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AI – Elephant in the Room

Dream New AI Models
Explain the Models

Worth Climbing the Beanstalk

Grow the Models from –
Stochastic Calculus, Optimal
Control, Non-Equil Stat Mech

From Ugly (?) Duck to Swan
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Artificial Intelligence ⊂ Applied Math

Applied Math ’21
Traditional Applied Math: Driven
by sciences & engineering
Contemporary Applied Math:
Foundations and frontiers in AI
Synthesis: Integration of
Traditional and Contemporary
Approaches

Upcoming Example of Advancing AI ⊂ Applied Math
Sampling Decisions = Synthesis of Generative AI tools

Diffusion Models (Stochastic ODEs, Optimal Contol)
Transformers (Tokens + Auto-Regression)
Reinforcement Learning (Markov Decision Processes)
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Instead of Introduction: Subjective = Personal Reflection on
How Does Applied Math Enable AI? – AM → AI
How Do We Use AI in Sciences & Engineering (Applications)?
– AI → AM
MC, Mixing artificial and natural intelligence: from statistical
mechanics to AI and back to turbulence, Topical Review in J.
Phys. A: Math. Theor. 57, 33 (333001), 2024

Automatic Differentiation (AD):
Computes derivatives efficiently using elementary operations
and the chain rule.
Major engine behind efficient optimization (billions of
parameters) critical for “everything” AI

Deep Learning:
Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):

Focus on rare interruptions -
multi-scenario optimization under
uncertainty + sensitivity analysis

Progress: Augmenting AD with
Symbolic Differentiation

Neural Network Free/minimal

Academy & Industry (NOGA - energy system operator of Israel)
Collaboration: Model Reduction & open-source via Julia

Pipe Line Simulation Interest Group - best student award C. Hyett,
et al, arXiv:2304.01955, 2310.18507, 2311.08686

Deep Learning:
Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:

Represents functions via many-layered, parameterized nonlinear
transformations, i.e. Neural Networks.
Employs Automatic Differentiation for training.

Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:

Physics-Informed Machine Learning for Electricity Market
R. Ferrando, et al, IEEE Transactions on Energy Markets, 2/1
(2024), DOI: 10.1109/TEMPR.2023.3318197

Identify least tractable bottleneck
= stressed power lines

Utilize Deep Learning to resolve
the bottleneck

Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):

Data-driven approach to optimal control under uncertainty
using Deep Learning.
Learns optimal actions by exploring (reward-driven) feedback:
exploration → exploitation.

Generative Models:
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):

Physics-Guided Actor-Critic Reinforcement Learning for Swimming in Turbulence

EnvironmentActor

Error

Critic

Bottleneck = weak NN Critic

Make Critic informed by
Lagrangian-Hydro
phenomenology

C. Koh, L. Pagnier, MC, Phys.
Rev. Research 7, 013121 (2025),
10.1103/PhysRevRe-
search.7.013121

Generative Models:
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Generates new data from existing examples:
either distributionally (e.g., diffusion) or
conditional (e.g., transformers).

Combines Deep Learning + optimal control
+ RL

GPT-4 prompt: Show UArizona

bobcat swimming butterfly style in

a turbulent river.
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Neural Smooth Particle Hydrodynamics = Tokens in Turbulence

Hierarchy of Models
Eulerian 

Field 
Tracer Particles

(tokens)

Trained Model

quasi-particles = tokens

“physical” attention via
particle-field relation

Lagrangian Large Eddy
Simulations: M. Woodward,
et al, 10.1103/PhysRevFlu-
ids.8.054602; Y. Tian, et al,
10.1073/pnas.2213638120
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Lagrangian Attention Tensor NN – Auto-Regression in Turbulence

Ĥ =
∑10

n=1 g
(n)
θ

(λ1, . . . , λ5, c
(1), . . . , c(L))T (n)

c(ℓ)
(
A(0), · · · ,A(M)

)
= σ

(
K

(m,ℓ)
ij A

(m)
ij

)

Physics-informed NN stochastic Lagrangian
closure for velocity gradient tensor

Lagrangian history: autoregressive &
attention-like, but physics-transparent

C. Hyett, et al, arxiv:2502.07078; Y. Tian, D.
Livescu, MC, Phys Rev Fluids (2021)
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Stat Phys ⇒ AI: Score-Based Diffusion

Train on Ensemble of Samples Generate Synthetic Samples

Generate Synthetic Samples which are i.i.d. from a target
probability distribution, ptarget(·), represented

implicitly via Ground Truth samples
or explicitly via Energy Function, ptarget(·) ∝ exp(−E (x))
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Diffusion Models = Non-Autonomous Stochastic ODE

