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System 1 and System 2 in AI (for Sciences)

System 1 – operates automatically & quickly

“black box" use of AI

System 2 – allocates attention to effortfull
mental activities

Informed (white box) use of AI
Advancing AI = building new AI with
Applied Math (including Stat Mech)
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Artificial Intelligence ⊂ Applied Math

Applied Math ’21
Traditional Applied Math: Driven
by sciences & engineering
Contemporary Applied Math:
Foundations and frontiers in AI
Synthesis: Integration of
Traditional and Contemporary
Approaches

Upcoming Example of Advancing AI ⊂ Applied Math
From Stochastic ODEs to Generative Diffusion to ...
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Automatic Differentiation (AD):
Computes derivatives efficiently using elementary operations
and the chain rule.
Major engine behind efficient optimization (billions of
parameters) critical for “everything" AI

Deep Learning:
Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):

Focus on rare interruptions -
multi-scenario optimization under
uncertainty + sensitivity analysis

Progress: Augmenting AD with
Symbolic Differentiation

Neural Network Free

Academy & Industry (NOGA - energy system operator of Israel)
Collaboration: Model Reduction & open-source via Julia

Pipe Line Simulation Interest Group - best student award
arXiv:2304.01955,; CDC 2024 (invited) arXiv2310.18507,
2311.08686

Deep Learning:
Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:

Represents functions through many-layered (deep),
parameterized nonlinear transformations, expressed via Neural
Networks (NN).

Even if an explicit formula for the function in questions exists
– it may be costly to evaluate it (like solving OPF or UC for a
given demand). Calling NN - trained to approximate the
function may be cheaper.
NN – when trained in the supervised format (input+labels)
may allow to generalize – generate samples for labels not
seeing in training (used in AlphaFold to sample a stable 3D
structure given a protein = label)

Employs Automatic Differentiation for optimizing NNs.

Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:

Physics-Informed Machine Learning for Electricity Market
IEEE Transactions on Energy Markets, 2/1 (2024)

Identify least understood
bottleneck (stressed power lines)

Utilize Deep Learning to resolve
the bottleneck

Reinforcement Learning (RL):
Generative Models:
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):

A data-driven approach to optimal control under uncertainty
using Deep Learning to predict and control actions.
Adaptive/dynamic approach – reinforces decisions based on
the information, e.g. reward, received in the process of
learning/exploration, to get better inference/exploitation.

Generative Models:
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):

Physics-Informed RL for Swimming in Turbulence

EnvironmentActor

Error

Critic

identify least understood
bottleneck (weak NN critic)

utilize Theory (Stochastic
Hydrodynamics) to fix it

Physical Review Reports (to
appear), arXiv:2406.10242

Generative Models:

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond



AI ⊂ Applied Math
Diffusion Models of AI

Down-Stream Applications

AI for Physical & Engineering Sciences
Key Math Topics in AI

Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Outputs new data from existing (ground
truth) data. The new data may be
statistically similar to the ground truth
(e.g., diffusion) or comes in response to
prompts (e.g., transformers).

Leverages Deep Learning to generate
synthetic data and elements of optimal
control/Reinforcement Learning, in
achieving optimality

GPT-4 prompt: Show UArizona bobcat

swimming butterfly style in a turbulent

river.
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Neural Smooth Particle Hydrodynamics = GPT of Turbulence

Hierarchy of Models
Eulerian 

Field 
Tracer Particles

(tokens)

Trained Model

quasi-particles = tokens

"physical" attentions via
particles & fields

Lagrangian Large Eddy
Simulations = New Reduced
Order Model of Turbulence
– 10.1103/PhysRevFlu-
ids.8.054602 &
10.1073/pnas.2213638120
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Automatic Differentiation (AD):
Deep Learning:
Reinforcement Learning (RL):
Generative Models:

