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Abstract. A continuum X having the property of Kelley is constructed
such that neither X×[0, 1], nor the hyperspace C(X) nor small Whitney
levels in C(X) have the property. This answers several questions asked
in the literature.

A metric continuum X is said to have the property of Kelley provided
that for each point x ∈ X, for each subcontinuum K of X containing x

and for each sequence of points xn converging to x there exists a sequence
of subcontinua Kn of X containing xn and converging to the continuum K

(see e.g. [8, Definition 16.10, p. 538]).
The property, introduced by J. L. Kelley as property 3.2 in [7, p. 26],

has been used there to study hyperspaces, in particular their contractibility
(see e.g. Chapter 16 of [8] and Chapter V of [4], where references for further
results in this area are given). Now the property, which has been recognized
as an important tool in investigation of various properties of continua, is
interesting by its own right, and has numerous applications to continuum
theory. Many of them are not related to hyperspaces. In [9, Theorem 2.5,
p. 293] Wardle has proved that homogeneous continua have the property
of Kelley. In [3] the second named author has generalized the property of
Kelley to the non-metric case, and constructed an example showing that,
unlike for metric continua, the homogeneity of non-metric ones does not
imply the property of Kelley.

Property of Kelley for product spaces and for hyperspaces of a continuum
was a subject of studies by a number of topologists since years. We recall
here some of them. In [9, Corollary 4.6, p. 297] it is proved that if a
product of two continua has the property of Kelley, then each factor space
has the property of Kelley. The converse is not true: the union X of two
opposite spirals in the plane, approaching the unit circle has the property
of Kelley, while X × X does not, see [9, Example 4.7, p. 297]. Presenting
this example in his book, [8, Example 16.35, p. 558] Nadler writes “It
seems quite surprising that the Cartesian product of two continua, each
having the property of Kelley, may fail to have the property of Kelley.”
Further investigations in the area lead to formulate some basic questions:
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if a continuum X has the property of Kelley and a continuum Y is locally
connected, does X × Y have the property of Kelley? (see [5, Question 1, p.
173]) or even does X × [0, 1] have the property of Kelley? (see [6, Problem
3.4, p. 1148] and compare [4, Question 50.2, p. 277]). Both these questions
are answered in the negative by our Theorem 1.

The notion of the property of Kelley is important in hyperspace theory.
Nadler in [8, Questions 16.37, p. 558] asks about relations between the
following assertions: (a) the continuum X has the property of Kelley, (b)
the hyperspace 2X has the property of Kelley, (c) the hyperspace C(X) has
the property of Kelley. In [2] the second named author showed that there is
a curve X such that X and C(X) have while 2X does not have the property
of Kelley (in fact, X is the circle with two spirals mentioned above). Here
we show that the implication from (a) to (c) does not hold in general.

In [9, p. 295] Wardle asks whether the property of Kelley is a Whitney
property, that is, if X has the property of Kelley, then for each Whitney
map µ : C(X) → [0,∞) each Whitney level µ−1(t) also has the property.
Recalling the question in [4, Question 50.1, p. 277] Illanes and Nadler com-
ment: “This problem has turned out to be very difficult.” Trying to solve
the question, Kato has proved in [6, Corollary 3.3, p. 1147] that in order to
obtain an affirmative answer to the question (i.e., to show that the property
of Kelley is a Whitney property) it is enough to show that if X has the prop-
erty of Kelley, then X × [0, 1] has the property. Thus problems concerning
the property of Kelley for hyperspaces are tied with ones for product spaces.
It is shown in Theorem 1 below that the property of Kelley for X implies
the one neither for X × [0, 1] nor for Whitney levels.

Let us recall the needed definitions and notation.
All considered spaces are assumed to be metric. We denote by N the set

of all positive integers, and by R the space of reals. A continuum means
a compact connected space, and a mapping means a continuous function.
Given a subset A of a space X and a positive real number ε, we denote by
N(A, ε) an ε-neighborhood of A in X.

Given a continuum X, we let 2X denote the hyperspace of all nonempty
closed subsets of X equipped with the Hausdorff metric H (see e.g. [8, (0.1),
p. 1 and (0.12), p. 10]). Further, we denote by C(X) the hyperspace of all
subcontinua of X, i.e., of all connected elements of 2X .

A Whitney map for C(X) is a mapping µ : C(X) → [0,∞) such that:

(0.1) µ(A) < µ(B) for every two A, B ∈ C(X) such that A ⊂ B and
A 6= B;

(0.2) µ(A) = 0 if and only if A is a singleton.

