

Decision Flows & Path Integral Diffusions: A Modern Applied Mathematics View on Sampling, Control, and Generative AI

Michael (Misha) Chertkov Applied Math @ UArizona + MICDE visitor (05/18-06/17/25) June 4, 2025 – UMich, SPARC/LANL+MICDE seminar

chertkov@arizona.edu

Elephant in the Room Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

AI – Elephant in the Room

- Dream New Al Models
- Explain the Models

Worth Climbing the Beanstalk

 <u>Grow</u> the Models from – Stochastic Calculus, Optimal Control, Non-Equil Stat Mech

From Ugly (?) Duck to Swan

◆□> ◆□> ◆三> ◆三> 三日 のへで

chertkov@arizona.edu

Elephant in the Room Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

AI – Elephant in the Room

- Dream New Al Models
- Explain the Models

Worth Climbing the Beanstalk

 <u>Grow</u> the Models from – Stochastic Calculus, Optimal Control, Non-Equil Stat Mech

From Ugly (?) Duck to Swan

chertkov@arizona.edu

Elephant in the Room

Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

Artificial Intelligence \subset Applied Math

Applied Math '21

- Traditional Applied Math: Driven by sciences & engineering
- Contemporary Applied Math: Foundations and frontiers in Al
- Synthesis: Integration of Traditional and Contemporary Approaches

Upcoming Example of Advancing Al \subset Applied Math

- Sampling Decisions = Synthesis of Generative AI tools
 - Diffusion Models (Stochastic ODEs, Optimal Contol)
 - Transformers (Tokens + Auto-Regression)
 - Reinforcement Learning (Markov Decision Processes)

Instead of Introduction: Subjective = Personal Reflection on

- How Does Applied Math Enable AI? AM \rightarrow AI
- How Do We Use AI in Sciences & Engineering (Applications)? – AI \rightarrow AM
- MC, *Mixing artificial and natural intelligence: from statistical mechanics to AI and back to turbulence*, Topical Review in J. Phys. A: Math. Theor. 57, 33 (333001), 2024
- Automatic Differentiation (AD):
 - Computes derivatives efficiently using elementary operations and the chain rule.
 - Major engine behind efficient optimization (billions of parameters) critical for "everything" AI
- Deep Learning:
- Reinforcement Learning (RL):
- <u>Generative Models:</u>

 $AI + Stat Mech \subset Applied Math$

Optimal Control -> Path Integral Diffusion -> Decision Flows

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

• Automatic Differentiation (AD):

- Focus on rare interruptions multi-scenario optimization under uncertainty + sensitivity analysis
- Progress: Augmenting AD with Symbolic Differentiation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Neural Network Free/minimal
- Academy & Industry (NOGA energy system operator of Israel) Collaboration: Model Reduction & open-source via Julia
- Pipe Line Simulation Interest Group best student award C. Hyett, et al, arXiv:2304.01955, 2310.18507, 2311.08686
- Deep Learning:
- Reinforcement Learning (RL):
- Generative Models:

• Automatic Differentiation (AD):

- Deep Learning:
 - Represents functions via many-layered, parameterized nonlinear transformations, i.e. Neural Networks.
 - Employs Automatic Differentiation for training.
- Reinforcement Learning (RL):
- Generative Models:

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

- Identify least tractable bottleneck
 - = stressed power lines
 - Reinforcement Learning (RL):
 - Generative Models:

chertkov@arizona.edu

 Utilize Deep Learning to resolve the bottleneck

3.0

1.0

0.5

- Automatic Differentiation (AD):
- Deep Learning:
- Reinforcement Learning (RL):
 - Data-driven approach to optimal control under uncertainty using Deep Learning.
 - Learns optimal actions by exploring (reward-driven) feedback: exploration → exploitation.
- <u>Generative Models:</u>

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

- Automatic Differentiation (AD):
- Deep Learning:
- Reinforcement Learning (RL):

Physics-Guided Actor-Critic Reinforcement Learning for Swimming in Turbulence

chertkov@arizona.edu

• Generative Models:

- Bottleneck = weak NN Critic
- Make Critic informed by Lagrangian-Hydro phenomenology
- C. Koh, L. Pagnier, MC, Phys. Rev. Research 7, 013121 (2025), 10.1103/PhysRevResearch.7.013121

<ロ> <同> <目> <目> <目> <目> <目> <日> <日> <日> <日</p>

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

- Automatic Differentiation (AD):
- Deep Learning:
- Reinforcement Learning (RL):
- Generative Models:

- Generates new data from existing examples: either distributionally (e.g., diffusion) or conditional (e.g., transformers).
- Combines Deep Learning + optimal control + RL

GPT-4 prompt: Show UArizona bobcat swimming butterfly style in a turbulent river.