Lagrangian Deformation Neural Transformer
for velocity gradient in turbulence

attention (auto-regressive)
module to represent
Lagrangian memory

C. Hyett et al (work in
progress)
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Hamidreza Behjoo (UArizona)

HB & MC
U-Turn Diffusion, arXiv:2308.07421
Space-Time Diffusion Bridges, arXiv:2402.08847 (MTNS ’24)
Harmonic Path Integral Diffusion, arXiv:2409.15166
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Score-Based Diffusion

Train on Ensemble of Samples Generate Synthetic Samples

Generate Synthetic Samples which are i.i.d. from a target
probability distribution, ptarget(·), represented

implicitly via Ground Truth samples
or explicitly via energy function, ptarget(·) ∝ exp(−E (x))
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Diffusion Models = Non-Autonomous Stochastic ODE

Score Based Diffusion (SBD)

Reverse-Time Diffusion [1,2]

Reference (vague) to Stat.
Thermodynamics [3]

Continuous time SBD – state-of-the-art in GenAI [4]

1B. Anderson, Reverse-time diffusion equation models, 1982
2H. Fölmer, Time Reversal on Wiener Spaces, 1986
3J. Sohl-Dickstein, et al, Deep Unsupervised Learning using Nonequilibrium

Thermodynamics, 2015
4Y. Song, et.al., Score-Based Generative Modeling through Stochastic

Differential Equations, 2021
chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Score-Based Diffusion – Matched with NNs

∂tp +∇i (fip) =
g2(t)

2 ∇
2p

∂tp +∇i (fip)− g2(t)∇i sip = − g2(t)
2 ∇

2p

Tractable Forward = Computations not Simulations

e.g. f = 0: s(xt , t) = ∇x log

(
N∑

n=1
N
(
xt |x (n); 2Î

∫ t
0 dt′g(t′)

))
many choices, e.g. space-time & bridges arXiv:2402.08847

Detailed Balance built in

can also brake it, e.g. deterministic reverse process

Simulate Reverse. "Match" Score with NN:
minθ Et∼U(0,T ),x0∼p0(·),xt∼pt(·|x0)

[
λ(t)
2 ∥NNθ(xt , t)− s(xt , t)∥22

]
avoids memorization + efficiency of inference
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T =∞ ... Can we start the reverse process earlier?
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T =∞ ... Can we start the reverse process earlier?
How to initialize the reverse process?
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T =∞ ... Can we start the reverse process earlier?
How to initialize the reverse process?

U-Turn at some finite Tu

At Tu – Initialize the reverse with outcome of the forward
Initialize forward process with a Ground Truth sample
Compute (not simulate !) the outcome of the forward process
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Dynamic Phase Transitions in Score Based Diffusion

i=100 i=150 i=200 i=255t= i=100 i=200 i=300 i=400t= i=512

ImageNet (Single Class) CIFAR-10 (one score)

When to U-turn? – Memorization/Collapse
Transition [1,2]

Spontaneous Choice of the Specie/Class –
Speciation Transition [2,1]

1HB, MC, U-turn Diffusion, 2023
2G. Biroli, et al, Dynamical Regimes of Diffusion Models, 2024
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each

i=100 i=150 i=200 i=255t=

ImageNet-64 (class constrained)

Tm - detection

Tm fluctuates
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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Score Norm (SN) Test

i=100 i=150 i=200 i=255t=

ImageNet-64 (class constrained)

Tm - detection

Tm fluctuates

008 (hen), 950 (orange), 698 (palace), 762 (restaurant, eating house, eatery)

Smooth, yet significant memorization transition in both tests

Weak sensitivity to labels in the SN, more variations in KS at short Tu
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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Fréchet Inception Distance (FID) – standard comparison
of multi-variate Gaussian proxies for real and generated
data

i=100 i=150 i=200 i=255t=

ImageNet-64 (class constrained)

Tm - detection

Tm fluctuates

Useful if U-Turn is compared to other initializations of the reverse process

FID – a reasonable indicator of memorization transition
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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U-Turn Auto-Correlation (AC) Function:

CUT (Tu) =
1
N

∑N
n=1

(x(n)(0))T y (n)(0)
(x(n)(0))2

i=100 i=150 i=200 i=255t=

ImageNet-64 (class constrained)