Score Based Diffusion (SBD)

Reverse-Time Diffusion [1,2]

Reference (vague) to Stat.
Thermodynamics [2]

Continuous time SBD – state-of-the-art in GenAI [4]

1B. Anderson, Reverse-time diffusion equation models, 1982
2H. Fölmer, Time Reversal on Wiener Spaces, 1986
3J. Sohl-Dickstein, et al, Deep Unsupervised Learning using Nonequilibrium

Thermodynamics, 2015
4Y. Song, et.al., Score-Based Generative Modeling through Stochastic

Differential Equations, 2021
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Dynamic Phase Transitions in Score Based Diffusion

When to U-turn? –
Memorization/Collapse Transition [1,2]

Spontaneous Choice of the Specie/Class –
Speciation Transition [2]

1H. Behjoo, MC, U-turn Diffusion, 2023 (published in Entropy, 2025)
2G. Biroli, et al, Dynamical Regimes of Diffusion Models, 2024
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Score Based Diffusion & Stochastic Optimal Control (SOC)

Score Based Diffusion as "Integrable" Stoch. Optimal Transport

min
u(0→1;x(0→1))

E
[∫ 1

0
dt
|u(t; x(t))|2

2

∣∣∣Eqs. (∗, ∗∗)
]

s.t. t ∈ [0, 1] : dx(t)=u(t; x(t))dt+dW (t), x(0)=0 (∗)
p(x(1)) = ptarget(x(1)) (∗∗)

Grow target distribution from point source
Stochastic Optimal Control ⇒ Transport
Theory for sampling from ptarget(·) [1], based on

"Integrability": Nonlinear HJB ⇒ Hopf ’50 -Cole ’51 ⇒
Diffusion (Mitter ’81, Pavon ’89)

1M.Tzen, M.Ragynsky, Theoretical guarantees .. with latent diffusions, 2019
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Integrable SOC with Potential, Forced & Gauged

(Top Level) Integrable SOC in a Potential. Forced (& Gauged)

min
u(·;x(·))

E

 1∫
0

dt

(
|u(t; x(t))|2

2
+V (t; x(t))+ẋT (t)A(t; x(t))

)∣∣∣Eqs. (∗, ∗∗)


s.t. t ∈ [0, 1] : dx(t) = f (t; x(t)) + u(t; x(t))dt + dW (t), x(0) = 0 (∗)

p(x(1)) = ptarget(x(1)) (∗∗)

Path Integral Diffusion – H. Behjoo, MC (2024, IEEE Access 2025)

"Integrable" SOC in a Potential, Forced and Gauged

Grow target distribution from a point source
Based on Path Integral Control (PIC) [1]
Field & Gauge Extension of PIC [2]

1H. J. Kappen, Path integrals ... for optimal control theory, 2005.
2V. Chernyak, MC, J. Bierkens, H.J. Kappen, SOC as Non-Eq Stat Mech:

Calculus of Variations over Density and Current, 2013
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Path Integral Diffusion – (Top Level) Integrability

Hamilton-Jacobi Bellman for Cost-to-go (backwards from 1 to t)

−∂tJ = V + 1
2

(
∇T (∇J + A)− |∇J + A|2

)
+ f T (∇J + A)

Optimal Control: u∗ = −∇J − A

Hopf-Cole: J(t; x) = − logψ(t; x)

−∂tψ + Ṽψ + ÃT∇ψ = 1
2∆ψ, ψ(1; x) = exp (−ϕ(x)), ϕ(·) is the terminal cost

correspondent to ptarget(·)
Ṽ

.
= V + 1

2∇
TA + f TA − 1

2 |A|2, Ã .
= A − f

∂tp∗ +∇T
(
p∗(∇ logψ − Ã)

)
= 1

2∆p∗, p∗(0; x) = δ(x), p∗(1; x) = ptarget(x)

Optimal Control via Green Functions:
u∗(t; x(t)) = ∇x log

(∫
dy ptarget(y)

G−(t;x(t);y)
G+(1;y ;0)

)
t ∈ [1 → 0] : −∂tG− + Ṽ (x ; t)G− + ÃT∇G− = 1

2∆G−, G−(1; x) = δ(x − y)
t ∈ [0 → 1] : ∂tG+ + Ṽ (x ; t)G+ −∇T (ÃG+) =

1
2∆G+, G+(0; x) = δ(x − y)
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Use Case – Harmonic, Uniform – Low Level Integrability

V (t; x) = β|x |2 ⇒ Explicit Expression for the Green Functions

u∗(t; x) =
√
β

sinh((1−t)
√
β)

(
x̂(t; x)− x cosh((1 − t)

√
β)

)
Weighted State: x̂(t; x) .

