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What do we really know about Pennsylvanian (Penn) reefs of the Eastern Shelf?

• A lot

• Upon further review: We still have much to learn

Summary



Outline

• Trend map

• Overview of Penn reefs of Eastern Shelf

• Reefs (?) or what ?

• Comparison of reef sizes and orientations

• Reef topography: the role of sea-level change vs. erosion

• The data problem: lack of deep well control and 3D seismic coverage

Maximizing future reserves requires accurate geologic / reservoir models



Pennsylvanian Reef Trend
of the Eastern Shelf

(from Counselman, 1960)
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• String of individual reefs stretching more 

than 300 miles long and 60 miles wide 
(480 x 100 km)

• Facies analysis show that these “reefs“ are 
actually carbonate buildups or masses with a 
diverse number of facies

• Note that this map is incomplete, only showing 
most of the larger reef fields



• Schatzinger (1987) notes that buildups at SACROC are a 
stacked series of a variety of facies, including tidal flat, 
ooid/skeletal grainstones, and phylloid algal and sponge reefs

Reef of the eastern side of the Horseshoe Atoll 
(SACROC, Diamond M, Cogdell, Salt Creek) remain 
the most studied, providing insight to ES reefs
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Major non-algal / non-sponge fossil constituents of the Atoll
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Data base: 130 cores

(3,042 ft total)

Note: ooids constitute a large % of

grain types in places along outer 

margin of Atoll 

(data from Myers et al., 1956; Bergenback and Terriere, 1953; Schatzinger, 1983)

Carbonate rock types

• Grainstone:            46.3%

• Packstone/             35.2%

    Wackestone/

    Mudstone

• Rudstone               15.9%    

    (debris flows)

97.4% CaCO3

• Shale               2.6%



• Clearly, the term “reef” an oversimplification for these carbonate masses

• Better terms might include “reef complexes,” “carbonate buildups,” “reef-shoals,” or “reef-mounds”

• Main characteristics:
• isolated, positive topographic relief
• myriad of carbonate facies

(Abilene Geol. Soc., 1983)

-- OK to call them reefs, but remember the complexities  of these carbonate masses--

Reefs ?  or what ?
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• Overview of Penn reefs of Eastern Shelf

• Reefs ?

• Comparison of reef sizes and orientations

• Reef topography: the role of sea-level change vs. erosion

• The data problem: lack of well control and 3D seismic



Penn reefs of the Eastern Shelf: The data problem

• Most, if not all reefs on the Eastern Shelf lack wells that completely penetrate 
the buildups in their highest (thickest) portions

• Consequently, defining the top the reef using well logs is not a problem; but accurately 
characterizing internal structure/correlation requires 3D seismic; not all are imaged

• Historically, deeper zones within these reefs are considered “wet” without the benefit of 
full suites of deep, modern logs

• Could deeper pay zones exist, particularly within the Strawn ?



Claytonville Reef, Fisher County
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Note lack of 
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control 
within reef
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required to 
interpret 
reef interior



3D seismic
surveys
Midland Basin –
Eastern Shelf
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Internal complexity of Penn Reefs: Porosity distribution model, Reinecke Field (Borden Co., Horseshoe Atoll)

• Nature of Penn. cyclic carbonate 
deposition provides opportunities 
for stranded porosity and isolated, 
unproduced pay

• Note deep porosity below mapped 
O/W contact (100% wet ?)

• Application of horizontal drilling ??

3D seismic shows internal stratigraphic 
architecture and complexities of these 
buildups

Claytonville reef, Fisher Co.

Moreland et al., 2025
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• Most ES reefs are elongate with a broad base and one or 
more high-standing pinnacles

• Dimensions: 1 – 2 miles wide, varying lengths (1- 7 miles)

• Dominant orientation: N – NE (facing into paleo trade winds)

1 mi.

1 mi. 1 mi.

Round Top
Fisher Co.

Top reef

1 mi.

(Mazzullo & Mazzullo, 1983)

(Williams & 
Schatz, 1956)

1 mi.