Tm - detection

Tm fluctuates

See in U-Turn AC too – smooth, yet significant memorization transition

Strongest Variability (than in other tests) with labels – best indicator of the
memorization transition we saw so-far
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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Fully averaged over classes –

CUT (Tu) =
1
N

∑N
n=1

(x(n)(0))T y (n)(0)
(x(n)(0))2

i=100 i=150 i=200 i=255t=

ImageNet-64 (class constrained)

Tm - detection

Tm fluctuates

Empirical vs Gaussian Theory (score function is linear)

Good Match – dependence on classes averages out
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each

i=100 i=200 i=300 i=400t= i=512

CIFAR-10 (multi-class)

Tm,Tu - detection

Tm,Tu fluctuate
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)

Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)

Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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U-Turn Auto-Correlator conditioned on individual GT
sample(s)

Strong Variability between classes and within a class

Quite far from Gaussian (affine score function) theory

i=100 i=200 i=300 i=400t= i=512

CIFAR-10 (multi-class)

Tm,Tu - detection

Tm,Tu fluctuate
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)

Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each

How Nonlinear (in x) the score function is?

G(aussian)-Turn

Split Reverse Dynamics

[Tg ← T ≈ ∞] - Linear Score Function =
simulations
[0← Tg ] - Nonlinear Score Function =
computations

Study Inference – Scanning different Tg

i=100 i=200 i=300 i=400t= i=512

CIFAR-10 (multi-class)

Tm,Tu - detection

Tm,Tu fluctuate
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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Visual Examination ⇒ G-Turn is sucessful at
sufficiently large Tg ≈ Ts
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U-Turn Diffusion (HB+MC, arXiv:2308.07421)
Utilize Trained Models – T. Karras, et al – NVIDIA-Finland, NeuroIPS’22;
β(t) = 2t; data from https://www.image-net.org/ &
https://www.cs.toronto.edu/~kriz/cifar.html – 50,000 images each
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FID is the lowest at Tg ≈ Ts

FID is satisfactory at Tg ∈ [Tm,Ts ]
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U-Turn Diffusion: Summary & Path Forward

Summary

Strong Tool to analyze Dynamic Phase Transitions in Tu in pre-trained models
Memorization, Tm

Speciation, Ts

Strong sensitivity of Tm and Ts to classes to initial GT image

Score-function (drift) in the reversed (de-noising) process is strongly non-affine
at Tu < Tm, weakly non-affine at Tu ∈ [Tm,Ts ], affine at Tu > Ts

(Future) Extensions & Applications

Self-classification – discovery of classes/clusters and their hierarchy

Cleaning corrupted images (DJ talk) – "cleaning" transition?

Other degrees of freedom (than Tu) to experiment with:
Spatio-temporal mixing – drift in forward equation
Breaking Detailed Ballance, e.g. deterministic de-noising

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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We have discussed (some) ways to CONTROL DIFFUSION?

Can we re-state DIFFUSION
as a (STOCHASTIC OPTIMAL) CONTROL?
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Score Based Diffusion & Stochastic Optimal Control

Score Based Diffusion as "Integrable" Stochastic Optimal Control

min
u(0→1;x(0→1))

E
[∫ 1

0
dt
|u(t; x(t))|2

2

∣∣∣Eqs. (∗, ∗∗)
]

s.t. t ∈ [0, 1] : dx(t)=u(t; x(t))dt+dW (t), x(0)=0 (∗)
p(x(1)) = ptarget(x(1)) (∗∗)

Grow target distribution from point source
Theory for sampling from ptarget(·) [1], based on

"Integrability": Nonlinear HJB ⇒ Hopf ’50 -Cole ’51 ⇒
Diffusion (Mitter ’81, Pavon ’89)

1M.Tzen, M.Ragynsky, Theoretical guarantees .. with latent diffusions, 2019
chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Score Based Diffusion & Stochastic Optimal Control

Score Based Diffusion as "Integrable" Stochastic Optimal Control

min
u(0→1;x(0→1))