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

- Automatic Differentiation (AD):
- Deep Learning:
- Reinforcement Learning (RL):
- Generative Models:

Neural Smooth Particle Hydrodynamics = Tokens in Turbulence

- quasi-particles = tokens
- "physical" attention via particle-field relation
- Lagrangian Large Eddy Simulations: M. Woodward, et al, 10.1103/PhysRevFluids.8.054602; Y. Tian, et al, 10.1073/pnas.2213638120

chertkov@arizona.edu

Elephant in the Room Math in Al & Al for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

- Automatic Differentiation (AD):
- Deep Learning:
- Reinforcement Learning (RL):
- Generative Models:

Lagrangian Attention Tensor NN – Auto-Regression in Turbulence

- Physics-informed NN stochastic Lagrangian closure for velocity gradient tensor
- Lagrangian history: autoregressive & attention-like, but physics-transparent
- C. Hyett, et al, arxiv:2502.07078; Y. Tian, D. Livescu, MC, Phys Rev Fluids (2021)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Elephant in the Room Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

Stat Phys \Rightarrow **AI: Score-Based Diffusion**

Train on Ensemble of Samples

Generate Synthetic Samples

Generate Synthetic Samples which are i.i.d. from a target probability distribution, $p_{target}(\cdot)$, represented

- implicitly via Ground Truth samples
- or explicitly via Energy Function, $p_{target}(\cdot) \propto \exp(-E(\mathbf{x}))$

Elephant in the Room Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

Diffusion Models = Non-Autonomous Stochastic ODE

• Continuous time SBD - state-of-the-art in GenAI [4]

¹B. Anderson, Reverse-time diffusion equation models, 1982

²H. Fölmer, Time Reversal on Wiener Spaces, 1986

³J. Sohl-Dickstein, et al, Deep Unsupervised Learning using Nonequilibrium Thermodynamics, 2015

⁴Y. Song, et.al., Score-Based Generative Modeling through Stochastic Differential Equations, 2021

chertkov@arizona.edu

Elephant in the Room Math in AI & AI for Sciences & Engineering Score-Based Diffusion & Non-Eq. Stat Mech

Dynamic Phase Transitions in Score Based Diffusion

- When to U-turn? Memorization/Collapse Transition [1,2]
- Spontaneous Choice of the Specie/Class Speciation Transition [2]

chertkov@arizona.edu

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Score Based Diffusion & Stochastic Optimal Control (SOC)

Score Based Diffusion as "Integrable" Stoch. Optimal Transport

$$\min_{\boldsymbol{u}(0\to1;\boldsymbol{x}(0\to1))} \mathbb{E}\left[\int_{0}^{1} dt \frac{|\boldsymbol{u}(t;\boldsymbol{x}(t))|^{2}}{2} |\mathsf{Eqs.}(*,**)\right] \\
\text{s.t. } t \in [0,1]: \ d\boldsymbol{x}(t) = \boldsymbol{u}(t;\boldsymbol{x}(t)) dt + d\boldsymbol{W}(t), \ \boldsymbol{x}(0) = 0 \ (*) \\
\boldsymbol{p}(\boldsymbol{x}(1)) = \boldsymbol{p}_{\mathsf{target}}(\boldsymbol{x}(1)) \qquad (**)$$

- Grow target distribution from point source
- Stochastic Optimal Control ⇒ Transport
- Theory for sampling from $p_{target}(\cdot)$ [1], based on
 - "Integrability": Nonlinear HJB \Rightarrow Hopf '50 -Cole '51 \Rightarrow Diffusion (Mitter '81, Pavon '89)

¹M.Tzen, M.Ragynsky, Theoretical guarantees .. with latent diffusions, 2019 chertkov@arizona.edu Decision Flows & Path Integral Diffusions

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Integrable SOC with Potential, Forced & Gauged