=
∫
dyyw(y |t; x) = Ey∼w(·|t;x) [y ]

Weight (probability): w(y |t; x) ∝ ptarget(y)
G−(t;x ;y)
G+(1;y ;0)

G−(t;x ;y)
G+(1;y ;0) =√

sinh(
√

β)
sinh((1−t)

√
β)

exp

(
−

√
β

2

(
(x2 + y2) coth

(
(1 − t)

√
β
)
− y2 coth

(√
β
)
− 2(xT y)

sinh((1−t)
√

β)

))

Experiments & Analysis

Use Universal Harmonic Importance Sampling (UHIC)
To estimate score function – u∗(t; x) – efficiently

ask me about this

May be NN - free (in low dimensions, moderate # of samples)
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Gaussian Mixture
over (3 × 3) grid
s = 1, · · · , 1000 -
samples of UHIC:
Red - exact
Blue - x (s)(t)
Green x̂ (s)(t; x(t))

Rows:
β = 0, 0.1, 1, 10, 100

Energy Function Sampling
Speciation Transition: 9 Gaussians = 9 species
Seen earlier in x̂ (s)(t; x(t)) – the order parameter
Transition time depends on β. Fastest at β ≈ 0.1
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Space-Time Evolution of Samples

"Lagrangian" view (vs "Eulerian →)
Much more of "exploration"
meandering in x̂(t; x(t))
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Sampling from CIFAR-10

β =
10

x̂(t; x(t)) .
=

∑
s y (s)w(y (s)|t; x(t)) x(t)

Analysis of the Memorization Transition
Emergence of Two Phases
See it earlier in the Weighted State = Order Parameter
Transition time increases with β

Much more of "exploration" meandering in x̂(t; x(t))
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(Harmonic) Path Integral Diffusion – Summary

• From zero to high-quality sample via Stochastic Optimal Control
Three Levels of Integrability:
❑ Top: Any Potential, Force & Gauge [two linear ODEs for Green Functions]

❑ Mid: Equivalent to Quantum Harmonic Oscillator

❑ Low: Uniform Quadratic Potential [implemented in algorithm]

Harmonic Path Integral Diffusion (H-PID)

Artificial Time

Im
ag

e
 S

p
ac

e

H-PID correction

H. Behjoo, MC, IEEE Access 13, 42196 - 42213 (2025), 10.1109/ACCESS.2025.3548396
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Discrete Space & Time

MC, S. Ahn, H. Behjoo, Sampling
Decisions, arxiv:2503.14549
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Insight #1: Diffusions & Reinforcement Learning
Diffusions = GREAT tools of GenAI

... BUT ... time is artificial

Dream: Can we link diffusion to a
physical process of sample growth?

and BTW ... Path Integral
Diffusion links Diffusion to
Stochastic Optimal Control (SOC)

EnvironmentActor

Error

Critic

... and in AI data-driven version of
SOC = Reinforcement Learning

Key Insight #1:
Path Integral Diffusion & Control
bridge RL and Diffusion

... but both are Markovian = short
memory
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Insight #2: Reinforcement Learning & Auto-Regression

Generative Flow Networks (GFN)

GFN [1]: view sampling as
sequential decisions on a Directed
Acyclic Graph

Built on discrete space-time RL =
Markov Decision Processes

Samples are built step-by-step:
s0 = ∅ → s1 → ... → sT .

History-dependent, auto-regressive
construction like transformers.

aE. Bengio, et. al, Flow Network based
Generative Models for Non-Iterative Diverse
Candidate Generation, 2021

Key Insight #2: GFN bridges RL and
Transformer paradigms
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Insight #2: Reinforcement Learning & Auto-Regression

Generative Flow Networks (GFN)

GFN [1]: view sampling as
sequential decisions on a Directed
Acyclic Graph

Built on discrete space-time RL =
Markov Decision Processes

Samples are built step-by-step:
s0 = ∅ → s1 → ... → sT .