E
[∫ 1

0
dt
|u(t; x(t))|2

2

∣∣∣Eqs. (∗, ∗∗)
]

s.t. t ∈ [0, 1] : dx(t)=u(t; x(t))dt+dW (t), x(0)=0 (∗)
p(x(1)) = ptarget(x(1)) (∗∗)

Grow target distribution from point source
Efficient Algorithms

Path Integral Sampling – Fitting Control with NN, Expansive
(repetitive forward propagation of SDE) [3]
Iterative Denoising Energy Matching – sampling to estimate
score-function [4]

3Q.Zhang, Y.Chen, Path Integral Sampler, 2022
4T. Akhound-Sadegh, et al, Iterative Denoising Energy Matching, 2024
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Integrable SOC with Potential, Forced & Gauged

Integrable SOC with a "Potential"

min
u(0→1;x(0→1))

E
[∫ 1

0
dt

(
|u(t; x(t))|2

2
+ V (t; x(t))

) ∣∣∣Eqs. (∗), (∗∗)
]

s.t. t ∈ [0, 1] : dx(t) = u(t; x(t))dt + dW (t), x(0) = 0 (∗)
p(x(1)) = ptarget(x(1)) (∗∗)

Path Integral Diffusion – Our Contribution reported today

"Integrable" SOC in a Potential, Forced and Gauged

Grow target distribution from a point source
Based on Path Integral Control (PIC) [1]

control & diffusion are co-dimensional

1H. J. Kappen, Path integrals ... for optimal control theory, 2005.
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Integrable SOC with Potential, Forced & Gauged

(Top Level) Integrable SOC in a Potential. Forced (& Gauged)

min
u(·;x(·))

E

 1∫
0

dt

(
|u(t; x(t))|2

2
+V (t; x(t))+ẋT (t)A(t; x(t))

)∣∣∣Eqs. (∗, ∗∗)


s.t. t ∈ [0, 1] : dx(t) = f (t; x(t)) + u(t; x(t))dt + dW (t), x(0) = 0 (∗)

p(x(1)) = ptarget(x(1)) (∗∗)

Path Integral Diffusion – Our Contribution reported today

"Integrable" SOC in a Potential, Forced and Gauged

Grow target distribution from a point source
Based on Path Integral Control (PIC) [1]
Field & Gauge Extension of PIC [2]

1H. J. Kappen, Path integrals ... for optimal control theory, 2005.
2V. Chernyak, MC, J. Bierkens, H.J. Kappen, SOC as Non-Eq Stat Mech:

Calculus of Variations over Density and Current, 2013
chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Path Integral Diffusion – (Top Level) Integrability

Hamilton-Jacobi Bellman for Cost-to-go (from t to 1)

−∂tJ = V + 1
2

(
∇T (∇J + A)− |∇J + A|2

)
+ f T (∇J + A)

Optimal Control: u∗ = −∇J − A

Hopf-Cole: J(t; x) = − logψ(t; x)

−∂tψ + Ṽψ + ÃT∇ψ = 1
2∆ψ, ψ(1; x) = exp (−ϕ(x)), ϕ(·) is the terminal cost

correspondent to ptarget(·)
Ṽ

.
= V + 1

2∇
TA + f TA − 1

2 |A|2, Ã .
= A − f

∂tp∗ +∇T
(
p∗(∇ logψ − Ã)

)
= 1

2∆p∗, p∗(0; x) = δ(x), p∗(1; x) = ptarget(x)

Optimal Control via Green Functions:
u∗(t; x(t)) = ∇x log

(∫
dy ptarget(y)

G−(t;x(t);y)
G+(1;y ;0)

)
t ∈ [1 → 0] : −∂tG− + Ṽ (x ; t)G− + ÃT∇G− = 1

2∆G−, G−(1; x) = δ(x − y)
t ∈ [0 → 1] : ∂tG+ + Ṽ (x ; t)G+ −∇T (ÃG+) =

1
2∆G+, G+(0; x) = δ(x − y)
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Harmonic Path Integral Diffusion (H-PID) – Integrability