(Top Level) Integrable SOC in a Potential. Forced (& Gauged)

$$\min_{\boldsymbol{u}(\cdot;\boldsymbol{x}(\cdot))} \mathbb{E}\left[\int_{0}^{1} dt \left(\frac{|\boldsymbol{u}(t;\boldsymbol{x}(t))|^{2}}{2} + V(t;\boldsymbol{x}(t)) + \dot{\boldsymbol{x}}^{T}(t)\boldsymbol{A}(t;\boldsymbol{x}(t))\right) \Big| \text{Eqs. } (*,**)\right]$$

s.t. $t \in [0,1]$: $d\boldsymbol{x}(t) = \boldsymbol{f}(t;\boldsymbol{x}(t)) + \boldsymbol{u}(t;\boldsymbol{x}(t))dt + d\boldsymbol{W}(t), \ \boldsymbol{x}(0) = 0 \ (*)$

$$p(\mathbf{x}(1)) = p_{\text{target}}(\mathbf{x}(1)) \qquad (**)$$

Path Integral Diffusion – H. Behjoo, MC (2024, IEEE Access 2025)

- "Integrable" SOC in a Potential, Forced and Gauged
 - Grow target distribution from a point source
 - Based on Path Integral Control (PIC) [1]
 - Field & Gauge Extension of PIC [2]

¹H. J. Kappen, *Path integrals ... for optimal control theory*, 2005.

²V. Chernyak, MC, J. Bierkens, H.J. Kappen, *SOC as Non-Eq Stat Mech: Calculus of Variations over Density and Current*, 2013 **D** + (**B** + (**E** +

chertkov@arizona.edu

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Path Integral Diffusion – (Top Level) Integrability

Hamilton-Jacobi Bellman for Cost-to-go (backwards from 1 to t)

$$-\partial_t J = V + \frac{1}{2} \left(\nabla^T (\nabla J + \mathbf{A}) - |\nabla J + \mathbf{A}|^2 \right) + \mathbf{f}^T (\nabla J + \mathbf{A})$$

Optimal Control: $\mathbf{u}^* = -\nabla J - \mathbf{A}$

Hopf-Cole: $J(t; \mathbf{x}) = -\log \psi(t; \mathbf{x})$

$$\begin{aligned} &-\partial_t \psi + \tilde{V}\psi + \tilde{\boldsymbol{A}}^T \nabla \psi = \frac{1}{2} \Delta \psi, \quad \psi(1; \boldsymbol{x}) = \exp\left(-\phi(\boldsymbol{x})\right), \; \phi(\cdot) \text{ is the terminal cost} \\ &\text{correspondent to } p_{\text{target}}(\cdot) \\ &\tilde{V} \doteq V + \frac{1}{2} \nabla^T \boldsymbol{A} + \boldsymbol{f}^T \boldsymbol{A} - \frac{1}{2} |\boldsymbol{A}|^2, \quad \tilde{\boldsymbol{A}} \doteq \boldsymbol{A} - \boldsymbol{f} \\ &\partial_t p^* + \nabla^T \left(p^* (\nabla \log \psi - \tilde{\boldsymbol{A}}) \right) = \frac{1}{2} \Delta p^*, \quad p^*(0; \boldsymbol{x}) = \delta(\boldsymbol{x}), \quad p^*(1; \boldsymbol{x}) = p_{\text{target}}(\boldsymbol{x}) \end{aligned}$$

Optimal Control via Green Functions: $u^{*}(t; \mathbf{x}(t)) = \nabla_{\mathbf{x}} \log \left(\int d\mathbf{y} \ \rho_{\text{target}}(\mathbf{y}) \frac{G_{-}(t; \mathbf{x}(t); \mathbf{y})}{G_{+}(1; \mathbf{y}; 0)} \right)$ $t \in [1 \to 0]: \quad -\partial_{t}G_{-} + \tilde{V}(\mathbf{x}; t)G_{-} + \tilde{\mathbf{A}}^{T}\nabla G_{-} = \frac{1}{2}\Delta G_{-}, \quad G_{-}(1; \mathbf{x}) = \delta(\mathbf{x} - \mathbf{y})$ $t \in [0 \to 1]: \quad \partial_{t}G_{+} + \tilde{V}(\mathbf{x}; t)G_{+} - \nabla^{T}(\tilde{\mathbf{A}}G_{+}) = \frac{1}{2}\Delta G_{+}, \quad G_{+}(0; \mathbf{x}) = \delta(\mathbf{x} - \mathbf{y})$

chertkov@arizona.edu

Decision Flows & Path Integral Diffusions

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Use Case – Harmonic, Uniform – Low Level Integrability