For the concept and existence of a Whitney map see [4, Section 13, p. 105-
110]. For each t ∈ [0, µ(X)] the preimage µ−1(t) is called a Whitney level.
It is known that each Whitney level is a continuum, see [4, p. 159].

The reader is referred to monographs [4] and [8] for definitions and basic
properties of other notions used in the paper.
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The main result of this paper is the following theorem.

Theorem 1. There exists a continuum X having the following properties.

(1.1) X has the property of Kelley;

(1.2) X × [0, 1] does not have the property of Kelley;

(1.3) the hyperspace C(X) does not have the property of Kelley;

(1.4) for each Whitney map µ : C(X) → [0,∞) there exists a number

s > 0 such that for each t ∈ (0, s) the Whitney level µ−1(t) does not

have the property of Kelley.

Proof. In the polar coordinates (r, ϕ) in the plane consider the circles

S = {(r, ϕ) : r = 1} (the thick circle),

Sn = {(r, ϕ) : r = 1 + 1
2πn

} for n ∈ N (the dashed circles)

and two spirals

Σ1 = {(r, ϕ) : r = 1 + 1
ϕ

and ϕ ∈ [1,∞)},

Σ2 = {(r, ϕ) : r = 1 − 1
ϕ

and ϕ ∈ [1,∞)}.

pictured in the Figure as solid lines.
Thus Σ1 and Σ2 go in the same direction and approach the unit circle S

from outside (Σ1) and from inside (Σ2).
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The constructed continuum X is defined as

X = Σ1 ∪ Σ2 ∪ S ∪
⋃

{Sn : n ∈ N}.

For each n ∈ N define qn = (1 + 1
2πn

, 0) and observe that Sn ∩ Σ1 = {qn}
and lim qn = q = (1, 0).

Further, denote by p : X → S the central projection defined by p((r, ϕ)) =
(1, ϕ).

1) To show that X has the property of Kelley consider a point x ∈ X, a
sequence of points xn ∈ X tending to x and a continuum K ⊂ X containing
the point x. We have to show that there are continua Kn such that xn ∈ Kn

for each n ∈ N and K = LimKn.
If x ∈ X \ S, then X is locally connected at x, and we may take as Kn

the union of K and the shortest arc in X joining xn and x. If x ∈ S we need
to consider two cases.

Case 1. K ( S. For each n ∈ N, let Pn be an irreducible arc in S from
p(xn) to K. Note that lim diam(Pn) = 0. Then it is enough to define Kn as
the component of p−1(K ∪ Pn) containing xn.

Case 2. S ⊂ K. Then for each n ∈ N there is a spiral Σ′

n having xn as
its end point and approaching S. Indeed, if xn ∈ Σ1, then Σ′

n is a subspiral
of Σ1; if xn ∈ Σ2, then Σ′

n is a subspiral of Σ2; and if xn ∈ Sk for some
k ∈ N, then Σ′

n is the union of an arc joining xn to Σ1 contained in Sk and
a subspiral of Σ1. Finally put Kn = K ∪ Σ′

n. Since the spirals Σ′

n tend to
S, we have K = Lim Kn. So, we have shown that X has the property of
Kelley.

2) To show that X × [0, 1] does not have the property of Kelley, define (in
the cylindrical coordinates (r, ϕ, z) in the 3-space) an arc

A = {(1, 2πz, z) : z ∈ [0, 1]} ⊂ S × [0, 1].

Further, for each n ∈ N, define

An = {(r, ϕ, z) : r = 1 + 1
ϕ+2πn

, ϕ = 2πz, and z ∈ [0, 1]}.

Thus An is an arc from (qn, 0) to (qn+1, 1) lying in Σ1 × [0, 1].
Similarly, for each n ∈ N, define

Bn = {(r, ϕ, z) : r = 1 + 1
2πn

, ϕ = 2πz and z ∈ [0, 1]}.

Thus Bn is an arc with end points (qn, 0) to (qn, 1) lying in Sn × [0, 1].
Notice that

An ∩ Bn = {(qn, 0)} and An ∩ Bn+1 = {(qn+1, 1)}.

Finally put

K = A ∪
⋃

{An ∪ Bn : n ∈ N}, x = (1, 0, 0),

xn = (1 − 1
2πn

, 0, 0) for each n ∈ N,

and observe that x ∈ K, xn ∈ Σ2 × [0, 1] and x = lim xn.
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We will show that there are no continua Kn ⊂ X × [0, 1] converging to
K and containing the points xn. To this aim suppose on the contrary that
there are such continua and observe that (p× id)(K) = A. Then for all but
finitely many n we must have Kn ⊂ (p× id)−1(N(A, ε)) for arbitrary ε > 0.
Notice that, however, for ε < 1 the component of (p × id)−1(N(A, ε)) that
contains xn is a subset of Σ2× [0, 1], so Kn ⊂ Σ2× [0, 1]. Hence, if d denotes
the metric in X × [0, 1] and H denotes the Hausdorff metric, we have

H(K, Kn) ≥ d((q, 0), (q1, 0)) = 1
2π

for each n ∈ N,

whence it follows that K is not the limit of continua Kn. This finishes the
proof that X × [0, 1] does not have the property of Kelley.

