N , and that f(v′m(i)) = k. If f(v′m(i)+φ(i)) < k, then we

have by Claim 9.1 that f(v′m(i+1)) = k.

If f(v′m(i)+φ(i)) > k, suppose for a contradiction that

v′m(i) · · · v′m(i+1)

f7→ k · · · (k + 2φ(i)).

In particular, this means f(v′m(i)+φ(i)+1) = k + φ(i) + 1. Also, since θ(i∗) >

φ(i), we have f(vn(i∗)+φ(i)+1) = k + φ(i) + 1. But w(v′m(i)+φ(i)+1) = b 6≈Γ c =

w(vn(i∗)+φ(i)+1), so this contradicts property (C1) of the chain quasi-order ≤.
Therefore by Lemma 7 we must have f(v′m(i+1)) = k.

Thus by induction, we have f(v′m(i)) = k for each i ≤ 2N . �(Claim 9.2)

It remains only to notice that Claim 9.2 contradicts Lemma 8. So we must have
v1 6' v′1. �

For convenience in later statements and arguments, we will use the following
notation:
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Definition. Given σ ∈ Γ, define the word ζN (σ) by

ζN (σ) :=





αN if σ = a

βN if σ = b

γN if σ = c

β−Ndt if σ = dt (for some t ∈ [0, 1]).

Lemma 10. Suppose σ, τ ∈ Γ, v0, . . . , vκ ∈ V (G) are consecutive in G, and
v′0, . . . , v

′
λ ∈ V (G) are consecutive in G, with

v0 · · · vκ w7→ ζN (σ) and v′0 · · · v′λ
w7→ ζN (τ).

Suppose further that v0 ' v′0 and v1 ' v′1. Then σ ≈Γ τ .

Proof. Suppose for a contradiction that σ 6≈Γ τ . If σ = a and τ ∈ {b, dt : t ∈ [0, 1]},
or vice versa, then this contradicts Lemma 9. If one of them is c, say σ, then
w(v1) = c while w(v′1) = b 6≈Γ c, so this contradicts property (C1) of the chain
quasi-order ≤. �

Proposition 11. There is no chain quasi-order for ρN , for any N .

Proof. Suppose for a contradiction that ≤ is a chain quasi-order for ρN . Observe
that since r, p1, q1 ∈ V (GρN

) are all adjacent to o in GρN
, we have that these three

vertices are also adjacent to o in the ≤ order. Hence by the pidgeonhole principle,
some pair of them are '. But this is a contradiction by Lemma 10. �

Oversteegen & Tymchatyn exhibit in [17] for each δ > 0 a 2-dimensional plane
strip with span < δ which has no chain cover of mesh < 1. Repovš et al. modify
this example in [21] to construct for each δ > 0 a tree in the plane with span
< δ which has no chain cover of mesh < 1. In both examples, the diameters of
the continua converge to ∞ as δ → 0. We pause to point out that we have now
obtained a bounded family of such examples.

Corollary 12. There is a uniformly bounded sequence 〈TN 〉∞N=1 of simple triods in
R2 such that for each N , span(TN ) < 1

N and TN has no chain cover of mesh < 1
4 .

Proof. This is simply a combination of Propositions 1 (using T0 and taking ε ≤ 1
2N ),

3, 5, and 11. �

We are working to prove a stronger result: that there is a continuum in R2 which
has span zero and cannot be covered by a chain of mesh less than some positive
constant. To this end we will need some further technical combinatorial lemmas.

Lemma 13. Suppose σ, τ ∈ Γ with σ ≈Γ τ , and that v0, . . . , vκ ∈ V (G) are con-
secutive in G and v′0, . . . , v

′
κ ∈ V (G) are consecutive in G with

v0 · · · vκ w7→ ζN (σ) and v′0 · · · v′κ
w7→ ζN (τ).

Then:

(i) if v0 < v1, then v0 < vj < vκ for each 0 < j < κ;
(ii) if vκ−1 < vκ, then v0 < vj < vκ for each 0 < j < κ;
(iii) if v0 ' v′0 and v1 ' v′1, then vκ ' v′κ; and
(iv) if vκ ' v′κ and vκ−1 ' v′κ−1, then v0 ' v′0.

Proof. Each of these statements is trivial if σ = τ = c. We will prove the Lemma
for σ = τ = a; the case σ ≈Γ τ ≈Γ b proceeds analogously.
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(i) Suppose v0 < v1.

