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Summary

What do we really know about Pennsylvanian (Penn) reefs of the Eastern Shelf?

e Alot

 Upon further review: We still have much to learn



Outline

 Qverview of Penn reefs of Eastern Shelf

* Trend map
* Reefs (?) orwhat?

* The data problem: lack of deep well control and 3D seismic coverage

 Comparison of reef sizes and orientations

* Reeftopography: the role of sea-level change vs. erosion

Maximizing future reserves requires accurate geologic / reservoir models
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Pennsylvanian Reef Trend
of the Eastern Shelf

(from Counselman, 1960)

» String of individual reefs stretching more
than 300 miles long and 60 miles wide
(480 x 100 km)

* Note that this map is incomplete, only showing
most of the larger reef fields

* Facies analysis show that these “reefs” are
actually carbonate buildups or masses with a
diverse number of facies



Reef of the eastern side of the Horseshoe Atoll
(SACROC, Diamond M, Cogdell, Salt Creek) remain
the most studied, providing insight to ES reefs
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* Schatzinger (1987) notes that buildups at SACROC are a
stacked series of a variety of facies, including tidal flat,
ooid/skeletal grainstones, and phylloid algal and sponge reefs
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Major non-algal / non-sponge fossil constituents of the Atoll

Data base: 130 cores
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Reefs ? or what ?

* Clearly, the term “reef” an oversimplification for these carbonate masses

* Better terms might include “reef complexes,

* Main characteristics:
* isolated, positive topographic relief
* myriad of carbonate facies

2 ¢

carbonate buildups,

2 ¢

reef-shoals,” or “reef-mounds”
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-- OK to call them reefs, but remember the complexities of these carbonate masses--
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Outline

e Overview of Penn reefs of Eastern Shelf

* Trend map

e Reefs ?

* The data problem: lack of well control and 3D seismic

* Comparison of reef sizes and orientations

* Reeftopography: the role of sea-level change vs. erosion



Penn reefs of the Eastern Shelf: The data problem

* Most, if not all reefs on the Eastern Shelf lack wells that completely penetrate
the buildups in their highest (thickest) portions

 Consequently, defining the top the reef using well logs is not a problem; but accurately
characterizing internal structure/correlation requires 3D seismic; not all are imaged

* Historically, deeper zones within these reefs are considered “wet” without the benefit of
full suites of deep, modern logs

 Could deeper pay zones exist, particularly within the Strawn ?
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3D seismic
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Depth (ft, subsea)

Internal complexity of Penn Reefs: Porosity distribution model, Reinecke Field (Borden Co., Horseshoe Atoll)
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* Nature of Penn. cyclic carbonate
deposition provides opportunities
for stranded porosity and isolated,
unproduced pay

* Note deep porosity below mapped
O/W contact (100% wet ?)

* Application of horizontal drilling ??
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Outline

e Overview of Penn reefs of Eastern Shelf

* Trend map

e Reefs ?

* The data problem: lack of well control and 3D seismic

* Comparison of reef sizes and orientations

* Reeftopography: the role of sea-level change vs. erosion
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* Most ES reefs are elongate with a broad base and one or

%000
more high-standing pinnacles

* Dimensions: 1 -2 miles wide, varying lengths (1- 7 miles)

* Dominant orientation: N - NE (facing into paleo trade winds)




“Mini” atolls ?
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Outline

 Reeftopography: the role of sea-level change vs. erosion



Pinnacle / “haystack” shape of Penn reefs is
partially the result of subsidence during

continued long-term rise in sea-level throughout

Desmoinesian (Strawn) time
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Reef geometry was also highly
modified by multiple periods of
erosion / karsting during multiple,
glacially-driven lowerings of sea-level
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“Karsted hill”
concept

Mazzullo, 1997,
after Reid and
Reid, 1991)

Karst topography on Canyon limestones,
eastern side of Codgell Field, Scurry Co.
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Structure map of

Kelly-Snyder (Scurry) and
Cogdell reefs published in 1957

(Stafford, “Scurry Field” in
Occurrence of Oil and Gas in
West Texas, Univ. of Texas —
BEG Publication No. 5716,
August, 1957)

Contour interval = 50 ft.

BORDEN CO.
SCURRY CO.

* Detailed structural

configuration of reefs was
defined less than a decade
after initial oil discovery

Well control (~ 40 ac. spacing)
shows complex topographical
pattern along the margins and
interior of the reef complex,
with numerous indentations,
closed highs, and lows
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Tower karst, southern China

https://science-junkie.tumblr.com/
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East — West cross section, SACROC reef, Scurry County (Duttonetal, 2004)

* Multiple periods of growth & erosion results in amalgamation of eroded debris on flanks of buildups

* Flow units in reef interior do not extend to flanks
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Pennsylvanian reefs of the Eastern Shelf: Summary

What do we really know about Penn reefs of the Eastern Shelf?
* Alot

* Distribution, sizes, and orientations

* Internal complexity (yes, they are “reefs,” but...)

* Role of long-term sea-level rise vs. multiple periods of erosion on defining
final “pinnacle” shape

 Upon further review: We have much to learn

* Many lack 3D seismic coverage required to assess internal reef geometry

* Absence of deep, modern log suites hinders accurate detailed characterization

» Efficiently draining these beasts and locating new reserves requires rigorous,
geologic / reservoir models integrating log, 3D seismic, core, and production data



Many other topics to consider and discuss...

Microfacies Role of stylolites and fractures

Fusulinid biostratigraphy Cement types

Recognition of eroded debris in core

Porosity types and distribution

Permeability: lowstand vs. highstand units

Data mining of old publications

Production trends (decline curves, cumulative

. ...just to name a few
oil-gas-water, etc.)

* Relationship of reefs to younger “Canyon” sands

Eastern Shelf Penn reef operators:
I’d love to hear from you

Email Lowell.waite@utdallas.edu

Website https://labs.utdallas.edu/permianbasinresearch/ e s it

(search: “Permian Basin Research Lab”


https://labs.utdallas.edu/permianbasinresearch/
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