History-dependent, auto-regressive
construction like transformers.

aE. Bengio, et. al, Flow Network based
Generative Models for Non-Iterative Diverse
Candidate Generation, 2021

Key Insight #2: GFN bridges RL and
Transformer paradigms
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Decision Flow Framework

Goal: Generate Samples: σ ∼ exp(−E(σ)) – from the Energy/Graph Model

Sequentially: ∅ = s0 → s1 → · · · → sT = σ, Given: Prior Markov Process pprior(·|·)

Solution: p∗t (st+1|st) ∝ p
(prior)
t (st+1|st)

∑
s′
T

e−E(s′T )Gt+1(st+1|s′T )

π
(prior)
T (s′T )

,

Gt(st |sT ) =
∑
st+1

p
(prior)
t (st+1|st)Gt+1(st+1|sT ), GT (sT |s′T ) = δ(sT , s

′
T )

Illustrative Example:
Ising model : E(σ) =

−
∑

(a,b)∈E Jabσaσb −
∑

a∈V haσa

Integrable = Solution of a Markov Decision Process (MDP)

G•(•|•) – (time-reverse) Green function of the prior MP

Akin to a Linearly Solvable MDP [1] with an extra
terminal condition, where [1] a Discrete Time & Space
generalization of the Path Integral Control [2]

[1] E. Todorov, Linearly-solvable Markov decision problems, NeurIPS 2007
[2] H. J. Kappen, Path integrals ... for optimal control theory, 2005.
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Decision Flow Framework

Goal: Generate Samples: σ ∼ exp(−E(σ)) – from the Energy/Graph Model

Sequentially: ∅ = s0 → s1 → · · · → sT = σ, Given: Prior Markov Process pprior(·|·)

Solution: p∗t (st+1|st) ∝ p
(prior)
t (st+1|st)

∑
s′
T

e−E(s′T )Gt+1(st+1|s′T )

π
(prior)
T (s′T )

,

Gt(st |sT ) =
∑
st+1

p
(prior)
t (st+1|st)Gt+1(st+1|sT ), GT (sT |s′T ) = δ(sT , s

′
T )

Illustrative Example:
Ising model : E(σ) =

−
∑

(a,b)∈E Jabσaσb −
∑

a∈V haσa

min
p0→T−1,π0→T−1

T−1∑
t=0

∑
st ,st+1

πt(st)pt(st+1|st) log
(

pt(st+1|st)
p
(prior)
t (st+1|st)

)

s.t. πt+1(st+1) =
∑
st

pt(st+1|st)πt(st),

∑
st+1

pt(st+1|st) = 1, pT (•) ∝ exp(−E(•))
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NN-Free Decision Flow Algorithm

Solution: p∗t (st+1|st) ∝ p
(prior)
t (st+1|st)

∑
s′
T

e−E(s′T )Gt+1(st+1|s′T )

π
(prior)
T (s′T )

(1),

Gt(st |sT ) =
∑
st+1

p
(prior)
t (st+1|st)Gt+1(st+1|sT ), GT (sT |s′T ) = δ(sT , s

′
T ), (2)

Given: p
(prior)
t (•|•), t = 1, · · · ,T – pre-trained algorithm

Generate K Paths from the algorithm,
Ξ(k) = (s0 = ∅, s(k)1 , · · · , s(k)T ), · · · k = 1, · · · ,K

Build p
(prior-emp)
• (•|•)

Build empirical version of the Green function according to (1)

Build p
(post-emp)
• (•|•) according (2)

Generate S posterior samples to test performance
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Decision Flow Example: Sampling from Ising

Apply DFA to sample
from Glassy Ising (3 × 3),
ha, Jab ∼ Uniform[−1, 1]
m∗

a = 1
S

∑S
s=1 σ

(s)
T ;a

c∗ab = 1
S

∑S
s=1 σ

(s)
T ;a

σ
(s)
T ;b

∆1 =
∑

a
∥ma−m

(ref)
a ∥

T ∥m(ref)
a ∥

,

∆2 =
∑

(a,b)

2∥cab−c
(ref)
ab

∥

T (T−1) ∥c(ref)
ab

∥

Posterior vs MCMC
(benchmark) – better
convergence in
small-sample regime
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Decision Flow: Unifying Diffusion, RL, and Transformers

Conclusion and Path Forward

Key Takeaways

Decision Flow (DF) – unifying framework for GenAI:
Integrates core ideas from Diffusion Models,
Reinforcement Learning, and Transformers

Rooted in stochastic control and Green function techniques.
Especially suited for problems with:

an inherent time-line or sample growth process
emphasis on sampling rather than classical optimization
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Conclusion and Path Forward

Next Steps: Methodology & Applications
Scalability: Neural implementations for large systems;
batched empirical averaging
Hybrid Input: Combine ground-truth samples with
energy-based models
Expert-Informed Models: Incorporate constraints, domain
knowledge, and rare events
Target Applications:

Material discovery and design
Control of physical (e.g., complex fluids) and engineered (e.g.,
power grids, drone swarms) systems
Modeling epidemics—both social and viral
Open to discuss other Applications
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Conclusion and Path Forward

My MICDE: UMich Discussions so Far
Diffusions:

Power Systems (Vladimir)
Understanding Memorization (Quing)

Sampling Decisions:
Multi-agent (Vijay)
Multi-fidelity, Multi-scale (Alex, Karthik)
Genomics (Indika)
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My "Living" Books

Mathematics of GenAI

Lecture Notes for
Math 496T @
UArizona, Spring
2025

14184 hc

ISBN 978-981-98-0824-3

This textbook aims to equip readers with a deep understanding of the 
mathematical techniques essential for modeling, analyzing, and solving  
real-world problems across diverse disciplines. Written for graduate 
students and professionals in STEM who need not have been math 
majors, Lecture Notes bridges the gap between classical and contem-
porary approaches, reflecting the transformative impact of data-driven 
sciences on applied mathematics while also incorporating topics often 
neglected in traditional texts, such as dynamic programming and the 
mathematics of uncertainty. 
 
Complex and Fourier analysis, differential equations, variational calculus, 
optimal control, stochastic processes, and statistical inference and learning 
are taught practically, blending theory with applications. Readers will find 
examples drawn from physics, engineering, artificial intelligence, and data 
science, provided to assist in demonstrating the relevance and application 
of the knowledge and techniques taught. Exercises are proposed to help 
readers practice and refine their learning, and the appendices include a 
collection of past midterm and final exam papers from the University of 
Arizona’s Math 581 course, offering readers a valuable resource for further 
study and self-assessment.

Lecture Notes on the 
Principles and Methods of 

Applied Mathematics
Michael (Misha) Chertkov

Lecture Notes on the Principles 
and M

ethods of Applied M
athem

atics
C

hertkov

Principles & Methods of
Applied Mathematics

Lecture Notes for
Math 581 @
UArizona –
WorldScientific in
2025 (summer)

Inference, Learning &
Optimization

Math 577 @
UArizona, Fall
2022, 2024

Available at: https://sites.google.com/site/mchertkov/living-books
Plan teaching (selected topics) at Livermore NL, ENS/Paris, KAIST/S.Korea,
and UMich during my 2025–26 sabbatical
Exploring options for offering these as online courses
Actively seeking feedback and suggestions
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Applied Math @ UArizona

Research focused, since 1976, one of the US
first in Applied Mathematics

Interdisciplinary: 130+ professors/ 27
departments / 8 colleges across UA campus
(Science & Engineering & Optics – top 3)

Mixing traditional contemporary AM

65 PhD students (79% US citizens)
12/12/12/12/13/16/10 enrolled in
2025/24/23/22/21/20/19

3 Core Courses to Qualify (Methods, Analysis,
Algorithms) - re-designed to incorporate AI
in 2019-20; + three research rotations in the
first 3 semesters with at least two professors

Strong collaborations with National – DOE –
& Industrial – DOD+ – Labs, e.g. via NSF
(Graduate Innovation in Education) support –
pipeline: recruitment, internerships,
co-advising (triads), partial employment
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Thank You!
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How to estimate the optimal control?

ptarget(x) ∝ exp(−E (x)) – the Energy function is known explicitly

u∗(t; x) = ∇x log
(∫

dy exp(−E (y))G−(t;x ;y)
G+(1;y ;0)

)
How to Estimate the Integral?

Importance Sampling !!
∫
dy exp(−E(y))

G−(t;x ;y)
G+(1;y ;0) = E

y∼N
(
·;y∗ ;Ĥ−1

) [
exp(−E(y))

N
(
y ;y∗ ;Ĥ−1

) G−(t;x ;y)
G+(1;y ;0)

]
∇y log

(
G−(t;x ;y)
G+(1;y ;0)

)
=

√
β

(
y
(
coth(

√
β) − coth

(
(1 − t)

√
β
))

+ x 1
sinh((1−t)

√
β)

)
Hij = −∂yi

∂yj
log

(
G−(t;x ;y)
G+(1;y ;0)

) ∣∣∣∣∣
y→y∗

= δij
√
β
(
coth

(
(1 − t)

√
β
)
− coth(

√
β)

)
y∗ = x

cosh((1−t)
√

β)−sinh((1−t)
√

β) coth(
√

β)

Rely on stationary-point approximation
Exact asymptotically at t → 1

Importance Samples are Universal – do not depend on E (x)

back to H-PID
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