Claim 13.1. v0 · · · vn(0)
f7→ (f(vn(0))− 6N − 5) · · · f(vn(0)).

Proof of Claim 13.1. This is immediate from Lemma 6. �(Claim 13.1)

Claim 13.2. For each i < 2N , vn(i) ≤ vn(i+1).

Proof of Claim 13.2. We proceed by induction on i < 2N . Suppose the
claim is true for each i′ with i′ < i. Put k := f(vn(i)). Suppose for a
contradiction that f(vn(i)) > f(vn(i+1)). By Lemma 7, this means

vn(i) · · · vn(i+1)
f7→ k · · · (k − 2θ(i)).

In particular, we have f(vn(i)+θ(i)+1) = k − θ(i)− 1.
Let j∗ be the smallest j ≤ i such that f(vn(j)) = k.
If j∗ = 0, then since n(0) > θ(i), we have f(vn(0)−θ(i)−1) = k − θ(i)− 1.

But also w(vn(i)+θ(i)+1) = c 6≈Γ a = w(vn(0)−θ(i)−1), so this contradicts
property (C1) of the chain quasi-order ≤.

If j∗ > 0, then we know by Lemma 7 that

vn(j∗−1) · · · vn(j∗)
f7→ (k − 2θ(j∗ − 1)) · · · k.

Then similarly observe that since θ(j∗−1) > θ(i), we have f(vn(j∗)−θ(i)−1) =
k − θ(i) − 1. But also w(vn(i)+θ(i)+1) = c 6≈Γ a = w(vn(j∗)−θ(i)−1), so this
contradicts property (C1) of the chain quasi-order ≤. �(Claim 13.2)

Claim 13.3. vn(2N) · · · vκ
f7→ f(vn(2N)) · · · (f(vn(2N)) + 6N + 5).

Proof of Claim 13.3. By Lemma 8 and Claim 13.2, we must have vn(i−1) <
vn(i) for some 0 < i ≤ 2N ; let i∗ be the largest such i, so that f(vn(2N)) =
f(vn(i∗)).

Suppose for a contradiction that

vn(2N) · · · vκ
f7→ f(vn(2N)) · · · (f(vn(2N))− 6N − 5).

Then in particular, since 6N+5 > θ(i∗−1), we have f(vn(2N)+θ(i∗−1)+1) =
f(vn(2N))− θ(i∗− 1)− 1. But also f(vn(i∗)−θ(i∗−1)−1) = f(vn(2N))− θ(i∗−
1) − 1 and w(vn(i∗)−θ(i∗−1)−1) = c 6≈Γ a = w(vn(2N)+θ(i∗−1)+1), so this
contradicts property (C1) of the chain quasi-order ≤. Therefore by Lemma
6, we must have

vn(2N) · · · vκ
f7→ f(vn(2N)) · · · (f(vn(2N)) + 6N + 5).

�(Claim 13.3)

It is now easy to check that f(v0) = f(vn(0)) − 6N − 5 < f(vj) <
f(vn(2N)) + 6N + 5 = f(vκ) for any 0 < j < κ.

(ii) Observe that if we consider the reverse order of ≤, part (i) gives that if
v0 > v1, then v0 > vj > vκ for each 0 < j < κ. In particular, this would
mean vκ−1 > vκ. Therefore if vκ−1 < vκ then v0 < v1, hence the conclusion
follows from part (i).
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(iii) Suppose v0 ' v′0, v1 ' v′1, and assume without loss of generality that
v0 < v1. This means Claims 13.1, 13.2, and 13.3 hold for the vj ’s and the
v′j ’s. By Claim 13.1, we have

v0 · · · vn(0)
f7→ (f(vn(0))− 6N − 5) · · · f(vn(0))

and

v′0 · · · v′n(0)
f7→ (f(vn(0))− 6N − 5) · · · f(vn(0)).

Claim 13.4. For each i ≤ 2N , vn(i) ' v′n(i).

Proof of Claim 13.4. Suppose not, and let i∗ be the smallest i < 2N such
that vn(i+1) 6' v′n(i+1). Put k := f(vn(i∗)) = f(v′n(i∗)). It follows from

Lemma 7 and Claim 13.2 that either f(vn(i∗+1)) = k and f(v′n(i∗+1)) > k,

or f(vn(i∗+1)) > k and f(v′n(i∗+1)) = k; assume the former. This implies

by Lemma 7 that

v′n(i∗) · · · v′n(i∗+1)

f7→ k · · · (k + 2θ(i∗)).