 $V(t; \mathbf{x}) = \beta |\mathbf{x}|^2 \Rightarrow$ Explicit Expression for the Green Functions

•
$$u^*(t; \mathbf{x}) = \frac{\sqrt{\beta}}{\sinh((1-t)\sqrt{\beta})} \left(\hat{\mathbf{x}}(t; \mathbf{x}) - \mathbf{x} \cosh((1-t)\sqrt{\beta}) \right)$$

• Weighted State: $\hat{x}(t; x) \doteq \int dy y w(y|t; x) = \mathbb{E}_{y \sim w(\cdot|t;x)}[y]$

• Weight (probability): $w(y|t; x) \propto p_{\text{target}}(y) \frac{G_{-}(t;x;y)}{G_{+}(1;y;0)}$

$$\sqrt{\frac{\sinh(\sqrt{\beta})}{\sinh((1-t)\sqrt{\beta})}} \exp\left(-\frac{\sqrt{\beta}}{2}\left((\mathbf{x}^2+\mathbf{y}^2)\coth\left((1-t)\sqrt{\beta}\right)-\mathbf{y}^2\coth\left(\sqrt{\beta}\right)-\frac{2(\mathbf{x}^T\mathbf{y})}{\sinh((1-t)\sqrt{\beta})}\right)\right)$$

Experiments & Analysis

Use Universal Harmonic Importance Sampling (UHIC)

• To estimate score function $-u^*(t; \mathbf{x})$ – efficiently

ask me about this

• May be NN - free (in low dimensions, moderate # of samples)

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

- Gaussian Mixture over (3 × 3) grid
- $s = 1, \dots, 1000$ samples of UHIC: Red - exact Blue - $x^{(s)}(t)$ Green $\hat{x}^{(s)}(t; x(t))$

• Rows:
$$\beta = 0, 0.1, 1, 10, 100$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Energy Function Sampling

- **Speciation Transition**: 9 Gaussians = 9 species
- Seen earlier in $\hat{x}^{(s)}(t; x(t))$ the order parameter
- Transition time depends on β . Fastest at $\beta \approx 0.1$

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Space-Time Evolution of Samples

- "Lagrangian" view (vs "Eulerian \rightarrow)
- Much more of "exploration" meandering in x̂(t; x(t))

t = c	$\ell = 0.1$	t=0.2	t=0.3	t=0.4	t=0.5	t=0.6	t = 0.7	t=0.8	t = 0.9	$t = 1 - \varepsilon$
Ш	M	H			#	Ж	Ж	Ж	Ш	:::
:::	M	₽	₩		الل ا	₩	Ж	Ж	Ш	:::
111	遯	H		!!!	₩	₩	ж	Ж	Ш	:::
		ж	瘷	×	i	H	: # :	₩	Ж	:::
:::		:::		H	H		瘷	H		

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Sampling from CIFAR-10

 $\hat{\boldsymbol{x}}(t; \boldsymbol{x}(t)) \doteq \sum_{s} \boldsymbol{y}^{(s)} w(\boldsymbol{y}^{(s)}|t; \boldsymbol{x}(t))$

 $\mathbf{x}(t)$

nan

Analysis of the Memorization Transition

- Emergence of Two Phases
- See it earlier in the Weighted State = Order Parameter
- Transition time increases with β
- Much more of "exploration" meandering in $\hat{x}(t; x(t))$

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

(Harmonic) Path Integral Diffusion – Summary

- From zero to high-quality sample via <u>Stochastic Optimal Control</u> <u>Three Levels of Integrability:</u>
 - **<u>Top:</u>** Any Potential, Force & Gauge [two linear ODEs for Green Functions]
 - Mid: Equivalent to Quantum Harmonic Oscillator
 - Low: Uniform Quadratic Potential [implemented in algorithm]
- H. Behjoo, MC, IEEE Access 13, 42196 42213 (2025), 10.1109/ACCESS.2025.3548396

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

MC, S. Ahn, H. Behjoo, **Sampling Decisions**, arxiv:2503.14549

◆□> ◆□> ◆三> ◆三> 三日 のへで

Discrete Space & Time

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Insight #1: Diffusions & Reinforcement Learning