H-PID – Mid Level Integrability
Green Functions are Gaussian when

Potential is Quadratic:
V (t; x(t)) = xT β̂(t)x/2 + linear and const terms
Force and Gauge are Affine in x

Akin to Quant Mech (in imag. time) in Harmonic Potential

u∗(t; x(t)) = ∇x log
(∫

dy ptarget(y)
G−(t;x(t);y)
G+(1;y ;0)

)
=

a(t)x(t)− b(t)x̂(t; x(t))

Special case, also discussed in [1] – Low Level Integrability

A, f = 0 – zero gauge, zero force

1A. Teter, W, Wang & A. Halder, Schrödinger bridge with quadratic state
cost is exactly solvable, 2024
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Use Case – Harmonic, Uniform – Low Level Integrability

V (t; x) = β|x |2 ⇒ Explicit Expression for the Green Functions

u∗(t; x(t)) = ∇x log
(∫

dy ptarget(y)
G−(t;x(t);y)
G+(1;y ;0)

)
= a(t)x(t)− b(t)x̂(t; x(t))

u∗(t; x) =
√

β
sinh((1−t)

√
β)

(
x̂(t; x)− x cosh((1 − t)

√
β)
)

Weighted State: x̂(t; x) .=
∫
dyyw(y |t; x) = Ey∼w(·|t;x) [y ]

Weight (probability): w(y |t; x) ∝ ptarget(y)
G−(t;x ;y)
G+(1;y ;0)

G−(t;x ;y)
G+(1;y ;0) =√

sinh(
√

β)
sinh((1−t)

√
β)

exp

(
−

√
β

2

(
(x2 + y2) coth

(
(1 − t)

√
β
)
− y2 coth

(√
β
)
− 2(xT y)

sinh((1−t)
√

β)

))

Next – Experiments & Analysis

Dependence on β – strength of the potential
What is the meaning/significance of the Weighted State

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond



AI ⊂ Applied Math
Diffusion Models of AI

Down-Stream Applications

Score-Based Diffusion & Non-Eq. Stat Mech
Analysis of & Dynamic Phase Transitions in Diffusion
Diffusion & Stochastic Optimal Control

How to estimate the optimal control?

ptarget(x) ∝ exp(−E (x)) – the Energy function is known explicitly

u∗(t; x) = ∇x log
(∫

dy exp(−E (y))G−(t;x ;y)
G+(1;y ;0)

)
How to Estimate the Integral?

Importance Sampling !!
∫
dy exp(−E(y))

G−(t;x ;y)
G+(1;y ;0) = E

y∼N
(
·;y∗ ;Ĥ−1

) [
exp(−E(y))

N
(
y ;y∗ ;Ĥ−1

) G−(t;x ;y)
G+(1;y ;0)

]
∇y log

(
G−(t;x ;y)
G+(1;y ;0)

)
=

√
β

(
y
(
coth(

√
β) − coth

(
(1 − t)

√
β
))

+ x 1
sinh((1−t)

√
β)

)
Hij = −∂yi

∂yj
log

(
G−(t;x ;y)
G+(1;y ;0)

) ∣∣∣∣∣
y→y∗

= δij
√
β
(
coth

(
(1 − t)

√
β
)
− coth(

√
β)

)
y∗ = x

cosh((1−t)
√

β)−sinh((1−t)
√

β) coth(
√

β)

Rely on stationary-point approximation
Exact asymptotically at t → 1

Importance Samples are Universal – do not depend on E (x)
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Universal Harmonic Importance Sampling (UHIC)
Gaussian Mixture
over (3× 3) grid
Difficult for PIS Alg.
s = 1, · · · , 1000 -
samples of UHIC:
Red - exact
Blue - x (s)(t)
Green x̂ (s)(t; x(t))

Rows:
β = 0, 0.1, 1, 10, 100

Energy Function Sampling
Speciation Transition: 9 Gaussians = 9 species
Seen earlier in x̂ (s)(t; x(t)) – the order parameter
Transition time depends on β. Fastest at β ≈ 0.1
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Space-Time Evolution of Samples [1]