We claim that f(vn(i)) = k for each i ≥ i∗. Indeed, given i > i∗, suppose
for a contradiction that

vn(i) · · · vn(i+1)
f7→ k · · · (k + 2θ(i)).

This means in particular that f(vn(i)+θ(i)+1) = k + θ(i) + 1. Since θ(i) <
θ(i∗), we have f(v′n(i∗)+θ(i)+1) = k + θ(i) + 1. But w(vn(i)+θ(i)+1) = c 6≈Γ

a = w(v′n(i∗)+θ(i)+1), so this contradicts property (C1) of the chain quasi-

order ≤. Therefore by Lemma 7 and Claim 13.2, we must have f(vn(i+1)) =
k. Hence, by induction, f(vn(i)) = k for each i ≥ i∗.

In particular, f(vn(2N)) = k. By Claim 13.3, we have

vn(2N) · · · vκ
f7→ k · · · (k + 6N + 5).

Since 6N + 5 > θ(i∗), this means that f(vn(2N)+θ(i∗)+1) = k + θ(i∗) + 1.
Note f(v′n(i∗)+θ(i∗)+1) = k + θ(i∗) + 1 as well. But w(v′n(i∗)+θ(i∗)+1) =

c 6≈Γ a = w(vn(2N)+θ(i∗)+1), so this contradicts property (C1) of the chain
quasi-order ≤. �(Claim 13.4)

Claim 13.4 implies in particular that f(vn(2N)) = f(v′n(2N)). Then by

Claim 13.3, we have

vn(2N) · · · vκ
f7→ f(vn(2N)) · · · (f(vn(2N)) + 6N + 5),

and

v′n(2N) · · · v′κ
f7→ f(vn(2N)) · · · (f(vn(2N)) + 6N + 5).

This establishes part (iii).
(iv) Suppose vκ ' v′κ, vκ−1 ' v′κ−1, and assume without loss of generality that

vκ−1 < vκ. By part (ii) this implies v0 < v1 and v′0 < v′1, so again Claims
13.1, 13.2, and 13.3 hold for the vj ’s and the v′j ’s. By Claim 13.3, we have

vκ · · · vn(2N)
f7→ (f(vn(2N)) + 6N + 5) · · · f(vn(2N))

and

v′κ · · · v′n(2N)

f7→ (f(vn(2N)) + 6N + 5) · · · f(vn(2N)).
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Claim 13.5. For each i ≤ 2N , vn(i) ' v′n(i).

Proof of Claim 13.5. Suppose not, and let i∗ be the largest i < 2N such
that vn(i) 6' v′n(i). Put k := f(vn(i∗+1)) = f(v′n(i∗+1)). It follows from

Lemma 7 and Claim 13.2 that either f(vn(i∗)) = k and f(v′n(i∗)) < k, or

f(vn(i∗)) < k and f(v′n(i∗)) = k; assume the former. This implies by Lemma

7 that

v′n(i∗+1) · · · v′n(i∗)
f7→ k · · · (k − 2θ(i∗)).

We claim that f(vn(i)) = k for each i ≤ i∗. Indeed, given i < i∗, suppose
for a contradiction that

vn(i+1) · · · vn(i)
f7→ k · · · (k − 2θ(i)).

Since θ(i∗) < θ(i), this means in particular that f(vn(i+1)−θ(i∗)−1) =
k − θ(i∗) − 1. Note f(v′n(i∗+1)−θ(i∗)−1) = k − θ(i∗) − 1 as well. But

w(vn(i∗+1)−θ(i∗)−1) = c 6≈Γ a = w(v′n(i+1)−θ(i∗)−1), so this contradicts prop-

erty (C1) of the chain quasi-order ≤. Therefore by Lemma 7 and Claim
13.2 we must have f(vn(i)) = k. Hence, by induction, f(vn(i)) = k for each
i ≤ i∗.

In particular, f(vn(0)) = k. By Claim 13.1, we have

vn(0) · · · v0
f7→ k · · · (k − 6N − 5).