Ocho Juan
Fisher Co.

Top reef
(Mohanlal, UTD, in progress)

(Zemkowski 1985)

(Whitton, 
1949)

(Brodie,1949)

Claytonville
Fisher Co.

Top reef
(Moreland et al., 

2025)

1 mi.



“Mini” atolls ?

“Coke”
atoll

(Conselman, 1983)

“Rowan and Hope” Atoll ?

Sinclair et al., 2017, based on 
Waite, 1993)

Millican reef (J. Clark, 1961)

IAB reef

Jameson

reef
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Pinnacle / “haystack” shape of Penn reefs is 
partially the result of subsidence during 
continued long-term rise in sea-level throughout 
Desmoinesian (Strawn) time

Eastern Atoll
Scurry Co.

Western Atoll
Dawson Co.

Midland Basin
Midland Co.

SSW NNE

Reef geometry was also highly 
modified by multiple periods of 
erosion / karsting during multiple, 
glacially-driven lowerings of sea-level

Desmoinesian



Mobil #1 T.J. McDonnell
Scurry Co., Texas

early Strawn

middle 
Strawn

late
Strawn

Miss.

Elbg.

early
Canyon

early 
Wolfcamp

Exposure
surface Exposure surface, Claytonville reef

(Moreland et al., 2025)

(from Waite, 1993)

Mobil 
#1 T.J. McDonnell



Karst topography on Canyon limestones, 
eastern side of Codgell Field, Scurry Co.

Mazzullo, 1997, 
after Reid and 
Reid, 1991)
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A “karsted hill”
on the
Claytonville
buildup



Structure map of
Kelly-Snyder (Scurry) and 
Cogdell reefs published in 1957

(Stafford, “Scurry Field” in 
Occurrence of Oil and Gas in 
West Texas, Univ. of Texas – 
BEG Publication No. 5716, 
August, 1957)

Contour interval = 50 ft.

• Detailed structural 
configuration of reefs was 
defined less than a decade 
after initial oil discovery 

• Well control (~ 40 ac. spacing) 
shows complex topographical 
pattern along the margins and 
interior of the reef complex, 
with numerous indentations, 
closed highs, and lows

0 5 mi.



(Mahmoud Alnazghah, 2018)

0 3 mi.

C.I. = 50 ft.

(Stafford, 1957)

C.I. = 50 ft.



https://science-junkie.tumblr.com/

Tower karst, southern China

0 3 mi.



East – West cross section, SACROC reef, Scurry County (Dutton et al., 2004)

• Multiple periods of growth & erosion results in amalgamation of eroded debris on flanks of buildups

• Flow units in reef interior do not extend to flanks



What do we really know about Penn reefs of the Eastern Shelf?
• A lot

Pennsylvanian reefs of the Eastern Shelf: Summary

• Distribution, sizes, and orientations

• Role of long-term sea-level rise vs. multiple periods of erosion on defining 
final “pinnacle” shape

• Internal complexity (yes, they are “reefs,” but…)

• Many lack 3D seismic coverage required to assess internal reef geometry

• Upon further review: We have much to learn

• Absence of deep, modern log suites hinders accurate detailed characterization

• Efficiently draining these beasts and locating new reserves requires rigorous, 
geologic / reservoir models integrating log, 3D seismic, core, and production data 



Many other topics to consider and discuss…

• Microfacies

• Porosity types and distribution

• Permeability: lowstand vs. highstand units

• Production trends (decline curves, cumulative 
oil-gas-water, etc.)

• Data mining of old publications

…just to name a few

• Fusulinid biostratigraphy

• Relationship of reefs to younger “Canyon” sands

• Cement types

• Recognition of eroded debris in core

• Role of stylolites and fractures

Eastern Shelf Penn reef operators: 
I’d love to hear from you
Email Lowell.waite@utdallas.edu
Website https://labs.utdallas.edu/permianbasinresearch/
                    (search: “Permian Basin Research Lab”

https://labs.utdallas.edu/permianbasinresearch/
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