Dynamics is "direct" in x(t)
Much more of "exploration" meandering in x̂(t; x(t))

Good Convergence
– in # t-steps & #
of samples

1HB, MC, Space-Time Bridge Diffusion, 2024
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Sampling from Ground Truth Samples

u∗(t; x) = ∇x log

(∫
dy ptarget(y)

G−(t; x ; y)
G+ (1; y ; 0)

)

≈ ∇x log

(
1
S

S∑
s=1

G−(t; x ; y (s))

G+(1; y (s); 0)

)

≈
√
β
(
x̂(t; x)− x cosh((1 − t)

√
β)
)

sinh((1 − t)
√
β)

x̂(t; x(t)) .=
∑

s y (s)w(y (s)|t; x(t))

Memorization Regime ⇒
Ground Truth samples
Focus on Analysis of
Memorization transition [1,2]

w(y |t; x) ∝ exp

(
−

√
β

2

(
(x2 + y2) coth

(
(1 − t)

√
β
)
− y2 coth

(√
β
)
− 2(xT y)

sinh((1−t)
√
β)

))

1HB, MC, U-turn Diffusion, 2023
2G. Biroli, et al, Dynamical Regimes of Diffusion Models, 2024
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Sampling from CIFAR-10

β =
0.1

x̂(t; x(t)) .
=

∑
s y (s)w(y (s)|t; x(t)) x(t)

Analysis of the Memorization Transition
Emergence of Two Phases
See it earlier in the Weighted State = Order Parameter
Transition time increases with β
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Sampling from CIFAR-10
Auto-Correlations in Dynamics of a Single Sample
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Analysis of the Memorization Transition
Emergence of Two Phases
See it earlier in the Weighted State = Order Parameter
Transition time increases with β
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Sampling from CIFAR-10

β =
10

x̂(t; x(t)) .
=

∑
s y (s)w(y (s)|t; x(t)) x(t)

Analysis of the Memorization Transition
Emergence of Two Phases
See it earlier in the Weighted State = Order Parameter
Transition time increases with β

Much more of "exploration" meandering in x̂(t; x(t))
chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Summary – Harmonic Path Integral Diffusion (H-PID) framework

Expressive Stochastic Optimal Control for Bridge Diffusion
"Integrable" – Three Levels
Top Potential + Force + Gauge ⇒ Linearly Solvable =

log-ratio-of backward & forward Green Functions
Mid Potential - quadratic, Force + Gauge are affine ⇒ Green

Functions are Gaussian = akin Quantum Harmonic
Oscillators

Low Uniform Quadratic Potential ⇒ control is a convolution of
the Target Distribution with a kernel expressed via
elementary functions

H-PID Algorithms is Neural Networks – FREE, works better
on CPUs
Experiments on Gaussian mixtures and CIFAR-10: Weighted
State is Order Parameter of a Dynamic Phase Transition
- early pre-cursor of the resulting sample
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From Pre-Trained Generative Models to Applications

Real Power of Generative Models
Once trained (expensive), they can be adapted to various
applications without retraining

Key Applications of Pre-Trained Diffusion Models
Constrained Inference
Self-Labeling
Inference of Structured Data

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Constrained Inference

Constrained Inference involves generating samples under
specific constraints, such as fixing part of the state or ensuring
the sample satisfies known conditions.

Constrained Diffusion Models via Dual
Training Introduces dual training for
diffusion models to handle tasks like fair
sampling and conditional generation.
[arXiv:2408.15094]

Fast Constrained Sampling in
Pre-Trained Diffusion Models Proposes
efficient constrained sampling algorithms
for pre-trained models without requiring
fine-tuning. [arXiv:2410.18804]
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Self-Labeling

Use pre-trained diffusion models to uncover inherent clusters
and assign labels as a downstream application.
This involves generating samples conditioned on implicit
structures in the data and discovering clusters through the
learned representations.