Since 6N + 5 > θ(i∗), this means that f(vn(0)−θ(i∗)−1) = k − θ(i∗) − 1.
Note f(v′n(i∗+1)−θ(i∗)−1) = k− θ(i∗)− 1 as well. But w(v′n(i∗+1)−θ(i∗)−1) =

c 6≈Γ a = w(vn(0)−θ(i∗)−1), so this contradicts property (C1) of the chain
quasi-order ≤. �(Claim 13.5)

Claim 13.5 implies in particular that f(vn(0)) = f(v′n(0)). Then by Claim

13.1, we have

vn(0) · · · v0
f7→ f(vn(0)) · · · (f(vn(0))− 6N − 5)

and

v′n(0) · · · v′0
f7→ f(vn(0)) · · · (f(vn(0))− 6N − 5).

This establishes part (iv).

�

4.2. Iterated sketches. If ιT : Γ → T is a Γ-marking of the simple triod T and ρN
is a 〈T, ε〉-sketch of the simple triod graph T ′ := GρN

such that [q|βN |−2, q|βN |−1] =
[ιT (c), ιT (b)] (as in Proposition 1), then one can define an induced Γ-marking ιT ′ :
Γ → T ′ on T ′ as follows: define ιT ′(a) := p|αN |−1, ιT ′(b) := q|βN |−1 = ιT (b),
ιT ′(c) := r, and for each t ∈ [0, 1] put ιT ′(dt) := ιT (dt) ∈ [q|βN |−2, q|βN |−1] =
[ιT (c), ιT (b)].

Now let T0 be as before, and suppose T1 and T2 are simple triods such that
ρ1 is a 〈T0, ε0〉-sketch of T1, and ρ2 is a 〈T1, ε1〉-sketch of T2 (using the induced
Γ-marking on T1). Evidently we should be able to find a 〈T0, ε0 + ε1〉-sketch of T2,
and indeed this is necessary if we want to apply Proposition 5 to argue that T2 has
no chain cover of small mesh. This is the motivation for the next definition (see
Proposition 14).
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Definition. Suppose 〈G,w〉 is a compliant graph-word, and N > 0. A graph-word
〈G+, w+〉 is a ρN -expansion of 〈G,w〉 if:

• G+ is identical to G as a topological space, but the vertex set of G+ is finer:
for any adjacent pair of vertices v1, v2 ∈ V (G), there are distinct degree 2
vertices sv1v2j , j = 1, . . . , κv1v2 where κv1v2 = |ζN (w(v1))| + |ζN (w(v2))| −
3, inserted into the edge joining v1, v2 so that v1, s

v1v2
1 , . . . , sv1v2κv1v2

, v2 are

consecutive in G+; and
• w+ is defined by

v1s
v1v2
1 · · · sv1v2κv1v2

v2
w+

7→ ζN (w(v1))
←

t ζN (w(v2))

when v1, v2 ∈ V (G) are adjacent in G.

Remarks. (1) Notice that w+|V (G) = w, and that 〈G+, w+〉 is also a compliant
graph-word.

(2) Combinatorially, there is only one ρN expansion of a given graph-word
〈G,w〉; however, geometrically they may differ according to where along
the edges of G the extra vertices are inserted (though their order on the
edge is determined uniquely by the definition).

Proposition 14. Suppose T is a Γ-marked simple triod, and ρN is a 〈T, ε1〉-sketch
of T ′ := GρN

. Endow T ′ with a Γ-marking as above. If ρ = 〈G,w〉 is a compliant
graph-word which is a 〈T ′, ε2〉-sketch of G, then there is a ρN -expansion of 〈G,w〉
which is a 〈T, ε1 + ε2〉-sketch of G.

Proof. Let ŵρN
: T ′ → T be a ρN -suggested bonding map such that d(x, ŵρN

(x)) <
ε1
2 for each x ∈ T ′, and let ŵ : G → T ′ be ρ-suggested bonding map such that
d(x, ŵ(x)) < ε2

2 for each x ∈ G.
Consider any adjacent v1, v2 ∈ V (G). Define

sv1v2i :=

{
ŵ−1(p|αN |−1−i) if w(v1) = a

ŵ−1(q|βN |−1−i) if w(v1) ≈Γ b

for 1 ≤ i ≤ |ζN (w(v1))|, and

sv1v2κv1v2
−i :=

{
ŵ−1(p|αN |−1−i) if w(v2) = a

ŵ−1(q|βN |−1−i) if w(v2) ≈Γ b

for 1 ≤ i ≤ |ζN (w(v2))|.
Let V (G+) be equal to V (G) together with all these new vertices, and let w+ be

defined as in the definition of a ρN -expansion. Observe that w+ = wρN
◦ (ŵ|V (G+)).