Diffusions = GREAT tools of GenAl

- ... BUT ... time is artificial
- **Dream:** Can we link diffusion to a physical process of sample growth?
- and BTW ... Path Integral Diffusion links Diffusion to Stochastic Optimal Control (SOC)

• ... and in AI data-driven version of SOC = Reinforcement Learning

Key Insight #1: Path Integral Diffusion & Control bridge RL and Diffusion

 ... but both are Markovian = short memory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\label{eq:AI} AI + Stat \ \mathsf{Mech} \subset \mathsf{Applied} \ \mathsf{Math}$ Optimal Control -> Path Integral Diffusion -> Decision Flows

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Insight #2: Reinforcement Learning & Auto-Regression

Generative Flow Networks (GFN)

- GFN [1]: view sampling as sequential decisions on a Directed Acyclic Graph
- Built on discrete space-time RL = Markov Decision Processes
- Samples are built step-by-step: $s_0 = \emptyset \rightarrow s1 \rightarrow ... \rightarrow s_T$.
- History-dependent, auto-regressive construction like transformers.

^aE. Bengio, et. al, Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation, 2021

Key Insight #2: GFN bridges RL and Transformer paradigms

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

chertkov@arizona.edu

 $\label{eq:AI} AI + Stat \ \mathsf{Mech} \subset \mathsf{Applied} \ \mathsf{Math}$ Optimal Control -> Path Integral Diffusion -> Decision Flows

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Insight #2: Reinforcement Learning & Auto-Regression

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Decision Flow Framework

Goal: Generate Samples: $\sigma \sim \exp(-E(\sigma))$ – from the Energy/Graph Model

• Sequentially: $\emptyset = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_T = \sigma$, Given: Prior Markov Process $p^{prior}(\cdot | \cdot)$

Solution:
$$p_t^*(s_{t+1}|s_t) \propto p_t^{(\text{prior})}(s_{t+1}|s_t) \sum_{s_T'} \frac{e^{-E(s_T')} G_{t+1}(s_{t+1}|s_T')}{\pi_T^{(\text{prior})}(s_T')},$$

 $G_t(s_t|s_T) = \sum_{s_{t+1}} p_t^{(\text{prior})}(s_{t+1}|s_t) G_{t+1}(s_{t+1}|s_T), \quad G_T(s_T|s_T') = \delta(s_T, s_T')$

Integrable = Solution of a Markov Decision Process (MDP)

- $G_{\bullet}(\bullet|\bullet) (time-reverse)$ Green function of the prior MP
- Akin to a Linearly Solvable MDP [1] with an extra terminal condition, where [1] a Discrete Time & Space generalization of the Path Integral Control [2]

[1] E. Todorov, Linearly-solvable Markov decision problems, NeurIPS 2007

[2] H. J. Kappen, Path integrals ... for optimal control theory, 2005.

chertkov@arizona.edu

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Decision Flow Framework

Goal: Generate Samples: $\sigma \sim \exp(-E(\sigma))$ – from the Energy/Graph Model

• Sequentially: $\emptyset = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_T = \sigma$, Given: Prior Markov Process $p^{\text{prior}}(\cdot | \cdot)$

Solution:
$$p_t^*(s_{t+1}|s_t) \propto p_t^{(\text{prior})}(s_{t+1}|s_t) \sum_{s_T'} \frac{e^{-E(s_T')} G_{t+1}(s_{t+1}|s_T')}{\pi_T^{(\text{prior})}(s_T')},$$

 $G_t(s_t|s_T) = \sum_{s_{t+1}} p_t^{(\text{prior})}(s_{t+1}|s_t) G_{t+1}(s_{t+1}|s_T), \quad G_T(s_T|s_T') = \delta(s_T, s_T')$