Diffusion Models for Clustering and
Label Discovery This paper
demonstrates how pre-trained diffusion
models can be leveraged for unsupervised
clustering and label discovery. By
conditioning the diffusion process on
inferred data clusters, it enables the
generation of samples aligned with these
clusters, facilitating downstream tasks
such as labeling. [arXiv:2210.06462]
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Inference of Structured Data

Inference of Structured Data involves working with discrete structures like
graphs, time sequences, and similar datasets.

Diffusion models combined with stochastic optimal control are particularly
effective for these tasks.

Operates in discrete space (e.g., molecular building blocks) and discrete time
(e.g., steps in molecular design).

Incorporates auto-regression/memory/transformers into diffusion

Graph Flow Network ..., Introduces a
framework for generative modeling in
discrete spaces, focusing on graph-based
structures like molecules. Combines
diffusion models with stochastic optimal
control to address complex design
problems in discrete space and time
[arXiv:2111.09266 – Bengio group] →
RXNFLOW [arXiv:2410.04542 – KAIST
team] (drug design)
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Why Generative Models for Power (and other) Systems?

Uncertainty ⇒ Statistics ⇒
Generative Models

Renewables
Consumers
Operators
Dependencies
· · ·

Start Broad and Build ONE
Generative Model

Solve Many Downstream
Problems
Update the Generative Model as
we go

Controls & Optimizations
... can be down-stream tasks too
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What is the State Space?

What is the State Space of the most general (Power System)
Generative Model?

Grid Layout/Type, Weather, Stress, Season, etc —
features/labels, may be part of the state
State: Instantaneous (or time evolving) configuration of load
and generation, generation status.
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Possible Application(s) in Power Systems

Constrained Inference – Re-Biasing, Completing, Cleaning

Discovery of Rare Events

Sampling "Typical" (once a day)
Contingencies, possibly conditioned to
type of date, weather event, etc

Sampling Dynamic N − 1 events, e.g.
single-phase faults

Cyber-security of power system –
correct/identify/detect "small" but
"dangerous" intrusions/modifications (DJ
lecture on privacy of AI – extended from
black box to physical box)

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Possible Application(s) in Power Systems

Self-Labeling

Power System Forensics

Discovering/labeling hidden regimes, e.g.
associated with actions of other
participants of the energy market(s)

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Possible Application(s) in Power Systems
Inference of Structured Data (Graph Flow Network)

Stochastic Unit Commitment

Task: Unit Commitment Decisions = Sampled from a generative model, where
probability of UC = its reward (stochastic average over multiple load/renewable
forecasts)

Built Sequentially with Auto-Regression (switching on/off memory)

Evaluation of a UC reward is with a state-of-the art power-system solver

Accelerate Bender Decomposition (in response to Pascal’s tutorial)

May be ...
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Applied Math @ UArizona
Research focused, since 1976, one of the
US first in Applied Mathematics

Interdisciplinary: 130+ professors/ 27
departments / 8 colleges across UA
campus (Science & Engineering & Optics
– top 3)

Mixing traditional contemporary AM

65 PhD students (12/12/12/13/16/10
enrolled in 2024/23/22/21/20/19)

3 Core Courses to Qualify (Methods,
Analysis, Algorithms) - re-designed to
incorporate AI in 2019-20; + three
research rotations in the first 3
semesters with at least two professors

Strong collaborations with National –
DOE – & Industrial – DOD+ – Labs,
e.g. via NSF (Graduate Innovation in
Education) support – pipeline:
recruitment, internerships, co-advising
(triads), partial employment
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Is (Bayesian) Generative =
Foundational ?
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Is (Bayesian) Generative =
Foundational ?

It is UMBRELLA ⇒ for many (if
not all) downstream applications

chertkov@arizona.edu Bayesian Generative AI for Power Systems and Beyond
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Is (Bayesian) Generative =
Foundational ?

It is UMBRELLA ⇒ for many (if
not all) downstream applications

What kind of foundational/generative AI models (for power
systems and beyond) shall we ... government/DOE and
industry ... train = invest in?
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Thank You!
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