Put ρ+ := 〈G+, w+〉, where G+ is equal to G as a topological space, with vertex
set V (G+).

It is now straightforward to see that ŵρN
◦ ŵ is a ρ+-suggested bonding map,

and clearly d(x, (ŵρN
◦ ŵ)(x)) < ε1+ε2

2 for each x ∈ G. �

Lemma 15. Suppose 〈G,w〉 is a compliant graph-word, let 〈G+, w+〉 be a ρN -
expansion of 〈G,w〉, and suppose ≤+ is a chain quasi-order of 〈G+, w+〉.

(i) Let v1, v2 ∈ V (G) be adjacent in G, and let s1, . . . , sκ ∈ V (G+)r V (G) be
such that v1, s1, . . . , sκ, v2 are consecutive in G+. Then the following are
equivalent:
(1) v1 <+ v2;
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(2) v1 <+ sj <
+ v2 for each j ∈ {1, . . . , κ};

(3) v1 <+ sj <
+ v2 for some j ∈ {1, . . . , κ}.

(ii) If v1, v2 ∈ V (G) are adjacent in G and v′1, v
′
2 ∈ V (G) are adjacent in G

with v1 '+ v′1, v1 <+ v2, and v′1 <+ v′2, then v2 '+ v′2.

Proof. (i) The implications (2) ⇒ (3) and (3) ⇒ (1) are trivial. For (1) ⇒
(2) we will prove that v1 <+ s1 implies that v1 <+ sj <+ v2 for each
j ∈ {1, . . . , κ}. Then by considering the reverse order of ≤+, it follows that
v1 <+ v2 implies v1 <+ s1, hence v1 <+ sj <

+ v2 for each j ∈ {1, . . . , κ}.
Suppose v1 <+ s1. Let i ∈ {1, . . . , κ} be such that

si · · · s1v1 w+

7→ ζN (w(v1)) and si · · · sκv2 w+

7→ ζN (w(v2)).

By Lemma 13 (ii), we have v1 <+ sj <+ si for each j ∈ {1, . . . , i − 1}.
Because G is compliant, we can deduce using Lemma 10 that si <

+ si+1.
Then by Lemma 13 (i) we have si <

+ sj <
+ v2 for each j ∈ {i+ 1, . . . , κ}.

(ii) Suppose v1, v2 ∈ V (G) are adjacent in G and v′1, v
′
2 ∈ V (G) are adjacent

in G with v1 '+ v′1, v1 <+ v2, and v′1 <+ v′2. Let s1, . . . , sκ and i be as in
part (i), and let s′1, . . . , s

′
λ ∈ V (G+) r V (G) be such that v′1s

′
1, . . . , s

′
λ, v
′
2

are consecutive in G+ and

v′1s
′
1 · · · s′λv′2

w+

7→ ζN (w(v′1))
←

t ζN (w(v′2)).

By property (C1) of the chain quasi-order ≤+, w(v1) ≈Γ w(v′1), hence
|ζN (v1)| = |ζN (v′1)|, and so

s′i · · · s′1v′1
w+

7→ ζN (w(v′1)) and s′i · · · s′λv′2
w+

7→ ζN (w(v′2)).

By Lemma 13 (iv), we have si '+ s′i, and as in part (i) we know that
s′i+1 >+ s′i. By Lemma 10, this implies w(v2) ≈Γ w(v′2), hence κ = λ.
Then by Lemma 13 (iii), we conclude that v2 '+ v′2.

�

Proposition 16. Suppose 〈G,w〉 is a compliant graph-word. If a (any) ρN -expansion
of 〈G,w〉 has a chain quasi-order, then 〈G,w〉 also has a chain quasi-order.

Proof. Let 〈G+, w+〉 be a ρN -expansion of 〈G,w〉, and let ≤+ be a chain quasi-order
of 〈G+, w+〉.

Define ≤ on V (G) by ≤ := ≤+|V (G). Clearly ≤ is a total quasi-order since ≤+

is. We must check that ≤ satisfies properties (C1), (C2), and (C3) of the definition
of a chain quasi-order.

(C1): This is immediate since ≤+ satisfies this property.