 $\begin{array}{l} \underbrace{ \text{Illustrative Example:}}_{\text{lsing model}: \quad E(\sigma) = \\ -\sum_{(a,b)\in\mathcal{E}} J_{ab}\sigma_a\sigma_b - \sum_{a\in\mathcal{V}} h_a\sigma_a \end{array}$

$$\min_{\mathbf{p}_{0 \to T-1}, \pi_{0 \to T-1}} \sum_{t=0}^{T-1} \sum_{s_{t}, s_{t+1}} \pi_{t}(s_{t}) \rho_{t}(s_{t+1}|s_{t}) \log \left(\frac{\rho_{t}(s_{t+1}|s_{t})}{\rho_{t}^{(\text{prior})}(s_{t+1}|s_{t})} \right)$$
s.t. $\pi_{t+1}(s_{t+1}) = \sum_{s_{t}} \rho_{t}(s_{t+1}|s_{t}) \pi_{t}(s_{t}),$

$$\sum_{s_{t+1}} \rho_{t}(s_{t+1}|s_{t}) = 1, \ \rho_{T}(\bullet) \propto \exp(-E(\bullet))$$

chertkov@arizona.edu

 $\label{eq:AI} AI + Stat \ \mathsf{Mech} \subset \mathsf{Applied} \ \mathsf{Math}$ Optimal Control -> Path Integral Diffusion -> Decision Flows

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

NN-Free Decision Flow Algorithm

Solution:
$$p_t^*(s_{t+1}|s_t) \propto p_t^{(\text{prior})}(s_{t+1}|s_t) \sum_{s_T'} \frac{e^{-E(s_T')}G_{t+1}(s_{t+1}|s_T')}{\pi_T^{(\text{prior})}(s_T')}$$
 (1),
 $G_t(s_t|s_T) = \sum_{s_{t+1}} p_t^{(\text{prior})}(s_{t+1}|s_t)G_{t+1}(s_{t+1}|s_T), \quad G_T(s_T|s_T') = \delta(s_T, s_T'),$ (2)

• Given:
$$p_t^{(extsf{prior})}(ullet |ullet), \,\, t=1,\cdots,\, {\mathcal T}$$
 – pre-trained algorithm

• Generate K Paths from the algorithm, $\Xi^{(k)} = (s_0 = \emptyset, s_1^{(k)}, \cdots, s_T^{(k)}), \cdots k = 1, \cdots, K$

- Build $p_{\bullet}^{(\text{prior-emp})}(\bullet|\bullet)$
- Build empirical version of the Green function according to (1)
- Build $p_{\bullet}^{(\text{post-emp})}(\bullet|\bullet)$ according (2)
- Generate S posterior samples to test performance

 $\label{eq:AI} AI + Stat \ \mathsf{Mech} \subset \mathsf{Applied} \ \mathsf{Math}$ Optimal Control -> Path Integral Diffusion -> Decision Flows

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Decision Flow Example: Sampling from Ising

- Apply DFA to sample from Glassy Ising (3 × 3), h_a, J_{ab} ~ Uniform[-1, 1]
- $m_a^* = \frac{1}{5} \sum_{s=1}^{5} \sigma_{T;a}^{(s)}$ $c_{ab}^* = \frac{1}{5} \sum_{s=1}^{5} \sigma_{T;a}^{(s)} \sigma_{T;b}^{(s)}$
- $\begin{aligned} \bullet \quad \Delta_{1} &= \sum_{a} \frac{\|m_{a} m_{a}^{(ref)}\|}{\tau \|m_{a}^{(ref)}\|}, \\ \Delta_{2} &= \sum_{(a,b)} \frac{2\|c_{ab} c_{ab}^{(ref)}\|}{\tau(\tau-1)\|c_{ab}^{(ref)}\|} \end{aligned}$
- Posterior vs MCMC (benchmark) – better convergence in small-sample regime

chertkov@arizona.edu

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Conclusion and Path Forward

Key Takeaways

- Decision Flow (DF) unifying framework for GenAl:
 - Integrates core ideas from Diffusion Models, Reinforcement Learning, and Transformers
- Rooted in stochastic control and Green function techniques.
- Especially suited for problems with:
 - an inherent time-line or sample growth process
 - emphasis on sampling rather than classical optimization

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Conclusion and Path Forward

Next Steps: Methodology & Applications

- Scalability: Neural implementations for large systems; batched empirical averaging
- Hybrid Input: Combine ground-truth samples with energy-based models
- Expert-Informed Models: Incorporate constraints, domain knowledge, and rare events
- Target Applications:
 - Material discovery and design
 - Control of physical (e.g., complex fluids) and engineered (e.g., power grids, drone swarms) systems
 - Modeling epidemics—both social and viral
 - Open to discuss other Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Conclusion and Path Forward