3) To show that the hyperspace C(X) does not have the property of Kelley
accept the following notation, where n ∈ N.

Dα = {(1, ϕ) : ϕ ∈ [α, α + π]} ⊂ S, where α ∈ R;

A = {Dα : α ∈ [0, π]} ⊂ C(S);

Thus Dα is an arc in the circle S and A is an arc in the hyperspace C(S).
Define

K = {Q ∈ C(X \ Σ2) : p(Q) ∈ A}

and observe that K is the union of a ray in C(X) approximating the arc A
and of A. Take D0 ∈ K. Let D′

n be a sequence of arcs in the inner spiral
Σ2 tending to D0. Then arguing as previously one can show that there is
no sequence of subcontinua Kn of C(X) such that D′

n ∈ Kn and having K
as its limit. Thus C(X) does not have the property of Kelley.

4) Let µ : C(X) → [0,∞) be an arbitrary Whitney map, and define
s = µ(S). To show (1.4) we may modify the above proof of (1.3) in such
a way that for each number t with 0 < t < s the continua Dα are arcs in
the Whitney level µ−1(t); similarly the arc A and the ray K can be taken as
subsets of µ−1(t). Moreover, we may consider arcs D′

n in C(Σ2) such that
µ(D′

n) = t and LimD′

n = D0. Then there are no continua Kn ⊂ µ−1(t)
containing D′

n such that K = LimKn.
This finishes the proof. �

Theorem 1 implies the following corollaries.

Corollary 2. If a continuum X has the property of Kelley, then the product

X × [0, 1] need not have the property of Kelley.

Corollary 2 answers in the negative a question of Kato in [6, Problem 3.4,
p. 1148] (compare also [4, Question 50.2, p. 277]).

Corollary 3. If a continuum X has the property of Kelley, then the hyper-

space C(X) need not have the property of Kelley.
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Corollary 3 answers in the negative a question of Nadler in [8, Questions
16.37, p. 558] (repeated in [4, Questions 78.27, p. 405]).

A topological property P is said to be a small weak Whitney property

provided that for each continuum X there are a Whitney map µ : C(X) →
[0,∞) and a number s ∈ (0, µ(X)) such that if X has the property P, then
for each t ∈ [0, s) the Whitney level µ−1(t) has the property P, [1].

Corollary 4. The property of Kelley is not a small weak Whitney property,

and thus it is not a Whitney property.

Corollary 4 answers in the negative the question of Wardle in [9, p. 295].

We close the paper with some open questions related to the subject.
In [8, Questions 16.37, p. 558] Nadler asks several questions concerning

implications between the property of Kelley for a continuum X and the
hyperspaces 2X and C(X). All these questions have been already answered
except one.

Question 5. (Nadler). Let X be a continuum. If 2X has the property of
Kelley, then does C(X) have the property?

In a conversation with the second named author, J. R. Prajs asked the
following two questions.

Questions 6. (Prajs). Let X be a continuum. a) If X × [0, 1] has the
property of Kelley, then does C(X) have the property? b) If C(X) has the
property of Kelley, then does X × [0, 1] have the property?

Question 7. Let X be a continuum and let µ : C(X) → [0,∞) be a Whitney
map. If, for each t > 0, the Whitney level µ−1(t) has the property of Kelley,
then does C(X) have the property?

A topological property P is said to be a sequential strong Whitney re-

versible property provided that whenever X is a continuum such that there
is a Whitney map µ for C(X) and a sequence {tn : n ∈ N} such that
lim tn = 0 and µ−1(tn) has property P for each n, then X has property P,
[4, Definition 27.1 (d), p. 232 and 233].

It is known that the property of Kelley is a sequential strong Whitney
reversible property, see [4, Theorem 50.4, p. 277]. The next question is
related to this result.

Question 8. Let X be a continuum. If there are a Whitney map µ for
C(X) and a sequence {tn : n ∈ N} such that lim tn = 0 such that µ−1(tn)
has the property of Kelley for each n, then does C(X) have the property?

Acknowledgement. The first named author underlines that the whole
idea of the construction of the continuum X in Theorem 1 is due to the
second named author.
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