(C2): We will need the following claim:

Claim 16.1. In 〈G+, w+〉, if v ∈ V (G) and v′ ∈ V (G+) are such that v '+ v′,
then in fact v′ ∈ V (G).

Proof of Claim 16.1. We proceed by induction on the number of vertices in G.
If |V (G)| = 1, then there is nothing to prove.
Assume the claim holds for all such graph-words whose graph has n or fewer

vertices, and assume |V (G)| = n+1. Let u ∈ V (G) be such that the subgraph G−

obtained by removing the vertex u (and all edges emanating from u) is connected.
There is a ρN -expansion of 〈G−, w|V (G)r{u}〉 which is a sub-graph-word of 〈G+, w+〉
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(it has vertex set V (G+) ∩ G−), and the restriction of ≤+ to this sub-graph-word
is a chain quasi-order. By induction, the claim holds for G−.

Let u′ ∈ V (G) r {u} be adjacent to u in G. Let s1 . . . , sκ ∈ V (G+) r V (G) be
such that u′, s1, . . . , sκ, u are consecutive in G+ and

u′s1 · · · sκu w+

7→ ζN (w(u′)) t ζN (w(u)).

Assume u′ <+ u (the other case proceeds similarly), which implies by Lemma
15 (i) that u′ <+ sj <

+ u for each j ∈ {1, . . . , κ}.
We have four things to check:

(1) for each y ∈ V (G)r {u} and each s ∈ V (G+)r V (G) in the ρN -expansion
of G−, y 6'+ s;

(2) for each y ∈ V (G) r {u} and each j ∈ {1, . . . , κ}, y 6'+ sj;
(3) for each s ∈ V (G+)r V (G) in the ρN -expansion of G−, u 6'+ s; and
(4) for each j ∈ {1, . . . , κ}, u 6'+ sj.

Observe that (1) holds by induction, and (4) is immediate from the fact that
u′ <+ sj <

+ u for each j ∈ {1, . . . , κ}. For (2) and (3), we consider two cases.

Case 1. For every y ∈ V (G) r {u}, y ≤+ u′.

Since u′ <+ sj <
+ u for each j ∈ {1, . . . , κ}, we have immediately that y 6'+ sj

for any y ∈ V (G)r {u}.
Also, from Lemma 15 (i) it follows that for every s ∈ V (G+) r V (G) in the

ρN -expansion of G−, s <+ u′. Therefore u 6'+ s for any such s.

Case 2. There exists some y ∈ V (G) r {u} such that u′ <+ y.

Let P be a path of vertices in G− starting at u′ and ending at y. Let y1 be the
latest vertex y′ in P with y′ ≤+ u′, and let y2 be the next vertex in P after y1, so
that y1 and y2 are adjacent in G and y1 ≤+ u′ <+ y2.

Suppose for a contradiction that y1 <+ u′. Let z1, . . . , zλ ∈ V (G+) r V (G) be
such that y1, z1, . . . , zλ, y2 are consecutive in G+. Then by Lemma 4 there is some
i ∈ {1, . . . , λ} such that u′ '+ zi. But this contradicts the fact that the claim holds
for G− by induction. Therefore we must have u′ '+ y1.

Then from Lemma 15 (ii) we know that u '+ y2. It follows immediately that
u 6'+ s for each s ∈ V (G+) r V (G) in the ρN -expansion of G−, because y2 6'+ s
for every such s by induction.

Moreover, for each j ∈ {1, . . . , κ}, since y1 '+ u′ <+ sj <+ u '+ y2, we know
from Lemma 4 that there is some s ∈ V (G+) r V (G) inserted between y1 and y2
such that sj '+ s. It follows that y 6'+ sj for any y ∈ V (G)r {u}, because y 6'+ s
for every such y by induction. �(Claim 16.1)

Now suppose v1, v2 ∈ V (G) are adjacent in G, and assume v1 ≤ v2. Let
s1, . . . , sκ ∈ V (G+)rV (G) be such that v1, s1, . . . , sκ, v2 are consecutive in V (G+).
If v ∈ V (G) were such that v1 < v < v2, then v1 <+ v <+ v2 as well, so by Lemma
4 there would be some i ∈ {1, . . . , κ} such that v '+ si. But this contradicts Claim
16.1.