My MICDE: UMich Discussions so Far

- Diffusions:
 - Power Systems (Vladimir)
 - Understanding Memorization (Quing)
- Sampling Decisions:
 - Multi-agent (Vijay)
 - Multi-fidelity, Multi-scale (Alex, Karthik)
 - Genomics (Indika)

chertkov@arizona.edu Decision Flows & Path Integral Diffusions

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

My "Living" Books

- Exploring options for offering these as online courses < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
- Actively seeking feedback and suggestions

chertkov@arizona.edu

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

Applied Math @ UArizona

- **Research** focused, since 1976, one of the US first in Applied Mathematics
- Interdisciplinary: 130+ professors/ 27 departments / 8 colleges across UA campus (Science & Engineering & Optics – top 3)
- Mixing traditional contemporary AM
- 65 PhD students (79% US citizens) 12/12/12/13/16/10 enrolled in 2025/24/23/22/21/20/19
- 3 Core Courses to Qualify (Methods, Analysis, Algorithms) - re-designed to incorporate AI in 2019-20; + three research rotations in the first 3 semesters with at least two professors
- Strong collaborations with National DOE & Industrial – DOD+ – Labs, e.g. via NSF (Graduate Innovation in Education) support – pipeline: recruitment, internerships, co-advising (triads), partial employment

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\label{eq:Al} AI + Stat \ \mathsf{Mech} \subset \mathsf{Applied} \ \mathsf{Math}$ Optimal Control -> Path Integral Diffusion -> Decision Flows

Diffusions & Stochastic Optimal Control (SOC) Path Integral Diffusion = "Integrable" SOC Decision Flow: Unifying Diffusion, RL, and Transformers

chertkov@arizona.edu

How to estimate the optimal control?

 $p_{target}(\mathbf{x}) \propto \exp(-E(\mathbf{x}))$ – the Energy function is known explicitly

•
$$u^*(t; \mathbf{x}) = \nabla_{\mathbf{x}} \log \left(\int d\mathbf{y} \exp(-E(\mathbf{y})) \frac{G_{-}(t; \mathbf{x}; \mathbf{y})}{G_{+}(1; \mathbf{y}; 0)} \right)$$

• How to Estimate the Integral?

Importance Sampling !!

$$\begin{split} &\int d\mathbf{y} \; \exp(-E(\mathbf{y})) \frac{G_{-}(t;\mathbf{x};\mathbf{y})}{G_{+}(\mathbf{1};\mathbf{y};\mathbf{0})} = \mathbb{E}_{\mathbf{y} \sim \mathcal{N}\left(\cdot;\mathbf{y}^{*};\hat{H}^{-1}\right)} \left[\frac{\exp(-E(\mathbf{y}))}{\mathcal{N}\left(\mathbf{y};\mathbf{y}^{*};\hat{H}^{-1}\right)} \frac{G_{-}(t;\mathbf{x};\mathbf{y})}{G_{+}(\mathbf{1};\mathbf{y};\mathbf{0})} \right] \\ &\nabla_{\mathbf{y}} \log\left(\frac{G_{-}(t;\mathbf{x};\mathbf{y})}{G_{+}(\mathbf{1};\mathbf{y};\mathbf{0})}\right) = \sqrt{\beta} \left(\mathbf{y} \left(\coth(\sqrt{\beta}) - \coth\left((1 - t)\sqrt{\beta}\right)\right) + \mathbf{x} \frac{1}{\sinh((1 - t)\sqrt{\beta})} \right) \\ &H_{ij} = -\partial_{y_{i}}\partial_{y_{j}} \log\left(\frac{G_{-}(t;\mathbf{x};\mathbf{y})}{G_{+}(\mathbf{1};\mathbf{y};\mathbf{0})}\right) \bigg|_{\mathbf{y} \to \mathbf{y}_{*}} = \delta_{ij}\sqrt{\beta} \left(\coth\left((1 - t)\sqrt{\beta}\right) - \coth(\sqrt{\beta})\right) \end{aligned}$$

$$\mathbf{y}_* = \frac{\mathbf{x}}{\cosh((\mathbf{1}-t)\sqrt{\beta}) - \sinh((\mathbf{1}-t)\sqrt{\beta}) \coth(\sqrt{\beta})}$$

- Rely on stationary-point approximation
- Exact asymptotically at t
 ightarrow 1
- Importance Samples are Universal do not depend on $E(\mathbf{x})$

back to H-PID

chertkov@arizona.edu

Decision Flows & Path Integral Diffusions