(C3): Suppose v ∈ V (G), v1, v2, v3 are consecutive in G, and that σ, τ ∈ {a, c} and

t, t′ ∈ [0, 1] are such that t′ ≥ t, w(v) = dt′ , v1v2v3
w7→ σdtτ , and v1 < v2 ' v < v3.
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Let s1, . . . , sκ, s
′
1, . . . , s

′
λ ∈ V (G+)rV (G) be such that v1, s1, . . . , sκ, v2, s

′
λ, . . . , s

′
1, v3

are consecutive in G+, and

v1s1 · · · sκv2s′λ · · · s′1v3
w+

7→ ζN (σ)← t β−Ndt(β
−
N )← t ζN (τ).

Observe that w+(sκ) = w+(s′λ) = c. Since v1 <+ v2, by Lemma 15 (i) we must
have sκ <+ v2. Likewise, we have v2 <+ s′λ. It now follows from property (C3) of
the chain quasi-order ≤+ that t′ − t < 1

2 . �

5. The example

Example. There exists a continuum X ⊂ R2 which is non-chainable and has span
zero.

Proof. First we define by recursion a sequence 〈TN 〉∞N=0 of simple triods in R2 and
a sequence 〈εN 〉∞N=0 of positive reals as follows.

Let T0 ⊂ R2 be as defined above, and put ε0 := 1
8 .

Suppose TN , εN have been defined. Apply Proposition 1 to obtain an embedding
TN+1 of the simple triod graph GρN+1

in R2 such that ρN+1 is a 〈TN , εN〉-sketch
of TN+1. Endow TN+1 with a Γ-marking as above. Notice that TN+1 ⊂ (TN )εN ,
where Yε denotes the ε-neighborhood of the space Y . By Proposition 3, the span
of TN+1 is < 1

2(N+1) + εN . Let 0 < εN+1 < 2−N−4 be small enough so that

(TN+1)εN+1
⊆ (TN )εN , and so that span((TN+1)εN+1

) < 1
2(N+1) + 2εN .

Put X :=
⋂∞

N=0 (TN )εN .

Observe that for any N , we have X ⊆ (TN+1)εN+1
, hence

span(X) ≤ span((TN+1)εN+1
) <

1

2(N + 1)
+ 2εN .

Since εN converges to 0 as N → ∞, it follows that X has span zero.
Suppose for a contradiction that X has a chain cover of mesh < 1

4 . Then there

is some N > 0 for which TN has a chain cover of mesh < 1
4 .

Define by recursion the graph-words 〈Gi, wi〉, 0 ≤ i ≤ N − 1, as follows:
〈GN−1, wN−1〉 := ρN , and for i < N−1, 〈Gi, wi〉 is the ρi+1-expansion of 〈Gi+1, wi+1〉
provided by Proposition 14 which is a 〈Ti,

∑N−1
j=i εj〉-sketch of TN . In particular,

〈G0, w0〉 is a 〈T0,
∑N−1

j=0 εj〉-sketch of TN .

Since
∑N−1

j=0 εj <
∑N−1

j=0 2−j−3 < 1
4 , by Proposition 5 we have that 〈G0, w0〉

has a chain quasi-order. Then by Proposition 16 and induction, we obtain a chain
quasi-order for each graph-word 〈Gi, wi〉. In particular, 〈GN−1, wN−1〉 has a chain
quasi-order. But 〈GN−1, wN−1〉 is ρN , so this contradicts Proposition 11. �

6. Questions

The construction presented in this paper can be carried out so that every proper
subcontinuum of the resulting space is an arc; hence, in particular, it is far from
being hereditarily indecomposable. On the other hand, it follows from results of [17]
that if there exists a non-degenerate homogeneous continuum in the plane which is
not homeomorphic to the circle, the pseudo-arc, or the circle of pseudo-arcs, then
there would be one which is hereditarily indecomposable and with span zero. Given
that the pseudo-arc is the only hereditarily indecomposable chainable continuum,
this raises the following question:
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Question 1 (See Problem 9 of [18]). Is there a hereditarily indecomposable non-
chainable continuum with span zero?

If such an example exists, then by [19, Corollary 6] it would be a continuous image
of the pseudo-arc. Since any map to a hereditarily indecomposable continuum is
confluent [22, Lemma 15], it would also be a counterexample to Problem 84 of [4],
which asks whether every confluent image of a chainable continuum is chainable.

Regarding the planarity of the example in this paper, while every chainable
continuum can be embedded in the plane [2], the same is not known to be true of
continua with span zero.

Question 2. Can every continuum with span zero be embedded in R2?
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